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Abstract: Phytoplankton phenology studies require a dataset that is continuous in time and space 
since missing data have been shown to affect the accuracy of seasonality metrics. The interpolated 
GlobColour product provided by the Copernicus Marine Environment Monitoring Service 
(CMEMS) meets these requirements by being ‘gap filled’, thus yielding the highest spatial coverage. 
Despite being validated on a global scale, a regional comparison to in situ Chl-a concentrations 
should be conducted to enable product application in optically complex waters. This study aims to 
evaluate the performance of the GlobColour interpolated product in British Columbia coastal waters 
via a statistical match-up analysis and a qualitative analysis to determine whether the data reflect 
the region’s large-scale seasonal trends and latitudinal dynamics. Additionally, the statistical 
performance of the GlobColour interpolated product was compared to the original GlobColour and 
Ocean Colour Climate Change Initiative (OC-CCI) merged chlorophyll-a products based on in situ 
observations. The GlobColour interpolated product performed relatively well and was comparable 
to the best-performing product for each water type (RMSE = 0.28, r2 = 0.77, MdAD = 1.5, BIAS = 0.90). 
The statistics for all the products degraded in Case 2 waters, thus highlighting the dilemma of 
applying algorithms designed for Case 1 waters in Case 2 waters. Our results indicate how the 
quality of products can vary in different environmental conditions. 
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1. Introduction 
Ocean-colour-derived chlorophyll-a concentration (Chl-a), interpreted as a proxy for 

phytoplankton biomass, is one of 54 essential climate variables (ECVs) that critically 
contribute to the characterization of Earth’s climate [1]. In order to provide the empirical 
evidence needed to understand and predict the evolution of climate change, ECVs need 
detailed historical records spanning decades at a global scale to be able to discern natural 
changes from anthropogenically induced change [2]. Ocean colour satellites meet these 
requirements by providing global coverage of Chl-a products at relatively high spatial 
resolutions (<1 km) and regular sampling frequencies since 1978 [3]. Unfortunately, no 
single ocean colour satellite encompasses this entire 40-plus year duration, thus merging 
data from different satellites is needed to generate a continuous time series [4]. The 
merging process is complex because each sensor possesses distinct features, such as orbits 
(different timing of overpasses), swaths and revisit times, spatial resolutions (ranging 
from 300 m–4 km), and spectral resolutions (number and position of spectral wavebands) 
[4]. This merging process must, therefore, be carefully thought out to prevent biases, 
artifacts, or discontinuities from being introduced [4,5]. 

The GlobColour project and the Ocean Colour Climate Change Initiative (OC-CCI) 
produce merged Chl-a products on a global scale by integrating Chl-a estimates from 
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multiple sensors to minimise temporal discontinuities and spatial biases among single 
satellite sensors [6–9]. The GlobColour project was developed in 2005 by the European 
Space Agency (ESA) as a data user element program to provide a continuous dataset of 
merged level-3 ocean colour products that accommodate global carbon cycle research 
(ACRI-ST GlobColour Team, 2020). Subsequently, in 2010 the ESA launched the OC-CCI 
to produce a coherent, long-term, and error-characterized chlorophyll product to meet the 
needs and quality standards required for ECVs [7,9]. Despite merged products improving 
the data coverage in both time and space, missing data due to sun glint, persistent cloud 
cover, atmospheric aerosols, or sensor saturation over ice, sand, or snow is still prevalent. 
GlobColour, therefore, provides an additional daily ‘cloud free’ Chl-a interpolated 
product that minimises missing data [10]. 

Missing data are particularly challenging for studies concerning phytoplankton 
phenology, as they have been shown to affect the accuracy of seasonality metrics [11]. 
When missing data concur with the timing of bloom initiation, termination, and peak 
amplitude, the estimations in phenological indices can suffer from inaccuracies and 
systematic biases in the computation method [12]. It is, therefore, necessary to compensate 
for the missing data prior to deriving the phenology indices by interpolating across gaps 
[13]. The only product that provides continuous spatial and temporal data that meets the 
requirements of phenology studies is the GlobColour interpolated product. 

Here, we evaluate whether the GlobColour interpolated product is suitable to use in 
the waters of British Columbia (B.C.), which consist of both Case 1 and Case 2 waters. 
Despite these products being validated and assessed for quality standards on a global 
scale [10,14,15], it is recommended to compare products to in situ water samples [7] since 
Chl-a products have shown regional accuracy biases when compared to observed data 
[16]. Specifically on the west coast of Canada, the evaluation of Chl-a product performance 
is necessary due to the optically complex nature of B.C. waters [17–22]. Coastal waters are 
under the influence of many riverine systems discharging terrigenous materials, 
including inorganic sediments and dissolved organic matter, which impact water bio-
optical properties [18,22–27]. Off-shelf waters are optically simpler because particles are 
primarily composed of phytoplankton [28]. 

As a first step to acquiring a suitable long-term spatially and temporally continuous 
time series of Chl-a for the B.C. coast, this study evaluates the GlobColour interpolated 
Chl-a product in relation to in situ Chl-a data, including a comparison with the original 
GlobColour Chl-a product and OC-CCI. An additional qualitative analysis is performed 
to determine whether the data reflect the region’s large-scale seasonal trends and 
latitudinal dynamics. By conducting a regional validation of the GlobColour interpolated 
product, this research shows that the product can be used for monitoring applications, 
such as phytoplankton phenology and bioregionalization studies, that allow for data 
incorporation into marine management strategies along the B.C. coast.  

