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Abstract: Traditional target tracking is carried out based on the point measurements extracted from
the radar resolution cells. This is not suitable for situations of low signal-to-noise ratio (SNR). In
this paper, we aim to investigate the problem of the joint detection and tracking (JDT) of a target by
directly using the received signals of passive multi-static radar without feeding the signals to matched
filters. To this end, a novel likelihood function is proposed exploiting the statistical properties of
coherent processing between the reference and surveillance signals. With such a likelihood function,
the particle Bernoulli filter is employed to perform direct JDT (DJDT) of the target. A remarkable
feature of the proposed method is that it is able to achieve satisfactory performance when the SNR
of received signals is low. Furthermore, the proposed method cannot only achieve the existence
and kinematic state of the target, but also the time-varying SNR of each receiver, which serves as
an important input for sensor adjustment. The performance of the proposed method is verified
via simulations.

Keywords: passive multi-static radar; direct target tracking; joint detection and tracking; particle
filter; Bernoulli filter

1. Introduction

The passive multi-static radar (PMR) [1], which consists of multiple geographically
separated receivers and a non-cooperative transmitter of opportunity, such as a frequency
modulation radio [2], television [3], and cell phone base stations [4], to name a few, has
the remarkable ability of not emitting additional signals as well as detecting stealth and
low-flying targets [5].

Traditional PMR-based area surveillance is divided into two phases: i.e., parameter
extraction [6] and target tracking [7,8]. In the former phase the received signals from the
surveillance and reference channels are fed to the matched filters, then the measurement
resolution cells with a large power/amplitude are announced as the potential targets,
resulting in a set of extracted point measurements [9,10]. Then in the latter phase, the
time-consecutive measurements are adopted to further detect and form target trajecto-
ries [11–13]. Such a processing technique works well when the signal-to-noise ratio (SNR)
at each receiver is high enough; however, when the SNR is low or the receivers are under in-
terference, target detection and tracking with PMR suffering from performance degradation
or even failure [14].

A solution to improve the target tracking performance under low SNR is to make full
use of the received signals of reference and surveillance channels, i.e., perform direct target
tracking based on the received signals other than conducting a two-step treatment. Such
an idea was first known as direct localization in the field of target localization. In [15], a
maximum likelihood-based direct localization method was proposed, where the Doppler
shift effect was considered to form the likelihood. However, the signal model was not
accurate when the signal became the wideband. In [16], the idea of direct localization was
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applied for through wideband random signals using both the Doppler effect and the time
delay, and the corresponding Cramér–Rao bound (CRB) was derived.

In addition to direct target localization, the idea of direct tracking has been developed.
Knowing the complex envelope of transmitted waveforms, Ref. [17] provided an extended
Kalman filter in a multiple input, multiple output radar system. In [18] , a particle filter
is presented to directly track a single target illuminated by a digital-video broadcasting
terrestrial signal in a PMR system. This algorithm utilizes a single-stage scheme but
assumes that the transmitted signal can be estimated perfectly using the reference signal,
which is received directly from the transmitter. In [19], a new likelihood was derived on
the basis of an unknown deterministic signal and an unknown random Gaussian signal,
which is radiated by moving the transmitter impinging on receivers and the posterior CRB
(PCRB). In [20], an adaptive Gaussian particle filter was proposed for direct target tracking
based on distributed sensor networks, and its further extended work can be referred to
in [21], wherein the diffusion strategy has been incorporated for information delivery
among sensor networks. In addition, the particle number adaptation strategy has also
been discussed. In our previous work [22], direct tracking was accomplished based on a
maneuvering single-sensor array exploiting the unscented Kalman filter.

Nevertheless, the aforementioned contributions considered only the problem of direct
target tracking, which is based on the assumption that the correct identification of the
target may not be a trivial task in low-SNR cases. As has been pointed out in [9,23,24],
the incorporation of signal phase information can help to promote the target detection
performance, which motives the work of this paper, i.e., developing an algorithm for the
direct joint detection and tracking (DJDT) of a target.

To this end, a new likelihood function, which describes the relations between the target
state and the cross ambiguity function (CAF) of signals in the reference/surveillance chan-
nels [24], is derived. Such a likelihood turns out to be Wishart and it contains the unknown
channel coefficients of the receivers. In this paper, the unknown channel coefficients are
included into the target state, so that the unknown channel coefficients are estimated jointly
with the kinematic state of the target. In order to perform DJDT, the Bernoulli filter [25] is
employed with the particle implementation. A remarkable feature of the proposed method
is that it can accomplish the DJDT of a target when the signal-to-noise ratio (SNR) becomes
extremely low, under which condition the performance of traditional detection and tracking
approaches degrades heavily. The effectiveness of the proposed method is verified via
simulations.

In summary, the main contributions of this paper are listed as follows:

1. A novel likelihood function for the DJDT of a target is proposed.
2. The particle Bernoulli filter-based target DJDT approach is proposed.
3. An algorithm for the joint estimation of the target kinematic states and channel

coefficients is proposed.

The rest of this paper is organized as follows. Section 2 provides background on the
DJDT measurement model. Section 3 deduces the likelihood based on the CAF and pseudo-
code for the proposed algorithm implemented by a Bernoulli filter. Section 4 evaluates
the performance of the proposed method and, finally, the paper ends with conclusions in
Section 5.

