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Abstract: With the development of deep learning, convolutional neural networks (CNNs) have been
successfully applied in the field of change detection in heterogeneous remote sensing (RS) images
and achieved remarkable results. However, most of the existing methods of heterogeneous RS image
change detection only extract deep features to realize the whole image transformation and ignore
the description of the topological structure composed of the image texture, edge, and direction
information. The occurrence of change often means that the topological structure of the ground
object has changed. As a result, these algorithms severely limit the performance of change detection.
To solve these problems, this paper proposes a new topology-coupling-based heterogeneous RS
image change detection network (TSCNet). TSCNet transforms the feature space of heterogeneous
images using an encoder–decoder structure and introduces wavelet transform, channel, and spatial
attention mechanisms. The wavelet transform can obtain the details of each direction of the image and
effectively capture the image’s texture features. Unnecessary features are suppressed by allocating
more weight to areas of interest via channels and spatial attention mechanisms. As a result of the
organic combination of a wavelet, channel attention mechanism, and spatial attention mechanism,
the network can focus on the texture information of interest while suppressing the difference of
images from different domains. On this basis, a bitemporal heterogeneous RS image change detection
method based on the TSCNet framework is proposed. The experimental results on three public
heterogeneous RS image change detection datasets demonstrate that the proposed change detection
framework achieves significant improvements over the state-of-the-art methods.

Keywords: heterogeneous remote sensing image; change detection (CD); topological structure;
wavelet; channel and spatial attention mechanisms; network

1. Introduction

Detection of changes on the surface of the earth is becoming increasingly important
for monitoring environments and resources [1]. The use of multi-temporal RS images and
other auxiliary data covering the same area to determine and analyze surface changes is
referred to as remote sensing image change detection (CD). Multitemporal applications
include monitoring long-term trends, such as deforestation, urban planning, surveys of the
Earth’s resources, etc., while bi-temporal applications mainly involve the assessment of
natural disasters, such as earthquakes, oil spills, floods, forest fires, etc. [2].

CD is classified as homogeneous image CD or heterogeneous image CD based on
whether or not the sensors used to acquire images are the same. Homogeneous RS images
are those obtained from the same sensor, whereas heterogeneous RS images are those
obtained from different sensors [3]. Most of the existing algorithms are based on homoge-
neous images, such as change vector analysis (CVA) [4], multivariate alteration detection
(MAD) [5], and K-means cluster principal component analysis (PCAKM) [6]. However,
as RS technology advances, the number of sensors increases rapidly, and a large number
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of available RS images causes the CD of heterogeneous RS images to become a focus of
increasing attention. In addition, the heterogeneous CD is of great significance for the
instant assessment of emergency disasters, which can not only greatly reduce the response
time of the image processing system required for disaster management, but also realize the
complementarity of data. Heterogeneous CD algorithms, regardless of morphology, can
use the first available image to facilitate rapid change analysis [7,8].

However, using heterogeneous RS images for change detection is a very challeng-
ing task. Heterogeneous images from different domains have different statistical and
appearance characteristics, and it is not possible to compare them directly using pixels.
Nonlinear operations are usually required to transform data from one domain to another
or from another domain to an existing domain [9,10]. Another method is to convert the two
images into a common feature space, and carry out change detection in the same feature
space [11,12].