2. Materials and Methods 
2.1. Study Area 

The study area, extending from 47–60°N and 122–140°W (Figure 1A), included the 
coastal waters off northern Washington state, British Columbia, southeast Alaska, and the 
adjacent open ocean waters of the subarctic northeast Pacific Ocean. The continental shelf 
off B.C. is generally narrower than 45 km, reaching 95 km in the shallow basins of the 
Hecate Strait and Queen Charlotte Sound [27]. In this region (Figure 1A), phytoplankton 
productivity varies spatially and interannually. The highest phytoplankton biomass and 
earliest blooms have been observed in the Strait of Georgia on the southern B.C. coast, 
with surface concentrations ranging from <1 mg m−3 in winter to >15 mg m−3 during bloom 
conditions, and the second-highest biomass along the southwest coast of Vancouver 
Island [18,29,30]. This high productivity can be attributed to upwelling favourable winds 
in summer (April–September), which bring nutrient-rich water towards the surface 



Remote Sens. 2023, 15, 687 3 of 17 
 

 

[29,31–34]. Similarly, freshwater discharge increases both the stability and the supply of 
land-derived nutrients, which keep both nutrients and phytoplankton in the euphotic 
zone [29,32,34]. The northern B.C. coast up to the western Alaska regions are dominated 
by downwelling favourable winds most of the year, though nutrients supplied by river 
discharge, current-induced upwelling, coastal eddies, and winter upwelling winds 
increase phytoplankton production [34].  

 
Figure 1. (A) Study area map with names of the main rivers and locations cited in the text and 
transect lines used to extract satellite product data from the coast (red line) and continental shelf 
over the 800 m isobath (blue line). (B) Locations of in situ Chl-a data collected by DFO. 

2.2. Datasets 
The performance of the GlobColour interpolated (Chla-GCint) product was 

evaluated in the coastal and open ocean waters of B.C. using in situ Chl-a data provided 
by Fisheries and Oceans Canada (DFO) via a one-to-one match-up analysis and compared 
to the merged multi-sensor satellite Chl-a datasets, GlobColour CHL1 (Chla-GC), and OC-
CCI (Chla-OC). 
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2.2.1. In Situ Chl-a Data  
Chl-a data were collected by DFO using high-performance liquid chromatography 

(HPLC) methods as part of their monitoring of the marine ecosystem. The validation 
dataset (total = 1914) consisted of the northeast Pacific measurements of physical, 
chemical, and biological data (Figure 1B), which are conducted along Line P three times a 
year in winter, spring, and summer (2006–2017); off the west coast of Vancouver Island 
twice a year in spring and summer (2004–2017); and in the Strait of Georgia three times a 
year in spring, summer, and fall (2011–2017). Briefly, water samples were filtered onto 47 
mm GF/F filters and stored at −80 °C prior to analysis. In the lab, samples were extracted 
in 95% methanol at −20 °C for 24 h and analyzed with a WATERS 2695 HPLC separations 
system, as detailed in [35]. Only surface samples less than 6.1 m were considered, and 
values flagged by DFO as poor measurements were removed prior to analysis. Additional 
information and the datasets can be found at 
https://open.canada.ca/data/en/dataset/871B0b32-3135-40c8-868e-c5d87800ca76 (accessed 
on 12 April 2021). Other data sources were not used in an attempt to be consistent with 
the HPLC analytical methods implemented by DFO.  

2.2.2. Merged Multi-Sensor Satellite Data 
GlobColor and OC-CCI data products used in this study were open-access daily 

global data at a 4 km × 4 km spatial resolution downloaded for the period of 1998–2021. 
Due to low solar elevation conditions in this region during the winter months, the analysis 
was computed using nine months of data, from mid-February to mid-November 
[17,29,30]. 

GlobColour Daily Chl-a Product 
GlobColour products correspond to continuous 23-year time series (1997-present) 

created by merging data from the following sensors: SeaWiFS (1997–2010), MERIS (2002–
2012), MODIS-Aqua (2002-present), VIIRS-NPP (2012-present), OLCI-S3A (2016-present), 
VIIRS-SNPP (2017-present), and OLCI-S3B (2019-present). GlobColour provides merged 
products using three merging techniques: (i) a simple averaging method (AV) of Level 2 
Chl-a estimates, (ii) weighted averaging (AVW) of Level 2 Chl-a estimates adjusted to 
MERIS using the OC4Me algorithm, and (iii) using the Garver–Siegel–Maritorena (GSM) 
model to merge Level 3 normalized water-leaving radiances across sensors prior to 
producing Chl-a retrievals [6,7]. The algorithms used to determine chlorophyll 
concentration also vary. The CHL1 product is computed using classic ratios applicable for 
Case 1 waters (available in AVW and GSM merging), CHL-OC5 is based on the blended 
OC5/CI-Hu algorithm (and AVW merging), and to obtain CHL2 neural networks trained 
for Case 2 waters are used (with AV merging) [6]. Due to the limited temporal availability 
of CHL2 (2002–2012), it was not considered in this analysis. The initial validation of CHL-
OC5 resulted in poor statistics (not shown). Therefore, only the CHL1 algorithm was 
further considered for this analysis.  