2. Background

Suppose a PMR consisting of one non-cooperative transmitter of opportunity and
N receivers is deployed to perform the DJDT of a target [26], as Figure 1 depicts. The
two-dimensional position of the transmitter is denoted as q = [qx, qy]>, the position of the

j-th receiver is denoted as dj = [dj
x, dj

y]
>, and the position and velocity of the moving target

are denoted as p = [px, py]> and ṗ = [ ṗx, ṗy]>, respectively.
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Figure 1. Typical deployment of a PMR.

Suppose the target state is Xk = [px,k, ṗx,k, py,k, ṗy,k]
> at time step k, the evolution of

Xk is governed by the dynamic model

Xk = fk|k−1(Xk−1) + vk−1, (1)

where fk|k−1(·) is the transition function of X and vk−1 is the Gaussian process noise.
The two directional receiving antennas point at the transmitter and the target echo,

respectively, constructing the direct path and target path. The delay from the transmitter
to the j-th receiver in the target path and direct path can be defined as τ

j
t = (‖p− q‖+

‖dj − p‖)/c and τ
j
d = ‖dj − q‖/c, and the related Doppler in the two paths as ν

j
t =

− fc · ( ṗ>(p − q)/‖p − q‖+(− ṗ)>(dj − p)/‖dj − p‖)/c in the line-of-sight cases and 0
Hertz, respectively, where c is the speed of wave propagation, ‖·‖ is the Euclidean norm,
(·)> is the transpose operator, and fc is the carrier frequency.

If the observation time lasts T seconds at each iteration, the received signals from the
transmitter to the j-th receiver containing the surveillance signal and reference signal are:

zj
s(t) = αjs(t− τ

j
t )e

ι2πν
j
t t + nj

s(t), 0 ≤ t < T

zj
r(t) = βjs(t− τ

j
d) + nj

r(t), (2)

where αj and βj are unknown channel coefficients in the j-th surveillance-reference channel,
respectively; τ

j
t , τ

j
d � T; ι is the imaginary unit; s(t) is the unknown emitted narrowband

signal envelope.
Assume the received signal is down-converted to the baseband and sampled at a

rate of fs � B [9], discretizing the signals into vectors of length L = fsT, the received
waveforms in the j-th channel can, thus, be expressed as:

zj
s,k = α

j
kD(τ

j
t,k, ν

j
t,k) · sk + nj

s,k,

zj
r,k = β

j
kD(τ

j
d,k, 0) · sk + nj

r,k, (3)

where D(τ, ν) ∈ CL×L is the unitary delay-Doppler operator that accounts for the delay
and Doppler shift affecting the transmitted signal of length L as it propagates to the j-th
receiver, given as

D(τ, ν) = D(ν/ fs)WHD(τ fs/L)W, (4)



Remote Sens. 2023, 15, 624 4 of 17

where D(u) = diag{[eι2πu·0,··· ,ι2πu·(L−1)]}, where diag{[b1, · · · , bM]} means the diagonal
matrix with b1, · · · , bM on the main diagonal. The superscript (·)H is the conjugate trans-
pose operator; W ∈ CL×L is the unitary discrete Fourier transform matrix, with its (m, n)-th
element [W]m,n = 1√

L
e−ι2πmn/L, m, n = 0, · · · , L − 1, where [·]m,n means the (m, n)-th

entry of the matrix; WHW = IL, thus D(τ, ν)HD(τ, ν) = IL, where IM denotes M × M
the identity of the matrix. sk ∈ CL×1 denotes the sampled emitted signal, assuming that
‖sk‖2 = L; nj

s,k and nj
r,k ∈ CL×1 are circular with zero-mean complex Gaussian noise and

identical variance σ2
z and covariance Rk = σ2

z IL, and are assumed independent across
receivers and time intervals, i.e., nj

p(nn
q )

H = σ2
z δp−qδj−n IL, δb is the Dirac-delta function

concentrated at point b. The signal vector is uncorrelated with the noise vectors since α
j
k

and β
j
k can be regarded as the scaling of the received signal; define SNR for the target-path

as SNRj = 10 lg((αj
k)

2/σ2
z ) and for direct-path as DNRj = 10 lg((β

j
k)

2/σ2
z ).

For an explicit description, the concatenation of the surveillance signal and a reference
signal to the j-th receiver can be defined as: zj

k = [(zj
s,k)
>, (zj

r,k)
>]>, and the measurement

vector gathering all the data as zk = [(z1
s,k)
>, · · · , (zN

s,k)
>, (z1

r,k)
>, · · · , (zN

r,k)
>]>.

The same occurs as the binary hypothesis test between the alternative (H1) and null
(H0) hypotheses; in the detection context, [9], the measurement vectors captured by the
j-th receiver yield:

H1 : zj
s,k = α

j
kD(τ

j
t,k, ν

j
t,k) · sk + nj

s,k

zj
r,k = β

j
kD(τ

j
d,k, 0) · sk + nj

r,k, (5)

H0 : zj
s,k = nj

s,k

zj
r,k = β

j
kD(τ

j
d,k, 0) · sk + nj

r,k, (6)

in the two cases.
For ease of notation, we will abbreviateD(τ j

t,k, ν
j
t,k) asD j

t,k andD(τ j
d,k, 0) asD j

d,k, which
implicitly expresses full information associated with the target state, to adaptively generate
the likelihood function for the PMR received signals.

