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Abstract: Drought is one of the major global natural disasters, and appropriate monitoring systems
are essential to reveal drought trends. In this regard, deep learning is a very promising approach
for characterizing the non-linear nature of drought factors. We used multi-source remote sensing
data such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Climate Hazards
Group Infrared Precipitation with Station (CHIRPS) data to integrate drought impact factors such
as precipitation, vegetation, temperature, and soil moisture. The application of convolutional long
short-term memory (ConvLSTM) to construct an integrated drought monitoring model was proposed
and tested, using the Xinjiang Uygur Autonomous Region as an example. To better compare the
monitoring performance of ConvLSTM models, three other classical deep learning models and three
classical machine learning models were also used for comparison. The results show that the composite
drought index (CDI) output by the ConvLSTM model had a consistent high correlation with the
drought rating of the multi-scale standardized precipitation evapotranspiration index (SPEI). The
correlation coefficients between the CDI and the multi-scale standardized precipitation index (SPI)
were all above 0.5 (p < 0.01), which was highly significant, and the correlation coefficient between
CDI-1 and the monthly soil relative humidity at a 10 cm depth was above 0.45 (p < 0.01), which was
well correlated. In addition, the spatial distribution of the CDI-6 simulated by the model was highly
correlated with the degree of drought expressed by the SPEI-6 observations at the stations. This study
provides a new approach for integrated regional drought monitoring.

Keywords: drought monitoring; Xinjiang; MODIS; ConvLSTM

1. Introduction

Drought is a common natural disaster that covers a wide area, occurs frequently, and
lasts for a long time. Thus, it poses a serious threat to crop production, the ecological
environment, and sustainable socioeconomic development [1,2]. Droughts are classified
as meteorological, agricultural, hydrological, and socioeconomic droughts [3]. At present,
drought monitoring methods include meteorological monitoring methods based on station
data and remote sensing methods based on remote sensing data [4]. Although station-
data-based meteorological monitoring methods are relatively mature, they cannot be used
to effectively monitor large areas due to the uneven distribution and limited quantity
of station data. They have certain limitations when applied to regional-scale drought
monitoring [5]. Compared with station data, remote sensing data have the advantages of
high resolutions, long time series, and wide ranges [6]. Therefore, using remote sensing
data to construct drought monitoring models has become an important research direction.
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Many drought monitoring indicators have been proposed, mainly including tradi-
tional indicators based on station meteorological data and remote sensing indicators based
on satellite data, which provide quantitative information on drought severity [7]. For
example, the main traditional indicators based on station meteorological data are the stan-
dardized precipitation index (SPI) [8], the Palmer drought severity index (PDSI) [9], and
the standardized precipitation evapotranspiration index (SPEI) [10]. Among these, SPEI is
widely used in the meteorological community to monitor drought severity. SPEI is relative
to PDSI and SPI in that it is calculated from precipitation and temperature and has more
comprehensive information coverage than PDSI and SPI. SPEI has the advantages of PDSI
and SPI while incorporating multiple time scales. As a result, SPEI is an effective indicator
for monitoring and assessing global drought changes. However, the SPEI calculated based
on station data is not spatially representative and has some limitations when applied to
regional-scale drought monitoring [11].

In recent years, scholars have proposed the use of remote sensing drought indices to
study drought conditions at larger spatial scales, including the normalized difference vege-
tation index (NDVI) [12], the temperature condition index (TCI) [13], and the precipitation
condition index (PCI) [14]. As drought is affected by many factors and traditional remote
sensing monitoring mainly monitors single factors such as vegetation, precipitation, and
temperature, it cannot fully reflect drought information [15]. Therefore, many scholars have
proposed using fused multi-source remote sensing indices to monitor drought in order
to solve these problems. For example, Aisyah et al. [16] used a polynomial equation to
construct a feature space from the normalized difference vegetation index (NDVI) and the
land surface temperature (LST) to establish a temperature vegetation drought index (TVDI)
to monitor regional drought. Yuan et al. [17] used apparent thermal inertia (ATI) and
TVDI to estimate soil moisture on the Loess Plateau of China. Kubiak et al. [18] evaluated
the relationship between precipitation and hydrological conditions and the relationship
between the two drought types using SPI as a meteorological drought indicator and the
standardized water level index (SWI) and standardized runoff index (SRI) as hydrological
drought indicators.

Current studies mainly use classical regression methods to construct drought monitor-
ing models. For example, Chen et al. [19] used a linear regression to construct a meteorolog-
ical composite drought index for the spatial and temporal assessment of drought in Hubei
Province. Xun et al. [20] used a multi-source linear regression combined with potential
evapotranspiration (PET) and soil moisture to construct a model for drought monitoring in
Henan Province. However, in cases with more types of remotely sensed drought indicators,
linear regression methods can lead to difficult modeling when the relationships between
variables become complex.

With machine learning (ML) becoming popular, some scholars attempted to use data
mining methods to build drought monitoring models. Zhang et al. [21] used the gradient
boosting machine (GBM) and the extreme randomized tree (ERT) algorithm to model
the overall drought conditions in China. Kau et al. [22] used classical machine learning
models such as artificial neural networks (ANN), support vector machines (SVM), and
random forests (RF) to assess and predict drought. Hamade et al. [23] used a random forest
model that considered the vegetation condition index (VCI), the temperature condition
index (TCI), and other remotely sensed drought indices to construct an integrated drought
monitoring model. The results showed that machine learning has greatly improved data
mining and prediction accuracy compared to traditional linear regressions. However, with
the increases in remote sensing data and drought impact factors, there are limitations in
the ability of machine learning to extract information from various factors [24], and more
research is needed to address this aspect.