The CHL1 product merged using the GSM model has been shown to provide more 
accurate chlorophyll concentration estimates in the northeast Pacific [20] and the best fit 
to in situ Chl-a compared to alternative GlobColour products [6,36]. Although the CHL1 
algorithm provides the best performance over Case 1 waters and has not been 
recommended for use over optically complex coastal waters [6,37], the application of Case 
1 algorithms to coastal waters can occur, provided that a verification of Chl-a 
concentration using in situ measurements confirms the reliability of the product [29]. 
GlobColour data from http://hermes.acri.fr (accessed on 12 April 2021). 

GlobColour Interpolated Chl-a Product 
Since 2016, the Copernicus Marine Environment Monitoring Service (CMEMS) has 

provided a ‘cloud free’ interpolated daily product, significantly improving the quality and 
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coverage of daily data upstream [10]. This interpolated product is produced by first 
merging Chl-a fields estimated using different algorithms (OC3 and OC5 for Case 1 and 
2 waters, respectively) generated from Level 2 reflectance [38]. This Level 3 multi-
algorithm product is then used as input for spatio-temporal interpolation, an advanced 
version of the standard optimal interpolation technique that includes anisotropic 
covariance models at the coastline for better reconstruction of coastal gradients [38]. 
Interpolated GlobColour data from https://resources.marine.copernicus.eu/product-
detail/OCEANCOLOUR_GLO_CHL_L4_REP_OBSERVATIONS_009_082/DATA-
ACCESS (accessed on 20 October 2021) 

OC-CCI Chl-a Product 
The OC-CCI Chl-a dataset (v5.0) is generated by shifting the wavelengths of 

SeaWiFS, MODIS, VIIRS, and OLCI data to match MERIS bands, applying bias correction, 
merging the datasets, and computing per pixel uncertainty estimates [39]. POLYMER 
(v.4.12) atmospheric processing is applied, and Chl-a is estimated using a blended 
algorithm including the OCI, OCI2, OC2, OC3, OCx (the updated OC3/OC4 band ratio 
algorithm [40]), and OC5 algorithms, which attempt to weight the outputs of the best-
performing algorithm based on the water types present [39]. The OC-CCI dataset, Version 
[v5.0], ESA, from http://www.esa-oceancolour-cci.org/ (accessed on 21 September 2021).  

2.3. Satellite Data Analysis 
To ensure that the Chl-a concentrations derived from the merged satellite products 

were accurate in B.C. waters, the Chl-a retrievals were compared to the in situ 
measurements. Match-up product Chl-a data were obtained from the pixel (16 km2) 
centered in the in situ sampling location, with time windows of ±3 h from 12:00 in the 
Strait of Georgia, ±5 h for the west coast of Vancouver Island, and ±12 h for Line P (Figure 
1B). These time windows were defined to be short enough to reduce the effects of temporal 
variability on the in situ data, particularly in more dynamic regions, yet large enough to 
allow for the greatest possibility of a match [16]. To minimize the impact of low-quality 
match-ups, the area of the Fraser River plume was excluded since high turbidity has been 
shown to result in inaccurate chlorophyll estimates [17,18,20], and the high spatial 
variability of plume–ocean transitional waters can compromise the results of satellite 
validation [41]. For effective comparison, only match-ups with coincident valid pixels for 
all three satellite products were considered. To determine the relationship between the in 
situ Chl-a measurements and the product Chl-a values, a linear regression was performed 
on log-transformed data and the Pearson correlation coefficient (r-value) was calculated 
to determine the strength of the linear association between the two variables (Figure 2) 
[42]. To quantitatively evaluate the performances of the merged satellite products, metrics 
for the differences between the observed and measured values (root mean square error 
(RMSE) and median absolute difference (MdAD)), the mean bias (BIAS), and the goodness 
of fit (coefficient of determination (r2) and regression slope) were calculated for log-
transformed Chl-a data [43]: 

RMSE = ට∑ (௟௢௚భబ(ௌ௔௧೔)ି௟௢௚భబ(ூ௡ௌ௜௧௨೔))మ೙೔సభ ௡  (1)

MdAD = 10ெ௘ௗ௜௔௡|௟௢௚భబ(ௌ௔௧೔)ି௟௢௚భబ(ூ௡ௌ௜௧௨೔)| (2)

BIAS = 10∑ ೗೚೒భబ(ೄೌ೟೔೙೔సభ )ష೗೚೒భబ(಺೙ೄ೔೟ೠ೔)೙  (3)

where 𝑆𝑎𝑡௜ is the satellite-derived data, 𝐼𝑛𝑆𝑖𝑡𝑢௜ is the in situ measurement, and 𝑛 is the 
number of samples. Note that chlorophyll was log-transformed prior to calculating error 
metrics [43]. 