3. The Proposed Method
3.1. The CAF-Based Likelihood

Construct Qk = (Φk)
HΦk as the Gram matrix formed by the inner product of the delay-

Doppler compensated surveillance and reference signals ([24], Equation (178)), where

Φk = [(D1
t,k)

Hz1
s,k, · · · ,(DN

t,k)
HzN

s,k, (D1
d,k)

Hz1
r,k, · · · , (DN

d,k)
HzN

r,k]. (7)

For the convenience of identification, defineD j
p,k as the delay-Doppler operator, substituting

the hypothesized target state, and D j
t,k and D j

d,k as the operator with the true target state.

Replacing D j
t,k with D j

p,k, we have

Φk = [(D1
p,k)

Hz1
s,k, · · · ,(DN

p,k)
HzN

s,k, (D1
d,k)

Hz1
r,k, · · · , (DN

d,k)
HzN

r,k]. (8)

Since
(
D j

(p,d),k

)H
zj
(s,r),k has the significance of shifting the measurement in time and

frequency by τ
j
(p,d) and ν

j
(p,d) respectively, where (·)(a,b) denotes either (·)a or (·)b, Qk

implies the correlation of the reference and surveillance signals with respect to Xk.
Therefore, each column of (Φk)

H is a one snapshot-sampling of it, and the columns are
approximately independent, identically distributed, N-variate complex Gaussian random
vectors. It is worth noting that the true Gram matrix is not available; Qk is the L samples’
estimate of it, and a larger L reduces the estimating error.
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According to the earlier discussions in [27] and ([28], Equation (19)), we conclude that
Qk is distributed as complex Wishart with L degrees of freedom ([28], Equation (29)).

WC
N(Q; L, V) =

|V|−L|Q|(L−N)e−tr((V)−1Q)

ΓC
N [L]

, (9)

where V is the N × N symmetric positive-definite scale matrix, and it can be seen as the
expectation of the matrix variable Q if it is formed by one snapshot of Φ, L is the degrees of
freedom, |·| denotes the determinant of the matrix, and ΓC

N [·] is the complex multivariate
Gamma function defined as ([28], Equation (30)).

If considering Qk as the pseudo measurement, we will obtain the likelihood in the
PMR system

ϕk(Qk|{x}) =WC
N(Qk; L, Vk,1) (10)

when assuming the target exists and

ϕk(Qk|φ) =WC
N(Qk; L, Vk,0) (11)

when assuming the target disappears, where Vk,1 and Vk,0 are, respectively, calculated
under the alternative hypothesis and null hypothesis.

Observe that the state variable is simultaneously contained in Qk, Vk,1, and Vk,0, we
employ the property of the CAF [29] so that when the hypothesized state equals its true
value, each entry of the matrix Qk reaches its maximum and the effect of Xk in Vk,1 and Vk,0
is counteracted. It makes no sense to calculate Vk,1 and Vk,0 unless in the certain situation
of D j

p,k = D j
t,k, j = 1, · · · , N. The certain value of Vk,1 and Vk,0 can be acquired by the

following steps. First, substitute the measurement Function (5) or (6) for the two hypotheses
into Qk. Then, use the aforementioned assumption that the noise across the receivers are
uncorrelated and the radiated signals and the noise is uncorrelated and withdraw the zero
terms. Finally, assume the kinematic state is in the correct value, which is the specific
condition we adopted.
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Furthermore, the expected value of it, considering the statistic property of the random
variables, can then be acquired. To this end, let us first compute Vk,1 as follows.

Vk,1 = E{[(Φk)
H]ε[(Φk)

H]Hε }|D j
p,k=D

j
t,k , j=1,··· ,N

= E





(
z1

s,k

)H
D1

p,k
...(

zN
s,k

)H
DN

p,k(
z1

r,k

)H
D1

d,k
...(

zN
r,k

)H
DN

d,k


ε



(
z1

s,k

)H
D1

p,k
...(

zN
s,k

)H
DN

p,k(
z1

r,k

)H
D1

d,k
...(

zN
r,k

)H
DN

d,k



H

ε



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
D j

p,k=D
j
t,k , j=1,··· ,N

= E





α1
k

...
αN

k
β1

k
...
βN

k



∗

α1
k

...
αN

k
β1

k
...
βN

k



>
+ σ2

z I2N

≈



α1
k

...
αN

k
β1

k
...
βN

k



∗

α1
k

...
αN

k
β1

k
...
βN

k



>

+ σ2
z I2N , (12)

where E{·}means the expectation, the superscript ∗ denotes the complex conjugate, and
[·]ε means the ε-th column of the matrix, or the ε-th element of the vector. Among the
block matrix (12) calculation of each entry in the matrix block satisfying r, u ≤ N can be
detailed as:

[(αr
kD

r
t,ksk + nr

s,k)
HDr

p,k]ε · [(D
u
p,k)

H(αu
kD

u
t,ksk + nu

s,k)]ε

= ((αr
k)
∗(sk)

H(Dr
t,k)

H[Dr
p,k]ε + (nr

s,k)
H[Dr

p,k]ε) · ([D
u
p,k]

H
ε αu

kD
u
t,ksk + [Du

p,k]
H
ε (n

u
s,k))

= ((αr
k)
∗[sk]

H
ε + (nr

s,k)
H[Dr

p,k]ε) · (α
u
k [sk]ε + [Du

p,k]
H
ε (n

u
s,k))