Deep learning is a neural-network-based machine learning method that was proposed
by Hinton et al. [25] and can simulate the human brain to manipulate data and outper-
form other machine learning models. It has been successfully applied to solve problems
such as computer vision, natural language processing, speech recognition, and energy
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prediction [26]. In addition, deep learning algorithms have the ability to extract more
useful features from a large number of drought factors, which has a significant effect on
the construction of comprehensive drought monitoring models [27]. However, there are
few studies using deep learning algorithms for drought monitoring. Shen et al. [28] used
deep forward neural networks (DFNN) combined with multi-source remote sensing data
to assess agricultural drought. Although they used a simple deep learning method to
construct a drought monitoring model, there were still problems, such as a single type of
model and poor feature extraction. To address these problems, we considered the respective
characteristics of convolutional neural networks (CNNs) and LSTM networks. CNNs have
the advantage of strong feature extraction capabilities [29], while LSTM excels in mining
time series data [30]. In order to make full use of their advantages, we combined these two
models to obtain a new and effective model.

Therefore, we proposed an integrated drought monitoring model based on the ConvL-
STM network. It also used meteorological precipitation, soil moisture, surface temperature,
and vegetation growth as independent variables and station SPEI values as dependent
variables for drought monitoring, which had not been previously studied in Xinjiang. To
compare model performance, we also used six models for comparison, including long
short-term memory (LSTM), a convolutional neural network (CNN), a deep forwarded
network (DFNN), random forest (RF), a support vector machine (SVM), and XGBoost.
The main objectives of this study were (1) to construct a drought monitoring model using
ConvLSTM and to compare the monitoring performance with other benchmark models;
(2) to validate the ability of the model to output a comprehensive drought index (CDI) to
monitor other drought indices and analyze the relative importance of each drought factor
to the CDI; and (3) to produce a simulation of the spatial and temporal changes in regional
drought trends in Xinjiang during a typical drought year (March–August 2014) using CDI.

2. Materials and Methods
2.1. Study Area

Xinjiang, one of the driest regions in the world, is located in the northwestern region of
China, with a geographical range between 73◦29 ′54′′–96◦23′3′′ E and 34◦20′11′′–49◦10′55′′

N. It has a land area of 164,011.03 km2 and is the largest province in China in terms of
land area [31]. The province has a variety of landforms, with the Altai Mountains in
the north, the Kunlun Mountains-Alishan in the south, the Tianshan Mountains running
through the central part of Xinjiang, and the Junger Basin and Tarim Basin between the
three mountains (Figure 1). Due to its geographical location and topography, Xinjiang has
a typical temperate continental climate, with short summers and long cold winters, and
large differences between the minimum and maximum temperatures. Due to the scarcity of
water resources and low rainfall, drought has become a major natural disaster in Xinjiang.
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2.2. Data

In this study, drought indices were calculated using remote sensing data as input
parameters for a deep learning model. A detailed description of the datasets is shown
in Table 1.

Table 1. Details of the remote sensing datasets used in this study.

Data Sources Data Type Variables Temporal
Resolution

Spatial
Resolution Coverage

MODIS

MOD13A1 NDVI 16 days 500 m Global

MOD16A2 ET 8 days 500 m Global

MOD11A1 LST daily 1000 m Global

MOD15A2H LAI 8 days 500 m Global

UCSB-CHG CHIRPS Precipitation Monthly 0.25◦ × 0.25◦ Global

GLDAS GLDAS-2.1 Soil moisture Monthly 0.25◦ × 0.25◦ Global

2.2.1. MODIS Data

MODIS (Moderate Resolution Imaging Spectroradiometer) is a multispectral medium/
high-resolution sensor that is carried on the Terra and Aqua satellites and provides a
wide range of biophysical and environmental products and is widely utilized [32]. In
this study, we used MOD13A1 as the vegetation index product. MOD13A1 is a 16-day
synthetic normalized vegetation index (NDVI) with a spatial resolution of 500 m [33]. The
MOD11A1 product is a daily synthetic surface temperature (LST) with a spatial resolution
of 1 km. These two products were used to calculate the vegetation condition index (VCI)
and the temperature condition index (TCI). In addition, the MOD16A2 product has an 8-day
synthetic spatial resolution of 500 m for evapotranspiration (ET) [34], and the MOD15A2H
product has an 8-day synthetic spatial resolution of 500 m for the leaf area index (LAI) [35].
The MODIS data were from https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 27
May 2022). The data were for the period of 2000–2020 and were averaged to produce
monthly data.

2.2.2. CHIRPS Data

CHIRPS is a dataset with records of global rainfall from 1981 to the present. CHIRPS
combines satellite imagery at a 0.05◦ resolution with in situ data to create gridded rainfall
time series for precipitation trend analysis and seasonal drought monitoring. This product
was used to calculate the precipitation conditions index (PCI) [36]. The CHIRPS data for
the period of 2000–2020 were downloaded from https://www.chc.ucsb.edu/data/chirps
(accessed on 27 May 2022).