An additional analysis was performed to evaluate the data quality of the large-scale 
dynamics of the study region. Seasonal trends were derived from the 23-year (1998–2021) 
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climatology of Chla-GCint data, which was separated into averages for spring (February–
May; Figure 3A), summer (June–August; Figure 3B), and fall (September–November; 
Figure 3C) [18]. Latitudinal transects were extracted from the seasonal composites of 
chlorophyll concentration along the coastline (11 km from the coast) and over the outer 
margin of the continental shelf (following the 800 m isobath, which is ~65 km from the 
coastline; Figure 1A). The transect data were averaged from a 3 × 3 pixel window of the 
data, representing a 12 km wide band that was averaged along each latitude. The resulting 
latitudinal trends (Figure 4A–C) were verified according to known Chl-a seasonal and 
latitudinal dynamics over the study region. 

 
Figure 2. The top row shows the normalized frequency distributions of the Chl-a match-up 
measurements for (A) GlobColour interpolated (green), (B) GlobColour CHL1 (blue), and (C) OC-
CCI (purple) with coincident in situ measurements (red). The lines show a stepped histogram with 
50 bins, while the curves represent a kernel density estimate using Gaussian kernels. The bottom 
row shows the (D) GlobColour-interpolated-, (E) GlobColour-CHL1-, and (F) OC-CCI-derived Chl-
a measurements for in situ Chl-a match-up scatterplot comparisons. The red, green, and blue 
markers represent data from the Line P, the west coast of Vancouver Island (WCVI), and the Strait 
of Georgia (SoG) locations, respectively. The black line represents the best fit line, the black dotted 
line is the 1:1 line, and the grey dotted lines represent 2 standard deviations of the best fit line. The 
green and red lines represent Case 1 waters (Line P) and Case 2 waters (SoG and WCVI), 
respectively. Data were log10-transformed for display. Note that the top row (ABC) is in logarithmic 
scale, with log values converted into actual concentrations of Chl-a (mg m−3) on the x-axis labels, 
and the second row (DEF) are in logarithmic scale with log values converted into actual 
concentrations of Chl-a (mg m−3) on the x- and y-axes. 
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Figure 3. Seasonal climatology derived from GlobColour Interpolated Chl-a data for (A) spring 
(February–May), (B) summer (June–August), and (C) fall (September–November). 

 
Figure 4. Chl-a latitudinal distribution of GlobColour Interpolated seasonal averages for (A) spring, 
(B) summer, and (C) fall along the coast and continental shelf transects in British Columbia and 
southeast Alaska. Gray shaded area represents the 10–90 percentile. Note the different y-axis scales 
between the coast and shelf plots. 
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3. Results 
3.1. Statistical Analysis 

The performance of Chla-GCint was evaluated by comparing satellite-derived Chl-a 
to in situ Chl-a concentrations via a one-to-one match-up analysis and, subsequently, 
comparing the statistics to the merged satellite products of Chla-GC and Chla-OC, as 
described in Section 2.3. The in situ Chl-a measurements for the match-ups ranged from 
0.04 to 40.4 mg m−3, reflecting the expected annual conditions experienced in British 
Columbia waters [29]. From the total 1914 in situ measurements, the common match-ups 
resulted in 141 for all the water types, with 59 for Case 1 waters (Line P match-ups; Figure 
1B) and 82 for Case 2 waters (west coast of Vancouver Island and Strait of Georgia match-
ups; Figure 1B). Figure 2A–F and Table 1 show the results for the common match-ups for 
each Chl-a product. 

The Chla-GCint match-up analysis resulted in data that were closely concentrated 
around the best fit line with very few values exceeding two standard deviations (RMSE = 
0.28, r = 0.88; Figure 2E), a slope relatively close to unity (slope = 0.80), a median percentage 
difference of 50% (MdAD = 1.5), and a model underestimation of 10% (BIAS = 0.90; Table 
1). Additionally, 77% of the in situ Chl-a variability was predictable by the Chla-GCint 
observations (r2 = 0.77). The distribution of the Chla-GCint observations indicated a slight 
underestimation compared with the in situ values (Figure 2A). The regression line crossed 
the 1:1 line at −0.2 log10, meaning that Chla-GCint underestimated (overestimated) values 
greater (less) than 0.6 mg m−3 (Figure 2E). Further, the Chla-GCint data points showed a 
clear pattern based on the sampling region. The data points for Case 1 waters were very 
concentrated at lower Chl-a concentration values compared to the data points for Case 2 
waters, which yielded higher concentrations and a greater spread, meaning that the 
match-ups in coastal waters were more variable (Figure 2D). 

Considering the noninterpolated products, overall, Chla-OC was the best-
performing product in most statistics (r = 0.93, r2 = 0.81, RMSE = 0.25), apart from slope, 
BIAS, and MdAD. Chla-OC and Chla-GC shared the same median percentage difference 
of 43% (MdAD = 1.43). Overall, the statistics of Chla-GCint were only marginally inferior 
to the best-performing product for all the water types (Chla-OC), and in the cases of slope, 
intercept, and BIAS, Chla-GCint outperformed Chla-OC and Chla-GC. 