= (αr
k)
∗[sk]

H
ε [sk]εαu

k + [Du
p,k]

H
ε (n

u
s,k)(n

r
s,k)

H[Dr
p,k]ε

=

{
(αr

k)
∗αu

k + σ2
z , if r = u

(αr
k)
∗αu

k , if r 6= u
. (13)
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The other three blocks of Vk,1, satisfying N ≤ r, u ≤ 2N, can be derived in the same way.
Likewise, Vk,0 for target disappearance, can be expressed as:

Vk,0 = E{[(Φk)
H]ε[(Φk)

H]Hε }|D j
p,k=D

j
t,k , j=1,··· ,N

= E





(
n1

s,k

)H
D1

p,k
...(

nN
s,k

)H
DN

p,k(
n1

r,k

)H
D1

d,k
...(

nN
r,k

)H
DN

d,k


ε



(
n1

s,k

)H
D1

p,k
...(

nN
s,k

)H
DN

p,k(
n1

r,k

)H
D1

d,k
...(

nN
r,k

)H
DN

d,k



H

ε



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
D j

p,k=D
j
t,k , j=1,··· ,N

= σ2
z I2N . (14)

Consequently, the likelihood is called the CAF-based likelihood.

3.2. Bernoulli Filter Based DJDT

In this subsection, the Bernoulli filter, as the Bayes-optimal filter for detection and
tracking in the scenario that is known to contain at most a single target, is adopted to
address the problem of DJDT ([30], Section 13.2). Due to the non-Gaussian and non-linear
nature of the likelihood, Gaussian mixture methods are used commonly to implement the
standard Bernoulli filter where it cannot be readily employed and instead particle methods
are utilized ([30], Section 19.4.4). ([25], Section IV) has presented the Bernoulli solution and a
particle implementation using an intensity measurement model without passing a detector.
The Bernoulli filter-based DJDT using the CAF-based likelihood (Bernoulli-CAF-DJDT) is
put forward as follows.

A Bernoulli RFS X’s probability density function (PDF) is uniquely described by
an existence probability r and the probability that it has state x, p(x), called the spatial
probability density function (SPDF), given by [31]

f (X) =

{
1− r, if X = φ

r · p(x), if X = {x}.
(15)

The particle implementation solves the tracking problem by approximating the SPDF p(x)
as a series of weighted particles {ω(l), x(l)}N

l=1. The proposed CAF-DJDT approach is
summarized in Algorithm 1, wherein the Bernoulli parameters are propagated in the form

of πk =

{
rk,
{

ω
(l)
k , x(l)k

}N

l=1

}
. If Gaussian birth is assumed to have an object birth density

of bk−1(x), then the transition density (1) is used as the proposal density.

Knowing the prior existence probability rk−1 and SPDF
{

ω
(l)
k−1, x(l)k−1

}N

l=1
, the predic-

tion equations are listed in lines 6–7, where Ps is the probability so that, if the target has the
state x, it will survive, and Pb is the probability that the target birth will appear in the scene.
Provided that we have the predicted existence probability rk|k−1, and the predicted SPDF{

ω
(l)
k|k−1, x(l)k|k−1

}N+B

l=1
at time k, given the measurement vector zk, the updated existence

probability and SPDF for the Bernoulli are listed in lines 13–14, respectively.
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Algorithm 1: The proposed Bernoulli-DJDT approach

1 Initialize π0 = {r0, {ω(l)
0 , x(l)0 }N

l=1}, where N is the number of existing particles ;
2 for k = 1, 2, . . . do
3 Draw birth particles: x(l)k−1 ∼ bk−1(x), l = N + 1, · · · , N + B, where B is the

number of new born particles ;
4 Draw samples from proposal distributions:

x(l)k|k−1 ∼ fk|k−1(x|x′), l = 1, · · · , N + B;

5 Predict the existing probability and weights of the particles as follows
6 rk|k−1 = Pb(1− rk−1) + Psrk−1

7 ω
(l)
k|k−1 =


Psrk−1
rk|k−1

·ω(l)
k−1, l = 1, · · · , N

Pb(1−rk−1)
rk|k−1

· 1
B , l = N + 1, · · · , N + B

;

8 for l = 1, · · · , N + B do
9 Compute the likelihood ϕk

(
Qk|x

(l)
k|k−1

)
and ϕk(Qk|φ), respectively, via (10)

and (11);

10 Compute the likelihood ratio with equation `k(Qk|x
(l)
k|k−1) =

ϕk

(
Qk |x

(l)
k|k−1

)
ϕk(Qk |φ)

;

11 Approximate the integral: Ik =
N+B
∑

l=1
`k

(
Qk|x

(l)
k|k−1

)
ω
(l)
k|k−1;

12 Update the existing probability and weights as

13 rk|k =
Ikrk|k−1

1−rk|k−1+Ikrk|k−1

14 ω̃
(l)
k|k = ϕk

(
Qk|x

(l)
k|k−1

)
ω
(l)
k|k−1;

15 Normalize weights as ω
(l)
k|k = ω̃

(l)
k|k/

N+B
∑

l=1
ω̃
(l)
k|k and resample ;

16 Regularize particles and set weights: ω
(l)
k|k = 1/N;

Output: πk|k =

{
rk|k,

{
ω
(l)
k|k, x(l)k|k

}N

l=1

}
at each time k

The proposed DJDT algorithm jointly detects and tracks the target position directly
without extracting the middle parameters in advance and utilizes full knowledge of PMR
received signals and, thus, reduces miss detection, information loss, and signal processing
noise. Besides, a priori knowledge of the reference path reduces the required SNR. This
gains an apparent advantage over the traditional sequential detection and JDT process-
ing methods.