2.2.3. GLDAS Data

The GLDAS data are a data assimilation product that was jointly developed by NASA’s
Goddard Space Flight Center (GSFC) and NOAA’s National Centers for Environmental
Prediction (NCEP). They combine soil moisture data from four land surface models (Mosaic,
Noah, CLM, and VIC). The GLDAS data were used to calculate the soil moisture condi-
tion index (SMCI) [37]. The data were obtained from https://ldas.gsfc.nasa.gov/gldas
(accessed on 27 May 2022) for the period of 2000–2020.

2.2.4. Meteorological Station Data

The raw meteorological observation station data were obtained from the National
Meteorological Information Centre (http://data.cma.cn/) (accessed on 27 May 2022), and
the daily temperature and precipitation data from 2000-2020 were selected from the national
benchmark stations in Xinjiang. The daily temperature data were averaged, and the
precipitation data were summed to obtain the monthly data. The records of stations with

https://ladsweb.modaps.eosdis.nasa.gov/
https://www.chc.ucsb.edu/data/chirps
https://ldas.gsfc.nasa.gov/gldas
http://data.cma.cn/
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more than three consecutive months of missing measurements were excluded, and the
observation records of 55 meteorological stations were finally obtained [38]. The monthly
SPEI time series were calculated for each station for the 1-,3-, 6-, and 12-month time scales
from 2000 to 2020.

2.3. Baseline Model
2.3.1. Machine Learning Models

Random forest (RF) is an integrated method based on classification and regression trees
(CART) that overcomes the major limitations of CART by aggregating multiple independent
trees. RF is a relatively new machine learning algorithm with a fast learning process, fast
computing speed, good stability, efficiency in processing large datasets, and high prediction
accuracy that is less prone to overfitting [39]. Therefore, we used RFs as a classical machine
learning method to compare and validate deep learning models. XGBoost offers higher
accuracy through the introduction of second-order Taylor expansions. At the same time,
XGBoost’s base learner can be either a decision tree or a linear classifier, for greater flexibility
and support column sampling, which reduces overfitting and computation [40]. Support
vector machine (SVM) is a supervised learning method that uses the principle of structural
risk minimization to map low-dimensional space and linearly indistinguishable data to
high-dimensional space to make them linearly distinguishable through non-linear mapping
and then classifies and predicts the data in the high-dimensional space [41]. Therefore,
we used these three classical machine learning and deep learning models for comparison
and validation.

2.3.2. Deep Forwarded Neural Network (DFNN)

The deep forwarded neural network (DFNN) is a classical deep learning research
model that can extract relevant features from a large number of input variables to obtain
high-accuracy predictions in regression tasks [42]. The model structure is divided into
three main parts: the input layer, the hidden layer, and the output layer. In addition, in
order to avoid overfitting during training, a dropout layer was added between the input
and hidden layers to achieve a better generalization performance by randomly discarding
some neurons [43]. During the DFNN model’s training, model optimization was achieved
by adjusting the hidden layers, the neurons, and the number of iterations. Cross-validation
was used to verify the model’s performance between the test and training sets.

2.3.3. Convolutional Neural Network (CNN)

The convolutional neural network (CNN) is a class of neural networks that include
convolutional computation and have a deep structure with powerful automatic feature
extraction capabilities. They are representative algorithms for deep learning [44]. The net-
work usually consists of multiple convolutional layers, pooling layers, and fully connected
layers stacked on top of each other. The convolutional layers enable the extraction of data
features, the pooling layers reduce the number of parameters, and the multiple extracted
features are combined through a fully connected layer. The main advantage of a CNN is
the use of input information features for learning, which is appropriate in cases where there
are dependencies between the input data, reducing computational costs and solving the
overfitting problem.

2.3.4. Long Short-Term Memory (LSTM)

Long short-term memory (LSTM), a variant structure of the recurrent neural network
(RNN), is a network with a long-term memory function. Due to the problem of gradient
disappearance, RNNs cannot handle time series with excessive time delays. Hu et al. [45]
proposed a new structure in which the middle layer of a traditional RNN is replaced
by LSTM blocks. In addition, LSTM networks are widely used for time series samples
due to their characteristics and have very important roles in natural language processing,
speech recognition, rainfall prediction, etc. The LSTM module consists of three parts: a
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forget gate, an input gate, and an output gate. In particular, the forget gate determines
which new information remains in the cell state and updates the cell state. The input gate
determines what information is discarded from the cell state, and the output gate controls
the output of the cell state. The important parameters with their choice of values are present
in Appendix A.

2.4. Data Processing

Unlike other natural hazards, drought is a relatively complex event caused by various
influencing factors and has trends spanning long time scales. Drought characteristics and
drought-causing factors vary from region to region [46]. Therefore, this study consid-
ered the precipitation condition index (PCI), the vegetation condition index (VCI), the
temperature condition index (TCI), the vegetation water supply status index (VSWI), the
leaf area index (LAI), the vegetation health index (VHI), evapotranspiration (ET), and the
soil moisture condition index (SMCI) as independent variable data for the deep learning
model. The multi-scale SPEI calculated from meteorological stations was also used as the
dependent variable and was input into the model together with the independent variable
data to construct the comprehensive drought index (CDI). The formulae and descriptions
for each input parameter variable are given in Table 2.

Table 2. Descriptions of the input variables.