When considering the product performance in Case 1 waters, the statistics of all the 
products were generally improved compared to the statistics obtained for all the water 
types (Table 1). The best-performing product in Case 1 waters was Chla-GC; Chla-GCint 
had a similar r-value and slope and inferior but comparable values for BIAS, MdAD, and 
RMSE (Table 1). For Case 2 waters, the best-performing product was Chla-OC for most of 
the statistics (r = 0.83, r2 = 0.62, MdAD = 1.44, RMSE = 0.26; Table 1), although Chla-GCint 
was only marginally inferior to Chla-OC, and in the cases of slope and BIAS, Chla-GCint 
outperformed Chla-OC. Additionally, Chla-GCint outperformed Chla-GC in all the 
statistics for Case 2 waters (Table 1). 

Overall, when comparing Chla-GCint to the best-performing product for each water 
type, the statistics were only marginally inferior, and the statistical metrics were 
comparable. Identical to Chla-GCint, Chla-GC and Chla-OC underestimated 
(overestimated) values greater (less) than 0.6 mg m−3 (Figure 2E,F); however, Chla-OC 
overestimated (underestimated) at a slightly greater degree, with a slope of 0.70 (Figure 
2F). The distribution of Chla-GC followed the in situ Chl-a data distribution very closely 
up to about 0.6 mg m−3 and slightly overestimated the higher range of Chl-a; it began to 
diverge thereafter (Figure 2B). Similarly, the Chla-OC distribution followed the in situ 
curve, although not as closely as Chla-GC, and diverged at a lower Chl-a value of 0.3 mg 
m−3 (Figure 2C). 
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Table 1. Statistical output comparing product performance for OC-CCI, GlobColour CHL1, and 
GlobColour interpolated match-up analysis. The shaded cells indicate which product performed 
best for each water type. 

 All Case 1 Case 2 
 Chla-GCint Chla-GC Chla-OC Chla-GCint Chla-GC Chla-OC Chla-GCint Chla-GC Chla-OC 

n 141 141 141 59 59 59 82 82 82 
r 0.88 0.82 0.93 0.94 0.96 0.96 0.71 0.59 0.83 
r2 0.77 0.66 0.81 0.86 0.91 0.86 0.47 0.02 0.62 

slope 0.80 0.75 0.7 0.78 0.79 0.70 0.64 0.65 0.6 
intercept −0.04 −0.05 −0.08 −0.14 −0.05 −0.14 0.07 −0.02 −0.01 
p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

BIAS 0.90 0.87 0.82 0.83 1.006 0.88 0.96 0.79 0.78 
MdAD 1.5 1.43 1.43 1.44 1.32 1.38 1.57 1.65 1.44 
RMSE 0.28 0.34 0.25 0.24 0.20 0.24 0.30 0.41 0.26 

3.2. Seasonal and Latitudinal Trends 
The Chla-GCint product underwent further analysis to evaluate the quality of this 

product to capture known spatial and temporal patterns of bloom dynamics for this 
region. Seasonal trends corresponding to spring, summer, and fall were derived from the 
23-year (1998–2021) Chla-GCint data series. The retrieved temporal trends showed that, 
on the B.C. coast, the maximum bloom concentrations were observed in the Strait of 
Georgia in spring and summer, and relatively high concentrations were experienced on 
the west coast of Vancouver Island and Queen Charlotte Strait in summer (Figure 3A,B). 
In fall, a secondary phytoplankton bloom was observed, with the highest concentrations 
occurring in the Strait of Georgia, on the west coast of Vancouver Island, and Washington 
coast (Figure 3C). The central and northern B.C. coastal waters had lower concentrations 
on average, with the lowest surface chlorophyll concentrations observed off the west coast 
of Haida Gwaii (Figure 3A–C). 

Spatially, transects of Chl-a seasonal averages along the continental shelf and 
coastline revealed that, in the B.C. coastal region, Chl-a values ranged from 0.51 ± 0.6 to 
14.1 ± 11.2 mg m−3 (Figure 4A–C). The maximum coastal Chl-a values were found in the 
Strait of Georgia (~48.5°N–50°N) in spring (8.4 ± 10 mg m−3 at ~49.4°N; Figure 4A, coast), 
summer (14.1 ± 11.2 mg m−3 at ~48.9°N; Figure 4B, coast), and fall (8.1 ± 6.8 mg m−3 at 
~48.94°N; Figure 4C, coast). In contrast, the lowest Chl-a coastal values were found along 
Johnstone Strait (50.2–50.5°N, Figure 4C, coast), as well as generally low Chl-a values in 
the northern southeast Alaska waters (north of 58.4°N, Figure 4A–C, coast). 

4. Discussion 
This study provides an evaluation of the interpolated Chl-a product from 

GlobColour (Chla-GCint), and compares the statistical validation to merged multi-sensor 
Chl-a products from OC-CCI (Chla-OC) and GlobColour CHL1 (Chla-GC) in the coastal 
and open ocean waters off southern B.C. This is an important step prior to using this 
product for monitoring applications such as phytoplankton phenology and 
bioregionalization studies, since regional optical complexity makes the application of 
ocean colour remote sensing challenging and can introduce accuracy biases [7,16–18,22].  