Remark 1. In addition to the proposed likelihood, another possibility is to adopt the GLRT-based
likelihood which can be easily obtained by extending the results of [21]. The derivation details of
the GLRT-based likelihood for DJDT are detailed in Appendix A. Compared with the GLRT-based
likelihood, the CAF-based likelihood does not depend on the MLEs of unknown signal sk, but it does
depend on the product of a combination of α

j
k and β

j
k. Anyway, DNRj is usually known, and α

j
k

can be iteratively estimated by augmenting it into the target state; hence, the CAF-based likelihood
preserves more knowledge of direct measurements than the other. This suppresses measurement noise
in the Bernoulli update step efficiently, and there is no need to calculate a threshold. Its advantage
will be shown in the following simulations.

Remark 2. It can be recalled from the preceding results in Section 3.1 and Appendix A that either
the GLRT-based likelihood or the CAF-based likelihood employs all the correlations between the
reference and surveillance signal intra receivers (delay and Doppler), surveillance signals across
receivers (time difference of arrival (TDOA) and frequency difference of arrival (FDOA)), and
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reference and surveillance signals across the receivers. The reference signals provide a varying degree
of knowledge about the transmitted signals that depends on the relative energy of true signals. The
influence will be reflected in fixing DNRj while changing SNRj in the numerical simulations.

4. Simulation
4.1. Simulated Scenario

In this section, we are going to assess the performance of the proposed algorithm via
simulation experiments. Consider the transmitter located at q = [4100, 15,000]>m and three
receivers located at d1 = [0,−500]>m, d2 = [5000,−800]>m, and d3 = [10,000,−500]>m,
respectively. A target moves with uniform speed along a straight-line path [32]. The target
appears or disappears from the [0,10,000] m× [−2000, 16,000] m surveillance volume, and
it enters and leaves the scene at times 10 s and 80 s, respectively. The initial location and
speed of the target are set by: [0 m, 105 m/s, 0 m, 170 m/s]>. Thus (1) becomes the nearly
constant velocity model [33]

Xk = FXk−1 + vk−1, (16)

with

F =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

, Wk−1 = σ2
v


∆4/3 ∆3/2 0 0
∆3/2 ∆2 0 0

0 0 ∆4/3 ∆3/2
0 0 ∆3/2 ∆2

, (17)

where F denotes the linear transition matrix with ∆ representing the sampling time interval,
and vk−1 has the covariance matrix Wk−1 and the standard deviation σv = 15 m/s2. The
topology of the transmitter, receivers, and target trajectory is shown in Figure 2a.

The measurement model has been shown in (3), where the PMR parameters are the
signal observation time T = 1 ms, fc = 540 MHz, c = 3× 108 m/s, and the transmitted sig-
nal is simply represented by a binary phase shift keying (BPSK) signal: s(t) = eι(2π fct+η(t)),
where η(t) is the symbol with a symbol rate of 1× 105 symbol/s. As the final results of
Section 3 reveals the tracking precision does not depend on the specific structure of the
signal waveform but on the power of the signal. Each logarithmic surveillance channel
coefficient ln α

j
k, ∀j is modeled as a random variable that conforms to Gaussian distribution

with zero mean and standard deviation 0.02 and σz which is calculated by the common
SNR of the surveillance signals. In the following simulations, without loss of generality, all
the DNRj, ∀j are fixed at 10 dB. To be more computationally effective, we processed the
baseband signal and L = 100 snapshots were gathered.

The initial state and covariance matrix are set as follows

X0 = [0, 0, 0, 0]>, P0 =


100 0 0 0
0 100 0 0
0 0 100 0
0 0 0 100


2

. (18)

The birth model is Gaussian with mean [0, 0, 0, 0]> on the position and velocity dimension
and Pb = 0.01.

For CAF-DJDT, in order to estimate the channel coefficients and kinematic state
together, the state vector should be extended to Xk = [px,k, ṗx,k, py,k, ṗy,k, ln α1

k , ln α2
k , ln α3

k ]
>,

the transition matrix and noise covariance matrix are changed to

F′ = diag{F, I3}, W ′k−1 = diag{Wk−1, σ2
ln α I3}, (19)

respectively, where the diag{·} represents the block diagonal matrix and σln α = 0.05.
The receivers collected 100 scans in total and 100 Monte Carlo trials were carried out to
evaluate the experiments. The GL-DJDT can also be implemented by the offered Bernoulli



Remote Sens. 2023, 15, 624 10 of 17

filter (Bernoulli-GL-DJDT). We used 1500 particles to approximate the target survival and
500 particles to approximate the object birth for GL-DJDT and 4000 particles to approximate
the target survival, and 900 particles to approximate the object birth for CAF-DJDT. Please
note that to the GL-DJDT, there is no reliable way of calculating the pseudo threshold γ.
Fortunately, we only needed the about value of it with the proposed Monte-Carlo method.
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Figure 2. Simulated scenario and a typical Monte Carlo run.