Heterogeneous CD can be divided into classification-based, image similarity
measurement-based, and deep learning-based methods. Images are first classified in
classification-based algorithms, then the classification results are compared. Pixels be-
longing to the same class are considered unchanged, while pixels belonging to different
classes are considered to have changed. Jensen et al. [13] proposed an unsupervised,
clustering-based, post-classification comparison (PCC) method that divided the pixels
of heterogeneous RS images into different categories, such as wetlands, forests, rivers,
and so on, and then compared the generated classification maps to determine the change
results. Mubea et al. [14] proposed a PCC method based on a support vector machine
(SVM) that has a high degree of generalization. However, the classification performance
has a significant impact on the detection results of the PCC method, and the CD result is
dependent on classification accuracy. The accumulation of classification errors will lead to
the degradation of change detection performance. Wan et al. proposed a PCC method based
on multi-temporal segmentation and compound classification (MS-CC) [15] and a PCC
method based on cooperative multi-temporal segmentation and hierarchical compound
classification (CMS-HCC) [16], respectively. Using multi-temporal segmentation methods
to generate homogeneous objects can reduce not just the salt and pepper noise created
by pixel-based methods, but also the region conversion errors caused by object-based
methods. Then, compound classification is performed based on the objects. This method
takes advantage of temporal correlation and reduces the performance degradation caused
by inaccurate classification of PCC methods. However, image segmentation has an impact
on CD accuracy.

In image similarity measurement algorithms, functions are typically used to model
the objects contained in the analysis window to calculate the difference between images.
Mercier et al. [17] adopted the quantile regression applied by copula theory to model the
correlation between invariant regions. The change measure is then determined by the
Kullback–Leibler comparison, and finally, thresholding is employed to identify the change.
Prendes et al. [18] used mixed distributions to describe the objects in the analysis window,
using manifolds learned from invariant regions to estimate distances. Finally, the threshold
is set to detect the change. Ayhan et al. [19] proposed a pixel pair method to calculate
the differences between pixels in each image. Then, the difference scores were compared
between the images to generate the change map. However, these methods do not model
complex scenes well and are easily affected by image noise. Sun et al. [20] proposed a CD
method based on similarity measurements between heterogeneous images. The similarity
of non-local patches was used to construct a graph to connect heterogeneous data, and
the degree of change was measured by comparing the degree of conformity of the two
graph structures. Lei et al. [21] proposed an unsupervised heterogeneous CD method
based on adaptive local structure consistency (ALSC). This method constructs an adaptive
map that represents the local structure of each patch in an image domain, then projects
the map to another image domain to measure the level of change. Sun et al. [22] proposed
a robust graph mapping method that takes advantage of the fact that the same object
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in heterogeneous images has the same structural information. In this method, a robust
k-nearest neighbor graph is constructed to represent the structure of each image, and the
forward and backward difference images are calculated by comparing the graphs in the
same image domain by the graph mapping method. Finally, the change is detected by the
Markov co-segmentation model.