4.1. Statistical Validation 
The comparison of satellite-derived Chl-a with in situ measurements suggests that 

the Chla-GCint product performed relatively well in this region and was comparable to 
the Chla-OC and Chla-GC products. The Chla-OC product had the best overall statistics 
for all the water types and Case 2 waters, whereas Chla-GC had the best statistics in Case 
1 waters. It is generally expected for interpolated products to have degraded statistics due 
to the estimations of interpolated values being based on assumption [19,44], causing Chl-
a values to diverge from in situ Chl-a. Despite having different absolute Chl-a 



Remote Sens. 2023, 15, 687 10 of 17 
 

 

concentrations (r2 = 0.77, Table 1), the Chla-GCint product shared a similar distribution as 
the in situ data (Figure 2A) and had fewer missing data than any other global time series, 
which makes it suitable for use in studies concerning phytoplankton phenology where 
Chl-a trends and seasonality are prioritized over absolute concentrations. 

4.1.1. Merging and Flagging Strategies 
Generally, the differences between Chl-a retrieval methods for different products can 

be attributed to the characteristics of the products themselves, such as the choice and 
performance of the atmospheric correction scheme, the ocean colour inversion algorithm 
and merging techniques applied, or the spatial and temporal quality of the match-ups, 
including uncertainties associated with in situ Chl-a data, as well as the chosen statistics. 
Prior to interpolation, the GlobColour interpolated product was produced by first 
merging Chl-a fields estimated using different algorithms (OC3 and OC5 for Case 1 and 
2 waters, respectively) generated from Level 2 reflectance [38]. Since OC-CCI and 
GlobColour use the same Chl-a algorithms (CI and OC5), the differences in their 
performance could be attributed to atmospheric correction, merging strategies, and 
flagging schemes [8]. Atmospheric correction is employed to derive remote-sensing 
reflectance of the sea surface from the top-of-atmosphere radiance. OC-CCI uses the 
POLYMER atmospheric correction method for all sensor data besides SeaWiFS, where 
NASA’s Level 2 Generator processor is applied [45]. The merging strategy used by OC-
CCI is based on the preliminary merging of the remote-sensing reflectance of a set of 
sensors, which is then used to derive Chl-a. OC-CCI derives Chl-a using a blended Chl-a 
algorithm that attempts to weight the outputs of the best-performing algorithms based on 
the water types present [8]. Alternatively, GlobColour first computes Chl-a for each sensor 
using their specific resolutions and spectral bands and, subsequently, resamples and 
merges the single-sensor Chl-a products [8]. However, each sensor has its own 
atmospheric correction procedure, with varying levels of success [46]. Further, the 
continuities for GlobColour algorithms used for mesotrophic and complex waters are 
determined by the OC5 lookup table, and when Chl-a concentrations range from 0.15 to 
0.2 mg m−3, a linear interpolation of OC5 and CI is used [8].  

Beyond the different approaches to generate a merged Chl-a product, different 
flagging strategies are used. GlobColour CHL1 and the interpolated product [10] use the 
OC5 flagging strategy, which employs an algorithm that uses the official flags and 
empirical thresholds adjusted for each sensor. OC-CCI uses a more constrained flagging 
strategy that depends on the sensor—for instance, a pixel classification algorithm (Idepix) 
is implemented for MERIS and SeaWiFs data processing in v2, with NASA’s Level 2 
Generator being used for the other sensors [47].  

4.1.2. Spatial and Temporal Dynamics 
Beyond the different atmospheric corrections, merging strategies, and flagging 

schemes applied to these products, differences in the spatiotemporal scale of sampling 
between the satellite and in situ measurements need to be considered in the analysis of 
the Chl-a accuracy of each product. The GlobColour and OC-CCI product footprints (16 
km2) cover an area that is orders of magnitude larger than that captured by the in situ 
measurements (<1 m) [48,49]. The spatial variability of coastal waters also affects the 
quality of the in situ data to be used in a match up, where data acquired from interface or 
transition waters are generally of a lower quality [41,50].  

Additionally, the temporal aspect of the match-up time difference between in situ 
data and satellite overpasses poses considerable uncertainties for the validation of 
satellite-derived products, especially for coastal waters. Coastal waters are highly 
dynamic and have greater optical complexity due to the influences of river discharge 
containing terrestrial suspended particulates, resuspended sediments, and CDOM that 
vary independently of the phytoplankton assemblage [21–23,41,51,52]. To account for this, 
the area of the Fraser River plume was excluded since it is very temporally dynamic due 
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to tide, current, and river discharge conditions, which can result in inaccurate chlorophyll 
estimates [17,18,20,41].  

GlobColour and OC-CCI products do not contain a timestamp; however, products 
are obtained from sun-synchronous satellites having crossing nodal times at the equator 
between 9:50 to 13:30 (PDT) depending on the satellite, which is why an approximate time 
of 12:00 was used in this analysis and for GlobColour global validation [14]. Temporal 
match-up windows of ±3, ±5, and ±12 h intervals around midday were applied to the Strait 
of Georgia (estuarine), the west coast of Vancouver Island (coastal), and Line P (open 
ocean; Figure 1B), respectively, in order to reduce the effects of temporal variability on the 
in situ data, particularly in more dynamic regions [16]. The longer time window of 12 h is 
acceptable for open ocean waters since the subarctic north Pacific is a high-nitrate low-
chlorophyll region (HNLC) controlled by large-scale currents with minimal seasonal 
variability of primary productivity and is relatively more homogenous than coastal waters 
[53,54]. While these specific conditions were taken into consideration to minimize the 
match-up times in more dynamic regions (Section 2.3, inconsistencies could still occur 
because in situ collection and satellite overpass did not occur simultaneously.  