4.2. Results

To better illustrate Bernoulli-CAF-DJDT’s superiority, we also performed a typical
traditional two-step PMR surveillance method under the same background and settings
for comparison. Step 1 is to extract the delay and Doppler, which is implemented by
a two-dimensional grid search to find the maximum CAF for each transmitter-receiver
channel pair [9]. fs is set to 2 MHz and the grid size is 1/ fs = 0.125 µs and 1 Hz for the
delay and Doppler, respectively, to determine the parameter resolution. The second step is
a common particle-based Bernoulli filter ([25], Algorithm 2) with the standard deviation
of the measurement noise, which is determined by the time-averaged root mean squared
errors (RMSEs) of the estimated delays and Dopplers, i.e.,

σ
j
τ = RMSEj

τ =

√√√√ 1
100

100

∑
k=1

(
τ

j
k − E

{
τ

j
k

})2
, σ

j
ν = RMSEj

ν =

√√√√ 1
100

100

∑
k=1

(
ν

j
k − E

{
ν

j
k

})2
(20)

for j = 1, · · · , N. They are in a positive correlation with SNR. The surveillance region is in
the best condition with one clutter returning over the volume, and the detection probability
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is pd = 0.99. A total of 1000 snapshots were gathered since fewer snapshots resulted in the
OSPA exceeding 80 m, which is not necessary to exhibit in the figure.

To begin with, Figure 2a–c depicts the estimated trajectory of a typical run with the
GL-DJDT/ CAF-DJDT Bernoulli filter under SNR = −12 dB and the two-step approach
under SNR = 10 dB, respectively. The logarithmic scale of the SNR-dependent threshold
∈ γ is calculated approximately as 10. As can be seen qualitatively from Figure 2a–c, all the
given methods have correctly performed DJDT, and the two-step method does not work as
well as them.

To show that the proposed method works well in varied noise levels explicitly,
Figure 3a exhibits the optimal sub-patterns (OSPAs) with order p = 1 and cutoff c = 100
on the target position under SNR = −13,−12,−10 dB for the Bernoulli-GL-DJDT and
Bernoulli-CAF-DJDT versus time k. The corresponding ln γ is calculated as 9, 10, and
13. During experiments, when SNR is lower than −13 dB for the Bernoullli-GL-DJDT
and the Bernoullli-CAF-DJDT, the track may seriously deviate from its true trajectory in
some Monte–Carlo runs, see Figure 2d. Figure 3a confirms Remark 1 in that GL-DJDT
exhibits higher OSPA errors in the environment of the same SNR, especially in low SNR
environments (SNR ≤ −12 dB). Additionally, more false alarms appeared at the end of the
trajectory (81 s) when SNR ≤ −12 dB. This is because the existence probability could not
drop quickly once the likelihood ratio dropped. Summarily, the CAF-DJDT is 3 dB better
than the GL-DJDT within the normal operating range of SNR ≥ −13 dB.
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Figure 3. Comparision of two DJDT methods with different SNRs. (a) OSPA errors of two DJDT
methods with different SNRs; (b) Cardinality of two DJDT methods with different SNRs.

The OSPA distance simultaneously captures the cardinality error and state error. We
present the detection performance separately by plotting the time-varying cardinality in
Figure 3b. The ground truth cardinality is illustrated by the khaki line as well. We can draw
conclusions that the OSPA errors mostly result from the estimation bias in the number of
targets and miss detections which becomes severe as noise become louder. In addition, the
performance of Bernoulli-GL-DJDT is inferior to the proposed method.

Analogously, the results are summarized in Figure 4a, which illustrates OSPA errors
and the cardinality of the two DJDT methods versus time steps with the number of snap-
shots L = 50, 75, 100 with SNR = −10 dB. It can be easily concluded that the proposed
method shows lower errors and more robustness to noise compared to the Bernoulli-GL-
DJDT approach in all the two different parameter settings. The superior performance of
the proposed method compared to the Bernoulli-GL-DJDT approach is mainly due to the
correlation of the reference and surveillance signals. However, due to a lack of correlation
information, the two DJDT methods cannot work with L ≤ 50 and SNR = −10 dB.
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Figure 4. Comparision of two DJDT methods with a different number of snapshots. (a) OSPA errors
of two DJDT methods with a different number of snapshots; (b) Cardinality of two DJDT methods
with a different number of snapshots

The error of the estimated time-varying α
j
k is reflected by the RMSE of α1

k for the first re-
ceiver. The results versus time from 10 s to 80 s are shown in Figure 5 with SNR = −13,−12,
and −10 dB. The errors in the latter half of the period rise and gradually converge. This
can be interpreted by the topology of the track, transmitter, and receivers becoming harder
to observe.

0 10 20 30 40 50 60 70 80 90 100

Time/s

0

0.02

0.04

0.06

0.08

0.1

0.12

R
M

S
E

1

Figure 5. RMSEs of the channel coefficient for the first receiver of the proposed method with
different SNRs.