Type of
Variable Factors Drought

Index Formula References

Independent variables

Precipitation PCI

PCI = Pi−Pmin
Pmax−Pmin

(where Pi is the monthly precipitation
and Pmax and Pmin are the monthly

maximum and minimum precipitation)

[47]

Vegetation
VCI

VCI = NDVIi−NDVImin
NDVImax−NDVImin

(where NDVIi is the monthly NDVI
value and NDVImin and NDVImax are
the monthly minimum and maximum

NDVI values)

[48]

VHI VHI = αVCI + (1 − α) TCI
(α denotes a constant value set to 0.5) [49]

VSWI VSWI = NDVI
LST [50]

Temperature TCI

TCI = LSTi−LSTmin
LSTmax−LSTmin

(where LSTi is the monthly LST value
and LSTmax and LSTmin are the monthly

maximum and minimum values)

[51]

Soil SMCI

SMCI = SMi−SMmin
SMmax−SMmin

(where SMi is the monthly SM value
SMmin and SMmax are the monthly

minimum and maximum SM values)

[52]

Dependent variables

SPEI-1
SPEI-3
SPEI-6
SPEI-12

w− c0+c1w+c2w2

1+d1w+d2w2+d3w3

(w is defined as climatic water balance
calculated based on the difference

between precipitation and reference
evapotranspiration, and c0, c1, c2, d1, d2,

and d3 are constants.)

[53]

TCI indicates the stressfulness of temperature on vegetation growth, with higher TCI
values indicating more severe drought. VCI indirectly reflects the severity of drought by
monitoring the increase in vegetation, with higher values of VCI indicating more vegetation
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and less drought. In addition, VSWI is calculated from NDVI and LST. When vegetation is
affected by drought, it closes some of its stomata to conserve leaf water content, resulting in
lower evaporation of moisture from the vegetation. Therefore, according to the calculation
principle of VSWI, it is only related to NDVI and LST in the current period, and has no
relationship with historical data, which can directly reflect the current degree of drought.
The smaller the value of VSWI, the smaller the drought intensity. VHI is calculated from
VCI and TCI and has the characteristics of both indices. PCI is calculated from CHIRPS data
and can directly respond to precipitation anomalies. SMCI directly reflects soil moisture
and can quantitatively portray the degree of dryness and wetness anomalies in the soil.
Each factor reflects drought information differently, so they were used as input variables
for the integrated drought monitoring model.

SPEI is calculated on 1-, 3-, 6-, and 12-month time scales using the degree of difference
between the precipitation and evapotranspiration to determine deviations from the average
state to characterize the degree of drought in a given region. In addition, SPEI reflects
different drought conditions, with SPEI-1 and SPEI-3 reflecting meteorological droughts
on a scale of one to three months, SPEI-6 reflecting agricultural droughts on a scale of six
months, and SPEI-12 reflecting hydrological droughts on a scale of 12 months [53]. The
SPEI drought classification is shown in Table 3.

Table 3. SPEI’s classification criteria for grading drought.

Drought Grade Drought Condition SPEI

I No drought −0.5 < SPEI
II Light drought −1.0 < SPEI ≤ −0.5
III Moderate drought −1.5 < SPEI ≤ −1.0
IV Severe drought −2.0 < SPEI ≤ −1.5
V Extreme drought SPEI ≤ −2.0

2.5. Convolutional Long Short-Term Memory (ConvLSTM)

The combination of CNN and LSTM provides an excellent solution to the time series
prediction problem [54]. The structure of ConvLSTM (Figure 2) is similar to that of LSTM,
which consists of a storage unit and three gates (i.e., a forget gate, an input gate, and an
output gate). The main difference between LSTM and ConvLSTM is that the internal matrix
multiplication of LSTM is replaced by convolutional operations. On one hand, the CNN
acts as the upper layer of the ConvLSTM model. It can extract complex features from
the model’s input variables, apply convolution operations to the incoming data, and pass
the results to subsequent layers. On the other hand, convolutional operations enhance
feature extraction and reduce the number of parameters. The LSTM layer is the lower
layer of the ConvLSTM and supports time series prediction. As a result, the ConvLSTM
model proposed in this study can extract complex drought features from multi-source
remote sensing data, store complex irregular trends, and create a comprehensive drought
index (CDI) by combining station SPEI with multi-source remote sensing indices to provide
accurate monitoring results for the study area. The main equations are as follows:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci ◦ Ct−1 + bi) (1)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ◦ Ct−1 + b f

)
(2)

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc) (3)

Ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco ◦ Ct + bo) (4)

Ht = Ot ◦ tanh(Ct) (5)
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Figure 2. ConvLSTM internal network architecture. X, H, C, i, f, and o are the input sequence, hidden
state, memory cell, input gate, forget gate, and output gate, respectively.

From the internal structure of the ConvLSTM network shown in Figure 2, it and Ot
are the input and output gates, ft is the forget gate, Ct is the memory cell, W represents the
weight between connected neurons, Ct is the cumulative state information, and σ is the
sigmoid non-linear activation function that maps the output to a 0 to 1 distribution for easy
convergence. A more detailed explanation of ConvLSTM can be found in [55].

2.6. The Process of Building the Model

The construction of an integrated drought monitoring model requires the consideration
of multiple influencing factors, as drought is not only related to soil moisture and vegetation
growth conditions but also to precipitation and surface temperature conditions. Therefore,
in this study, eight drought-influencing factors, namely VCI, TCI, PCI, SMCI, VSWI, LAI,
ET, and VHI, were used as independent variables, and SPEI at different scales was used
as the dependent variable to construct an integrated drought monitoring model based on
multi-source remote sensing data. In addition, we divided the constructed datasets into
training (2000–2016) and testing (2017–2020) datasets. The trained models were used in the
test set, and the correlation coefficients (R2), root-mean-square errors (RMSEs), and mean
absolute errors (MAEs) of the seven models were calculated to assess the performances
of the models. The relative importance of each drought influence factor on the CDI was
then analyzed. Finally, the spatial distribution of CDI-6 was plotted based on the drought
events in a typical drought year to spatially validate the integrated drought monitoring
model. A detailed description of the model construction process is shown in Figure 3.
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2.7. Assessment Indicators

To evaluate the performance of each prediction model, we used the correlation coeffi-
cient (R2), the root-mean-square error (RMSE), and the mean absolute error (MAE).