4.1.3. In Situ Measurements 
Other sources of uncertainty that could impact the validation results include errors 

associated with the analytical quality of the in situ measurements. Despite being used as 
‘ground truth’ measurements, they are seldom ‘absolute truth’, and their uncertainties 
should be recognized [16]. The quality of in situ data is dependent on measurement 
protocols involving sampling, filtration, storage, extraction, HPLC analysis, instrument 
calibration, and deployment, to name a few [48]. In an attempt to reduce systematic 
uncertainties pertaining to data processing, it is advised that data are consistently 
processed using a single-source processor [16], which is why HPLC data processed solely 
by DFO was used here. 

4.1.4. Statistical Metrics and Global or Regional Validation 
Lastly, the metrics used for the statistical analysis need to be carefully chosen to suit 

the data type. BIAS and MdAD are metrics based on simple deviations that are generally 
well-suited for evaluating non-Gaussian distributions and outliers and, therefore, take 
precedence over the interpretation of RMSE, the coefficient of determination (r2), and 
regression slopes, which are most appropriate for Gaussian distributions with outliers, 
making them suboptimal metrics to determine ocean colour algorithm assessment [43]. 
Additionally, slope and r2 are useful metrics for ocean colour validation; however, they 
must be interpreted in the context of BIAS and MdAD, as these metrics can be misleading 
when interpreted in isolation [43]. Here, we took these precautions into consideration by 
giving precedence to BIAS and MdAD and interpreting the other metrics in the context of 
them.  

Given the many sources of uncertainties associated with these merged data products, 
many studies (Table 2) have performed regional comparisons to in situ Chl-a 
concentrations to ensure that the products can be applied to different waters, despite these 
merged multi-sensor products having been already validated on a global scale. Table 2 
provides a summary of some studies that have undertaken regional validation of merged 
GlobColour–OC-CCI Chl-a data in different regions, study periods, and water types to 
compare the validation statistics obtained here. For instance, the analysis undertaken by 
Swart et al. (2012) over the Good Hope line south of Africa showed a similar r2 value of 
0.84 (Table 2) but a slightly higher RMSE value of 0.50 [55]. Pitarch et al. (2016) also 
performed a comparison between GlobColour and OC-CCI in the Baltic Sea, where OC-
CCI OC5 emerged as the best-performing product and GlobColour performed the worst 
in that region [56]. Nonetheless, the OC-CCI OC5 statistics defined by Pitarch et al. (2016) 
are comparable to the OC-CCI Case 2 statistics defined here [56]. Validations of Case 1 
waters generally have better statistics than those derived in Case 2 waters (Table 2). Many 
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studies have not performed regional validations prior to utilizing data products in their 
research [7,8,12,57–59], and of other studies that have performed validations, the statistics 
obtained are generally inferior to the validation statistics derived here (Table 2). 
Compared to regional studies that utilize different satellites and implement different 
methodologies, the statistics obtained here are comparable to, and in some cases 
outperform, the statistics obtained in other local studies. For instance, the GlobColour 
statistics obtained here generated lower BIAS and RMSE values and a larger r-value than 
Carswell et al. (2017), as well as greater r-value and slope values and lower BIAS and 
MdAD values than Giannini et al. (2021), attesting to the quality of the GlobColour-
derived product [17,18]. Additionally, when comparing Case 2 GlobColour interpolated 
validation statistics with those derived from a data-interpolating empirical orthogonal 
function (DINEOF) ‘gap filled’ dataset in the Salish Sea [19], the r2, RMSE, and slope 
results of Chla-GCint outcompeted the statistics found by Hilborn and Costa (2018) (Table 
2) [19]. However, different interpolating methods were used to derive the products 
(DINEOF vs. standard optimal interpolation technique) and, because Hilborn and Costa 
(2018) did not use merged products, the data gap was larger than the input data used for 
the GlobColour interpolated product [19].  

Considering the match-up statistics for Case 1 and Case 2 waters individually, our 
results indicated how the quality of products can vary in different environmental 
conditions, highlighting the need for the continuous assessment of satellite-derived Chl-a 
products, particularly in optically complex waters [7,16,18–20,55]. The results for Case 1 
waters showed improved statistics for Chla-GCint, Chla-GC, and Chla-OC since the Chl-
a algorithms were modeled for these water types [6,47]. The statistics obtained for Case 2 
waters for OC-CCI (Table 1) were similar to those obtained by the OC-CCI OC5 algorithm 
from Pitarch et al., 2016 [56]. The statistics for all the products were degraded in Case 2 
waters, thus highlighting the challenges of ocean colour remote sensing and, particularly, 
the application of algorithms designed for Case 1 waters in these Case 2 waters.  

Table 2. Nonexhaustive list of research using merged GlobColour–OC-CCI Chl-a data in different 
regions, study periods, and water types. Table is separated into research that validated the Chl-a 
data prior to use and the reported statistics, followed by those that did not validate the products 
with in situ Chl-a data. The column of ‘Similar Method’ refers to whether the data were log-
transformed and whether regression parameters or statistical metrics were calculated in a similar 
way as here, making the results comparable. 