Furthermore, to show the performance improvements in the whole PMR signal pro-
cessing flow, Figure 6 exhibits the OSPAs for the Bernoullli-GL-DJDT on condition of SNR =
−13,−12 dB, and Bernoullli-CAF-DJDT on condition of SNR =−15 dB and the two-step ap-
proach under the condition of SNR = 10, 20 dB versus time. And the standard deviation of
the delay and Doppler are respectively computed around στ = 4.63× 10−8 ∼ 6.47× 10−8 s
and σν = 24.29 ∼ 31.50 Hz under SNR = 10, 20 dB. On the one hand, in the given environ-
ments, the two DJDT and the two-step approach lead to similar OSPA levels, while the
OSPAs of the two-step approach is unstable and prone to divergence. On the other hand,
CAF-DJDT under SNR = −15 dB exhibits some overestimates in the target number during
target absent time, which is due to the useful signals submerging in noise and the likelihood
not being able to tell the difference between measurements with or without a target. Any-
way, the SNR is adequate for practical use, and lower SNR can be achieved by making use
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of more particles and more snapshots. In addition, the two-step approach results in similar
OSPA levels under SNR = 10 and 20 dB, and it seems insensitive to the change of SNR [18].
The cause is that the performance of two-step tracking mostly depends on the accuracy
of parameter estimates produced by step 1, which displays fluctuations when finding the
peak and when it does not. In contrast to the conventional method, the proposed DJDT
approach could produce more accurate position estimates at the beginning of the trajectory
and maintain stability since it preserves the information of the raw data. Specifically, the
Bernoulli-GL-DJDT raises the SNR by 22∼33 dB, and the Bernoulli-CAF-DJDT raises the
SNR by 25∼35 dB.

10 20 30 40 50 60 70 80 90 100

Time/s

0

10

20

30

40

50

60

70

80

90

100

O
S

P
A

 d
is

t.
/m

two-step, SNR=10dB

two-step, SNR=20dB

Figure 6. OSPAs of considered methods with different SNRs.

Finally, to compare the computation load of algorithms, Table 1 prints the MATLAB
processing time for one Monte–Carlo trail for all the considered methods. The runtime
indicates that the computation burden of the two DJDT methods is almost equal. The
CAF-DJDT gains a tracking performance at the expense of computation.

Table 1. Execution time per trial.

Algorithm Time [s]

Bernoulli GL-DJDT 141.2
Bernoulli CAF-DJDT 150.3

Bernoulli two-step method 124.0

5. Conclusions

This paper is devoted to the problem of DJDT using a set of received signals in a PMR
system. A novel likelihood is developed on the basis of the delay-Doppler compensated
surveillance and reference signals’ Gram matrix by approximating the distribution of it in
a certain circumstance. The tracking framework is implemented by a modified Bernoulli
filter based on particle approximations. Compared with the approach of generalizing the
original likelihood to the MLE of it, and the traditional two-step PMR tracking approach,
the proposed Bernoulli-CAF-DJDT filter reduces error accumulation and exhibits significant
improvements in both location estimates and detection performance. The effectiveness of
the algorithm has been validated through reasonable simulations. Possible future work
will concern the problem of multi-target direct tracking.
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Appendix A. The GLRT-Based Likelihood

In this section, a likelihood once put forward by ([19], Sec. C) which assumed the
transmitted signal to be a deterministic signal is extended to the PMR context. Imitating the
GLRT method in PMR [9], the unknown parameters in the likelihood of ϕk(zk|{x}) , when
supposing the Bernoulli RFS X = {x} and ϕk(zk|φ) , and supposing that the Bernoulli RFS
X = φ, are estimated by the maximum likelihood strategy and the likelihood ratio `k(zk|x)
which is derived by considering a pseudo threshold of it. Thus, we refer to the likelihood as
the GLRT-based likelihood. Since the 2× N channels’ noise vectors n1

s , · · · , nN
s , n1

r , · · · , nN
r

are independent, the likelihood function with respect to zk can be simplified as

ϕk(zk|{x})

=
N

∏
j=1

g1,k(z
j
k|x)

=
1

(πσ2
z )

NL exp{− 1
σ2

z

N

∑
j=1

(‖zj
s,k − α

j
kD

j
t,ksk‖2 + ‖zj

r,k − β
j
kD

j
d,ksk‖2)}, (A1)

where g1,k(z|x) accounts for the conditional PDF in relation to z conditioned on x when the
target exists.

As has been mentioned in Section 2, the path coefficients α
j
k and β

j
k and the emitted

signal sk are not known a priori. Next, a maximum value of g1,k(z
j
k|x) can be obtained by

replacing the unknown parameters with their maximum likelihood estimates (MLEs) [34].
In another word, we have the relationship ([35], Section 6.4.2):

g1,k(z
j
k|x, α

j
k, β

j
k, sk) ∝ g1,k(α̂

j
k, β̂

j
k, ŝk|x, zj

k), (A2)

where ∝ represents the direct proportional relationship and

{α̂j
k, β̂

j
k, ŝk} = arg max

α
j
k ,βj

k ,sk

g1,k(α
j
k, β

j
k, sk|x, zj

k). (A3)

Without loss of generality, the logarithmic scale can be considered as (A2), which, neglecting
the constant terms, can be rewritten as

G1,k(α
j
k, β

j
k, sk|x, zj

k) =
N

∑
j=1

(‖zj
s,k − α

j
kD

j
t,ksk‖2 + ‖zj

r,k − β
j
kD

j
d,ksk‖2). (A4)

Conditioned on sk, the MLEs of α
j
k and β

j
k yield [36]

α
j
k =

(D j
t,ksk)

Hzj
s,k

‖(D j
t,ksk)‖2

, β
j
k =

(D j
d,ksk)