R2 =

 ∑m
i=1(xi − x)(yi − y)√

∑m
i=1 (xi − x)2

√
∑n

i=1(yi − y)2

2

(6)

RMSE =

√
∑m

i=1(xi − yi)
2

m
(7)

MAE =
∑m

i=1|xi − yi|
m

(8)

R2 is generally used to assess the degree of conformity between the predicted and ac-
tual values, RMSE is used to measure the deviation between the predicted and actual values
of the model deviation, and MAE can reflect the actual situation of the predicted value er-
ror [56]. xi denotes the CDI value of the model output, yi denotes the SPEI value, x denotes
the mean of the CDI, y denotes the mean of the SPEI, and m denotes the sample size. R2

values closer to 1 and RMSE and MAE values closer to 0 indicate better model performance.

2.8. Correlation of a Single Remote Sensing Drought Index with Station SPEI

As drought factors such as precipitation, soil, and vegetation behave differently at
different time scales, remote sensing index values were extracted based on the locations of
the ground-based meteorological stations during the selected time period in order to assess



Remote Sens. 2023, 15, 667 10 of 20

the ability of a single remote sensing index to monitor drought. In this study, the correlation
coefficients (R2) between each single remote sensing drought index and the station drought
index SPEI were calculated to analyze the ability of a single remote sensing drought index
to monitor drought and the need to integrate data from multiple sources. The results are
shown in Table 4. All remote sensing drought indices showed positive correlations with
SPEI in general, with PCI having the highest correlation with SPEI-1, indicating that PCI is
the most sensitive in monitoring short-term drought, and R2 decreased with increasing SPEI
time scales. SMCI had the highest R2 value with SPEI-1 compared to other remote sensing
indicators, suggesting that SMCI provides reliable information for monitoring short-term
meteorological and agricultural drought. Similar to PCI, the correlation between TCI and
SPEI-1 was higher than that of SPEI at other scales. In addition, the R2 value between VCI
and SPEI-12 was higher than that between VCI and SPEI at other scales, suggesting that
drought information reflected in VCI has a longer lag time than that reflected in SMCI. LAI,
ET, VHI, and VSWI also have the same pattern as VCI.

Table 4. Correlation coefficient (R2) values of individual remotely sensed drought indices with
different time scales of SPEI.

VCI TCI PCI VSWI LAI ET SMCI VHI

SPEI-1 0.082 0.362 0.581 0.065 0.079 0.035 0.412 0.114
SPEI-3 0.131 0.344 0.542 0.088 0.117 0.046 0.396 0.145
SPEI-6 0.232 0.238 0.421 0.149 0.184 0.059 0.367 0.189
SPEI-12 0.261 0.172 0.311 0.196 0.227 0.121 0.302 0.238

The above analysis shows that the individual remote sensing drought indices of PCI,
VCI, TCI, SMCI, VSWI, LAI, ET, and VHI have limitations in monitoring drought. Although
the correlation between PCI and SPEI is high, a single precipitation factor cannot provide
accurate drought information. Therefore, applying advanced deep learning methods to
fuse multiple drought-causing factors is important to build a comprehensive model for
monitoring drought.

2.9. Calibration of the Model

In the RF construction process, the number of decision trees and the maximum number
of features considered for decision partitioning are important parameters that affect the
predictive power of the stochastic Sen model. In addition, the RF model in this study was
built using the integrated RF algorithm module in sklearn in Python. The RF model was
debugged several times, and the final decision tree was chosen to be 500, the maximum
tree depth was 7, and the maximum number of features was 0.8. Both XGBoost and SVM
had default settings.

During the construction of the four deep learning models, each parameter of the
proposed deep learning model was modified by adjusting the hidden layer, neurons,
learning rate, and iteration period to obtain acceptable results. The parameter settings
for the four deep learning model runs are shown in Table 5. A dropout layer was added
between the model input and hidden layers to avoid overfitting and to improve the
generalization ability of the models. Adam was used as the optimization algorithm for the
gradient update [57]. To improve the generalization ability of the model, a non-linear Relu
activation function was added between each network layer of the model. In addition, the
learning rate, which is an important hyperparameter in the model construction process
that determines the rate of the gradient update of the model parameters, was finally taken
to be 0.001 after several experiments. The mean square error (MSE) was then used as
the loss function of the model to reflect the difference between the target value and the
model output value. The model metrics also used MAE to monitor the performance of
the model in the test set. A number of experiments were conducted to adjust the model
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run parameters to achieve optimal results. Finally, these algorithms were used to build a
comprehensive drought monitoring model using the Keres framework based on Python.

Table 5. Four deep learning model parameter settings.