Author Product  Time Location Case 1 
or 2 

N R2 RMSE BIAS Similar 
Method 

Validated  
[55] Swart et al., 

2012 
GC-OC4 

2010–
2011 

Good Hope line south of 
Africa 

1 121 0.84 0.50  Yes 

[60] Laiolo et al., 
2021 

GC-GSM 2016 
offshore eastern Australia 

ocean region 
1 9   0.63 Yes 

[61] Johnson et al., 
2013 

GC-AVW 
2001–
2008 

southern Ocean  1  0.25   No 

[62] Gbagir & 
Colpaert, 2020 

GC CHL-OC5 
1997–
2019 

Lake Ladoga  2 Not reported N/A 

[56] Pitarch et al., 
2016 

GC-GSM 
1997–
2012 

Baltic Sea 2 
1873 0.3 0.42 0.77 Yes 

OC-CCI OC5 1873 0.44 0.28 0.86 Yes 
OC-CCI OC4v6 1873 0.43 0.33 1.44 Yes 

[37] Moradi, 2021 
GC-CHL2 2008–

2018 
Persian Gulf 2 

275 0.41 0.53 4.15 Yes 
OC-CCI 487 0.44 0.49 0.38  

[63] Cherkasheva 
et al. (2014) 

GC-GSM 
1998–
2009 

Fram Strait and Greenland 
Sea 

1 and 2 108 0.34 0.58  No 

[64] El Hourany 
et al., 2019  

GC CHL-OC5 
1997–
2014 

Global 1 and 2  0.49   No 
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[19] Hilborn & 
Costa 2018 

DINEOF inter-
polated 

2014–
2016 

Salish sea 2 45 0.23 0.39  Yes 

4.2. Seasonal and Latitudinal Trends 
Despite the statistics obtained here, considering all the possible challenges 

mentioned hitherto and the caution taken to minimize these issues, it remains complicated 
to truly evaluate the uncertainties associated with global products. As such, a general 
comparison with the Chl-a trends published in the literature also provides a tool for 
product evaluations. Therefore, to further evaluate the application of the GlobColour 
interpolated Chl-a product for British Columbia and southeast Alaska, the seasonal and 
latitudinal ranges of variability in Chl-a were compared with those previously reported 
for different parts of the coast (Figure 4A–C), particularly since the considered in situ 
match-up dataset was mostly constrained to the southern B.C. coast due to data 
availability. The GlobColour interpolated Chl-a product demonstrated the expected 
seasonal and local dynamics for this region, as well as average concentrations within 
ranges reported for satellite-derived observations [17,18,29,30,65,66] and in situ 
measurements [32]. For instance, this region typically experiences maximum Chl-a 
concentrations in the spring and summer [17,18,29,30,32,67,68], with a secondary fall 
bloom being observed in the B.C. coastal waters [18,30,69], which was particularly evident 
in the vicinity of Calvert Island (51.5°N; Figure 4C, coast). Along the continental shelf, the 
west coast of Vancouver Island experienced relatively higher Chl-a concentrations 
(maximum of 3.4 ± 3.9 mg m−3; 50°N, Figure 4A–C, shelf), consistent with reported 
concentration ranges and bloom timing [18,69]. The B.C. central shelf region between 
Haida Gwaii and Vancouver Island showed lower Chl-a concentrations overall compared 
to the southeast Alaska shelf region, which is typically shown to be relatively more 
productive in summer [29].  

5. Conclusions 
The performance of the GlobColour interpolated Chl-a product was evaluated in B.C. 

waters using in situ data to determine whether it was suitable for use in this region, 
followed by comparing the statistical results to OC-CCI and GlobColour merged Chl-a 
products. An additional qualitative analysis was conducted to determine whether the data 
reflected the region’s large-scale seasonal trends and latitudinal dynamics. The satellite 
and in situ match-up analysis in this region revealed that the GlobColour interpolated 
product performed relatively well and was comparable to the best-performing product 
for each water type, with OC-CCI as the best performer across most metrics in all the 
water types and Case 2 waters and GlobColour CHL1 as the best performer in Case 1 
waters. The GlobColour interpolated dataset also reflected the expected general seasonal 
and latitudinal averages over the entire study region. Compared to other studies, the 
GlobColour interpolated statistics obtained here were comparable to, and in some cases 
outperformed, other validation statistics. The GlobColour interpolated product had the 
highest spatial coverage since it was ‘gap-filled’ and was concluded as appropriate for use 
in studies requiring a spatially and temporally complete dataset with a slight disregard 
for absolute Chl-a concentration, such as phytoplankton phenology studies. Although 
several studies have shown that the OC-CCI and GlobColour Chl-a datasets can be 
implemented in coastal turbid waters to monitor Chl-a concentrations [37,48,61,70], the 
application of these products in primarily Case 2 waters needs to be performed with 
caution, considering the reduction in statistical performance shown in this study. It is, 
therefore, recommended that a comparison between Chl-a products and in situ water 
samples should generally be implemented to aid product selection before further 
integration into analysis. 
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