Hzj
r,k

‖(D j
d,ksk)‖2

, (A5)
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respectively.
Substituting (A5) into (A4) and utilizing the property of the Hermitian matrix D, the

log-likelihood becomes

G1,k(α
j
k, β

j
k, sk|x, zj

k)

=
N

∑
j=1

(‖zj
s,k‖

2 − (
(D j

t,ksk)
Hzj

s,k

‖D j
t,ksk‖2

)H(D j
t,ksk)

HD j
t,ksk

(D j
t,ksk)

Hzj
s,k

‖D j
t,ksk‖2

+ ‖zj
r,k‖

2 − (
(D j

d,ksk)
Hzj

r,k

‖D j
d,ksk‖2

)H(D j
d,ksk)

HD j
d,ksk

(D j
d,ksk)

Hzj
r,k

‖D j
d,ksk‖2

)

=
N

∑
j=1

(‖zj
s,k‖

2 −
(D j

t,ksk)
Hzj

s,k

(
(D j

t,ksk)
Hzj

s,k

)H

‖D j
t,ksk‖2

+ ‖zj
r,k‖

2 −
(D j

d,ksk)
Hzj

r,k

(
(D j

d,ksk)
Hzj

r,k

)H

‖D j
d,ksk‖2

)

=
N

∑
j=1

(‖zj
s,k‖

2 −
(sk)

H(D j
t,k)

Hzj
s,k(z

j
s,k)

HD j
t,ksk

‖D j
t,ksk‖2

+ ‖zj
r,k‖

2 −
(sk)

H(D j
d,k)

Hzj
r,k(z

j
r,k)

HD j
d,ksk

‖D j
d,ksk‖2

)

=‖zs,k‖2 + ‖zr,k‖2 − (sk)
HΦk(Φk)

Hsk
‖sk‖2 , (A6)

where

Φk = [(D1
t,k)

Hz1
s,k, · · · ,(DN

t,k)
HzN

s,k, (D1
d,k)

Hz1
r,k, · · · , (DN

d,k)
HzN

r,k]. (A7)

As is evident from the Rayleigh–Ritz theorem ([37] p. 176), we can maximize (A6)
by maximaizing the Rayleigh quotient in the rightmost term of it and selecting sk as
the normalized eigenvector corresponding to the largest eigenvalue of Φk. Finally, the
likelihood function (A1) becomes

ϕk(zk|{x}) ∝
1

(πσ2
z )

NL exp{− 1
σ2

z
(‖zs,k‖2 + ‖zr,k‖2 − λ1(Φk(Φk)

H))}, (A8)

where λ1(·) represents the largest eigenvalue of the matrix and the right side of (A8) is
called the generalized likelihood (GL). Knowing that the non-zero eigenvalues of Φk(Φk)

H

and (Φk)
HΦk are identical, the Gram matrix of the measurement is replaced by (Φk)

HΦk
and then the size of it is reduced to 2N × 2N, i.e.,

ϕk(zk|{x}) ∝
1

(πσ2
z )

NL exp{− 1
σ2

z
(‖zs,k‖2 + ‖zr,k‖2 − λ1((Φk)

HΦk))}, (A9)

Similarly, ϕk(zk|φ) is in direct proportion to

ϕk(zk|φ) =
N

∏
j=1

g0,k(z
j
k)

∝
1

(πσ2
z )

NL exp{− 1
σ2

z

N

∑
j=1

(‖zj
r,k − β

j
kD

j
d,ksk‖2)}

=
1

(πσ2
z )

NL exp{− 1
σ2

z
(‖zr,k‖2 − λ1((Φr,k)

HΦr,k))}. (A10)

where g0,k(z) describes the PDF of z when there is no target in the concerned area but also
when it is not dependent on x, and

Φr,k = [(D1
d,k)

Hz1
r,k, · · · , (DN

d,k)
HzN

r,k], (A11)
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Then the Bernoulli update process can be carried out by substituting the counterparts of
the likelihood, respectively with their generalized estimates.

Remark A1. Note that the GLs (A9) and (A10) are not the true likelihoods but their maximum
estimates, so just like the detection threshold used in the domain of detection [38–40], a pseudo
threshold γ can be introduced in. It is difficult to determine the threshold analytically for the
following two points. (1) As the filter has to be implemented in a particle way, the pseudo threshold
depends on the particle cloud. (2) The detection threshold in the PMR detection system is set to
achieve a desired system-level probability of false alarm, while the DJDT scenario is based on the
intensity measurement model, and assumptions of the probability of detection pd = 1 and no false
alarms (p f a = 0) are made. Nevertheless, γ can be estimated via the following Monte Carlo method.
Denote the number of existing particles as N and the superscript (l) as particle indices, assign no
target in the scenario and compute

γ =
1
N

N

∑
l=1

ϕ′k

(
zk|x

(l)
k|k−1

)
ϕ′k(zk|φ)

=
1
N

N

∑
l=1

exp{ 1
σ2

z
(λ1((Φ

(l)
k )HΦ(l)

k )− λ1((Φ
(l)
r,k)

HΦ(l)
r,k)− ‖zs,k‖2)}. (A12)

For the static power of the signal, it has a positive relationship with SNR. Thus the likelihood ratio
must be divided by γ, i.e.,

`k(zk|x
(l)
k|k−1) =

ϕk

(
zk|x

(l)
k|k−1

)
γ · ϕk(zk|φ)

. (A13)
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