Parameter DFNN Value CNN Value LSTM Value ConvLSTM Value

Layers 6 9 6 11
Batch size 10 10 10 10

Epochs 500 200 200 200
Learning rate 0.001 0.001 0.001 0.001

Pool size — 1 — 2
Dropout 0.2 0.2 0.2 0.2

Optimization Adam Adam Adam Adam
Loss function MSE MSE MSE MSE

Activation function Relu Relu Relu Relu
Metrics MAE MAE MAE MAE

3. Results
3.1. Comparison of Simulation Accuracy of Seven Models

In order to assess the monitoring capability of the model in Xinjiang, the performance
metrics of the seven models on the test set for the four scales of SPEI were analyzed, and
the statistical results are shown in Table 6. The results show that the ConvLSTM model
simulated the largest correlation coefficient between the fitted CDI and the measured SPEI,
and its RMSE and MAE values were the smallest. In addition, at the SPEI-12 scale, the
ConvLSTM model output an R2 of 0.874, an RMSE of 0.365, and an MAE of 0.265 between
the CDI and the SPEI. The ConvLSTM also exhibited the highest monitoring accuracy at
the 1-, 3-, and 6-month scales. Therefore, the ConvLSTM model had an advantage over its
counterparts and met the best model criteria. In addition, CDI showed higher monitoring
performance on the 12-month scale than on the 6-, 3-, or 1-month scales. This result may
be due to the smoother time series in SPEI-12 compared to SPEI-6, SPEI-3, and SPEI-1,
resulting in higher monitoring accuracy.

Table 6. Monitoring performance metrics for the seven models on the test set.

Model Index SPEI-1 SPEI-3 SPEI-6 SPEI-12

RF
R2 0.227 0.564 0.624 0.751

RMSE 0.996 0.722 0.971 0.515
MAE 0.809 0.561 0.522 0.398

SVM
R2 0.078 0.498 0.547 0.681

RMSE 1.034 0.791 0.739 0.592
MAE 0.824 0.598 0.569 0.451

XGBoost
R2 0.132 0.516 0.598 0.726

RMSE 1.016 0.781 0.668 0.559
MAE 0.878 0.572 0.531 0.422

DFNN
R2 0.322 0.583 0.632 0.801

RMSE 0.868 0.716 0.633 0.432
MAE 0.692 0.554 0.499 0.344

CNN
R2 0.371 0.577 0.693 0.827

RMSE 0.848 0.719 0.568 0.414
MAE 0.659 0.558 0.433 0.321

LSTM
R2 0.359 0.559 0.686 0.819

RMSE 0.855 0.725 0.590 0.421
MAE 0.671 0.562 0.449 0.331

ConvLSTM
R2 0.423 0.613 0.723 0.874

RMSE 0.812 0.671 0.561 0.365
MAE 0.623 0.522 0.424 0.265
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In summary, the ConvLSTM proposed in this study proved to be a robust drought
monitoring model that captured fluctuating trends in the CDI of each drought impact
factor based on its previous record with the SPEI series, indicating that the ConvLSTM is a
promising drought monitoring model. The CDI output from the model was subsequently
used for validation against other indices.

3.2. Drought Consistency Analysis

According to the drought classification of the SPEI index (Table 3), the number of
stations with SPEI values and ConvLSTM model monitoring values of CDI for each drought
class at 55 stations from 2000 to 2020 were counted in this paper, and the results are shown
in Table 7. The drought-free and light drought classes of the SPEI and CDI for all four scales
were consistent with each other more than 80% of the time. The consistency between SPEI
and CDI for all scales reached over 90%, except for the medium drought class of SPEI-1.
For the severe drought scale, the CDI consistency rate for SPEI-6 and SPEI-12 reached over
95%, while the rates for SPEI-1 and SPEI-3 were 58.13% and 68.86%. The four scales of SPEI
had the lowest consistency rate for extreme drought, with only 35.56% for SPEI-1, which
may be related to the relatively low number of exceptional droughts during the 20-year
period. Overall, the CDI values were consistent with the drought categorization from SPEI.

Table 7. Drought categorization consistency rate between CDI and SPEI at each scale.

Consistency Rate SPEI-1 SPEI-3 SPEI-6 SPEI-12

No drought 86.45% 88.58% 92.36% 97.01%
Light drought 96.73% 82.03% 83.86% 97.67%

Moderate drought 84.62% 92.69% 97.67% 97.12%
Severe drought 58.13% 68.86% 95.12% 96.51%

Extreme drought 35.56% 44.81% 76.82% 66.46%

3.3. Correlation Analysis Based on Meteorological Drought Indices

To verify the ability of the model’s CDI output to monitor information from other
drought indices, this study used SPI values for 55 meteorological stations in the Xinjiang
Uygur Autonomous Region from 2015 to 2020. The SPI values were calculated from station
precipitation, and different time scales of SPI implied different physical significances. The
shorter time scales indicated changes in soil moisture, which is important for agricultural
production. The longer time scale reflected long-term runoff changes, which are of practical
value for reservoir management. Thus, SPI-1 and SPI-3 are good indicators of short-term
changes in agricultural drought characteristics. SPI-6 is a significant marker of drought
occurrence and persistence. SPI-12 is a good indicator of the effect of precipitation on
changes in soil moisture and groundwater quantity [58]. In the Xinjiang region, SPI has
been shown to be an effective and accurate meteorological drought index for assessing
and monitoring drought [59]. In this study, a correlation analysis was conducted between
CDI and SPI at similar time scales (Figure 4). The CDI obtained from the ConvLSTM
model showed highly significant positive correlations with all four scales of SPI, and the
correlation coefficients of the four scales of CDI for SPI-1, SPI-3, SPI-6, and SPI-12 were all
higher than 0.5, passing the p < 0.01 significance test. This indicates that CDI can monitor
short-term agricultural droughts and long-term hydrological droughts.
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3.4. Correlation Analysis Based on Relative Soil Moisture

To validate the applicability of the ConvLSTM model for agricultural drought monitor-
ing, nine soil moisture sites with uniform distributions and long time series were selected
to validate the reliability of the integrated drought monitoring model. The soil moisture site
information is shown in Table 8. A correlation analysis was conducted using the monthly
soil relative humidity at a 10 cm depth from 2000 to 2013 with the CDI-1 index output
by the model. The results are shown in Figure 5. The results show that the correlation
coefficients for all nine sites were above 0.45, which was significant at a 99% significance
level. The monitored values correlated well with the soil relative humidity, with correlation
coefficients ranging from 0.457 to 0.759. The correlation coefficient of Xinyuan station
was the highest, at 0.759; the correlation coefficient of Yining station was the smallest
(0.457); and the correlation coefficients of all other stations were above 0.45. Therefore, the
variation in CDI from the ConvLSTM model constructed in this study can reflect varia-
tion in regional soil relative humidity. Since soil relative humidity is an important factor
affecting agricultural drought, the model also has some monitoring ability for regional
agricultural drought.

Table 8. Soil moisture site information.

Station Code Station Name Latitude (◦N) Longitude (◦E) Elevation (m)

51133 Tacheng 83.00 46.73 534.9
51379 Jitai 89.57 44.02 793.5
51431 Yining 81.33 43.95 662.5
51436 Xinyuan 83.30 43.45 928.2
51437 Zhaosu 81.13 43.15 1851
51656 Korla 86.13 41.75 931.5
51777 Ruoqiang 88.17 39.03 887.7
51811 Shache 77.27 38.43 1231.2
51931 Yutian 81.65 36.85 1422
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3.5. Validation of the Spatial Distribution of Drought Development in a Typical Dry Year

To further verify the spatial rationality of the CDI, we selected a typical drought year
to analyze the spatial distribution characteristics of drought in Xinjiang, and we divided
the CDI index into five classes, as shown in Table 9.

Table 9. CDI classification criteria for grading drought events.

Drought Grade Drought Condition CDI

I No drought 0 < CDI
II Light drought −0.5 < CDI ≤ 0
III Moderate drought −1 < CDI ≤ −0.5
IV Severe drought −1.5 < CDI ≤ −1
V Extreme drought CDI ≤ −1.5

According to the Xinjiang Climate Bulletin and Impact Assessment issued by the Xinjiang
Uygur Autonomous Region Meteorological Bureau (http://xj.cma.gov.cn/) (accessed on
24 May 2022), the precipitation in 2014 was slightly less in most of Xinjiang, with major
catastrophic weather and climate events occurring on an overall larger scale. From December
2013 to May 2014, the average precipitation in the southern Xinjiang region was 4.2 mm, nearly
80% less than normal and the lowest since meteorological records began. In addition, counties
and cities such as Luntai and Ruoqiang had no precipitation for six consecutive months, with
drought conditions easing after May. Regional drought events occurred in both summer and
autumn, with the drought area shifting northwestward and then shifting southward in the
winter. Direct economic losses were caused by various meteorological disasters, with drought
disasters being the largest, accounting for approximately 38% of the total losses.

http://xj.cma.gov.cn/
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In this study, ConvLSTM was used to construct a drought monitoring model to
monitor and classify drought from March to August 2014 in Xinjiang. After a comparative
analysis, SPEI-6 outperformed the other scales of SPEI in characterizing severe and extreme
drought. Therefore, the CDI-6 spatial distribution raster data and interpolated station
SPEI-6 data were selected to evaluate the accuracy of the CDI-6 spatial distribution in
monitoring drought and the reflection of drought in off-site raster data (Figure 6). The
degree of drought expressed by the CDI-6 spatial distribution and SPEI observations at the
actual station remained largely consistent. In March 2014, the eastern and central regions of
Xinjiang experienced severe drought conditions, with 60% of the region affected by severe
or extreme drought. By April, the drought had abated overall, with moderate and severe
drought dominating, mainly due to the extremely low precipitation in the region during
the first five months. In May, there was widespread precipitation in southern Xinjiang,
which reduced the drought conditions and shifted the drought trend to the west and
southwest, with drought conditions in the east and central regions showing an easing trend.
In June, the drought trend shifted to the northwest and north. In July, the drought trend
continued northward, with a downward trend in the severity of the drought in the south.
By August, the severity of the drought in the north was reduced due to increased rainfall
in the north, and the drought in the south was largely lifted. In addition, in 2014, mild
drought occurred, mainly in the eastern region, while the southern region was dominated
by moderate drought. Severe drought mainly occurred in the central and northwestern
regions. Overall, the spatial distribution of CDI-6 from the ConvLSTM model was generally
consistent with the degree of drought from the SPEI-6 observations, and the monitoring
results were more detailed than the interpolated results.
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3.6. Relative Importance of Different Influencing Factors on Simulation Results

Drought is influenced by a variety of factors. In order to investigate the influence of
different influencing factors on the monitoring results, this study entered different influenc-
ing factors as independent model variables and used the mean reduction in accuracy as a
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standard metric to obtain the relative importance of each drought factor on the simulation
results. The results are shown in Table 10. On the four scales, the relative importance of PCI
was 28.52, 22.93, 34.77, and 40.61%, respectively, which was the highest relative importance
among the eight influencing factors, indicating that precipitation is the most important
influencing factor affecting drought in the model. This was followed by TCI, VCI, and VHI,
so surface temperature and vegetation factors also play important roles in the simulation of
CDI in the model. The relative importance of the remaining drought-influencing factors
was less than 10%, indicating that these influencing factors contribute relatively little to the
monitoring results. The relative importance of ET was the lowest, probably due to the high
number of missing values in the ET data from MODIS, which reduced the accuracy of the
data to some extent, indicating that drought is less influenced by ET than other influences
in this study area.

Table 10. Relative importance of factors for drought assessment.

Impact Factors
Relative Importance (%)

CDI-1 CDI-3 CDI-6 CDI-12

PCI 28.52 22.93 34.77 40.61
TCI 17.81 14.73 13.38 12.33
VCI 8.85 21.49 11.96 8.65
VHI 19.48 14.84 11.85 11.68

VSWI 6.06 7.05 7.88 8.58
LAI 4.41 6.26 7.81 6.31

SMCI 10.53 8.45 7.76 5.95
ET 4.34 4.25 4.59 5.89

4. Discussion

In this study, we proposed the ConvLSTM model for drought monitoring and achieved
good monitoring results. Many previous studies have developed drought monitoring mod-
els, but most have only used relatively simple machine learning methods with relatively
limited exploration of deep learning. In this study, multi-source remote sensing and station
data were used as input data to construct a comprehensive drought index using deep learn-
ing algorithms, and the monitoring results were more detailed than traditional interpolation
results. The good local features make this model superior to traditional meteorological
monitoring methods. However, despite the novelty of the proposed model, it still has
some limitations. Firstly, in terms of model structure, ConvLSTM reflects the time series
relationship of drought well and can effectively capture the complex relationships between
weather indices and remote sensing indices. However, it is more complicated than tradi-
tional machine learning methods in terms of memory and running time when optimizing
parameters and requires iterative debugging to obtain better results. Secondly, deep learn-
ing methods are often referred to as black box models and give results that are difficult to
interpret in terms of causal relationships between variables and specific importance.

There were also some limitations in terms of data. Firstly, when selecting remote
sensing data to calculate the drought index, different remote sensing data had different
spatial resolutions, which may have caused data bias and increased uncertainty, thus
further affecting the model monitoring performance. Secondly, it was difficult to obtain
soil moisture data with higher accuracy for long time series. The station soil moisture data
obtained in this study were from 2000 to 2013, and there were data deficiencies, making
the correlation of CDI to soil relative humidity validation results slightly lower than those
of the meteorological drought index. Thirdly, the time scale of the constructed integrated
drought monitoring model was monthly, which did not reflect the influence of specific
time on drought development. The ability to monitor drought in real-time is yet to be
studied. Fourthly, we calculated the proportions of land cover types in the study area, and
the results showed that the land cover types in the study area were relatively simple. As
of 2020, deserts accounted for 67.57% of the total area, forests and grasslands accounted
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for 25.88% of the total area, and the remaining land types accounted for 6.55% of the total
area, indicating that the Xinjiang region is dominated by deserts and that the impact of
vegetation on drought is relatively small. Moreover, we used station data for validation.
The distance between stations varied greatly, and the climate type varied greatly from
station to station in the same month, which is an important reason for the low accuracy of
short-term drought monitoring.

Finally, this study only considered the influencing factors of precipitation, vegetation,
surface temperature, and soil moisture in the selection of influencing factors to construct
the drought monitoring model. Due to the complexity of drought-influencing factors,
topography, vegetation type, surface albedo, and soil water availability capacity also
influence drought. These factors will be considered in future research, and deep learning
models that are more suitable for drought monitoring will be explored in order to monitor
drought more accurately.

5. Conclusions

Drought is a complex natural phenomenon. This study proposed a ConvLSTM deep
learning model, combined with multi-source remote sensing data, to construct a com-
prehensive drought monitoring model to simulate CDI to monitor drought information
in Xinjiang. The results were compared with three traditional machine learning models
and three different types of deep learning models, and the monitoring performance was
evaluated by three evaluation metrics. The following is a summary of the study results.

The integrated drought monitoring model effectively monitored drought information
in the Xinjiang region. The generalization capability of the model was improved by
establishing cross-validation between the training and test sets during the model training
process. The CDI obtained from the output of the ConvLSTM model was highly consistent
with the measured SPEI index, with the consistency rate of each drought category exceeding
80%, except for extreme and exceptional drought. The model monitoring values were more
consistent with the station-derived SPEI values.

In the correlation analysis with meteorological drought, the correlation coefficients
between the model’s CDI output and the 2015 station SPI data for all four scales were
above 0.5 (p < 0.01), reaching a significant correlation level. In the correlation analysis with
agricultural drought, the correlation coefficients between the model’s CDI-1 output and
the soil relative humidity at a 10 cm depth at agrometeorological stations were all greater
than 0.45 (p < 0.01). This indicates that the model has good applicability in integrated
drought monitoring.

In this study, based on the model to monitor the typical drought months in the Xinjiang
region from March to August 2014, the CDI-6 spatial distribution plotted according to the
model was generally consistent with the drought conditions reflected by the station obser-
vations. The drought conditions shown by the raster data of the CDI-6 spatial distribution
outside the stations were consistent with the actual recorded drought conditions, which
can reflect drought development and spatial evolution.
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