Deep learning has brought new approaches to RS image processing in recent years,
and it has been applied to the CD of heterogeneous RS images to increase performance to
some extent. Zhang et al. [23] proposed a method based on stacked denoising autoencoders
(SDAEs) that tunes network parameters using invariant feature pairs picked from coarse
differential images. However, rough differential images are acquired manually or with
current algorithms, which makes the selection of invariant feature pairs dependent on the
algorithm’s performance when acquiring differential images; Liu et al. [24] proposed a
symmetric convolutional coupled network (SCCN) method based on heterogeneous optics
and SAR images, utilizing a symmetric network to convert two heterogeneous images
into a feature space to improve the consistency of the feature representation. The final
detection image is generated in space and the network parameters are updated by opti-
mizing the coupling function. However, this method ignores the effect of regional changes
and does not distinguish changes in certain locations; Niu et al. [25] proposed an image
transformation method based on conditional generative adversarial network (CAN) that
transforms the optical image into the SAR image feature space and then compares the
converted image to the approximated SAR image. However, certain features will be lost
during the conversion procedure, reducing the accuracy of the final change detection; Wu
et al. [26] proposed a classification adversarial network that discovers the link between
images and labels by adversarial training of the generator and discriminator. When the
training is completed, the generator can realize the transformation of the heterogeneous
image domain, thereby getting the final CD result. However, iterative training between
the generator and discriminator must establish an appropriate equilibrium and is prone to
failure. Jiang et al. [27] proposed an image style transfer-based deep homogeneous feature
fusion (DHFF) method. The semantic content and style features of heterogeneous images
are separated for homogeneous transformation in this method, reducing the influence on
image semantic content. The new iterative IST strategy is used to ensure high homogeneity
in the transformed image, and finally, change detection is performed in the same feature
space. Li et al. [28] proposed a deep translation-based change detection network (DTCDN)
for optical and SAR images. The depth conversion network and the change detection net-
work are the two components of this method. First, images are mapped from one domain
to another domain through a cyclic structure so that the two images are located in the same
feature space. The final change map is generated by feeding the two images in the same
domain into a supervised CD network. Wu et al. [29] proposed a commonality autoen-
coder change detection (CACD) method. The method uses a convolutional autoencoder to
convert the pixels of each patch into feature vectors, resulting in a more consistent feature
representation. Then, using a dual autoencoder (COAE), the common features between
the two inputs are captured and the optical image is converted to the SAR image. Finally,
the difference map is generated by measuring the pixel correlation intensity between the
two heterogeneous images. Zhang et al. [30] proposed a domain adaptive multi-source
change detection network (DA-MSCDNet) to detect changes between heterogeneous op-
tical and SAR images. This method aligns the deep feature space of heterogeneous data
using feature-level transformations. Furthermore, the network integrates feature space
conversion and change detection into an end-to-end architecture to avoid the introduction
of additional noise that could affect the final change detection accuracy. Liu et al. [31] pro-
posed a multimodel transformers-based method for image change detection with different
resolutions. First, the features of the input with different resolutions are extracted. The
two image feature sizes were then aligned using a spatial-aligned Transformer, and the
semantic features were aligned using a semantic-aligned Transformer. Finally, the change
result is obtained using a prediction head. However, these methods have some limitations
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in detecting heterogeneous RS images from multiple sources. Luppino et al. [32] proposed a
heterogeneous change detection method based on code-aligned autoencoders. This method
extracts the relative pixel information captured by the affinity matrix of the specific do-
main at the input and uses it to force code space alignment and reduce the influence of
pixel changes on the learning target, allowing mutual conversion of image domains to be
realized. Xiao et al. [33] proposed a change alignment-based change detection (CACD)
framework for unsupervised heterogeneous change detection. This method employs a
generated prior mask based on graph structure to reduce the influence of changing regions
on the network. Furthermore, the complementary information of the forward difference
map (FDM) and backward difference map (BDM) in the image transformation process can
be used to improve the effect of domain transformation, thereby improving CD perfor-
mance. Radoi et al. [34] proposed a generative adversarial network (GANs) based on U-Net
architecture. This method employs the k-nearest neighbor (kNN) technique to determine
the prior change information in an unsupervised manner, thereby reducing the influence
of the change region on the network. The CutMix transformations are then used to train
discriminators to distinguish between real and generated data. Finally, change detection is
performed in the same feature space.

Existing deep learning-based CD methods for heterogeneous RS images have achieved
good results but still face the following problems. First of all, most of the existing deep
learning frameworks tend to extract deep features to achieve the whole image transforma-
tion, ignoring the description of the topological structure composed of image texture, edge,
and direction information. The topological structure of the image belongs to the shallow
features, which can reflect the general shape of the ground objects and depict the graphics
with the regular arrangement in a certain area. In addition, we consider that the presence
of change frequently indicates that the shape of the ground object or a specific section of
the graphic arrangement has changed. As a result, it is required to improve the image’s
topological information to catch fine alterations. Secondly, most methods only employ
simple convolution to represent the link between the image band and space, which limits
their ability to thoroughly explore the relationship between band and space. As a result,
the model’s final change detection performance is severely constrained.

In this paper, a method for detecting changes in heterogeneous RS images based
on topological structure coupling is proposed. The designed network includes wavelet
transform and channel and spatial attention mechanisms. It can effectively capture image
texture features and use the attention mechanism to increase critical region features and
reduce variations between images from different domains. The main contributions of this
paper are summarized as follows:

(1) A new convolutional neural network (CNN) framework for CD in heterogeneous
RS images is proposed, which can effectively capture the texture features of the region of
interest to improve the CD accuracy.

(2) Wavelet transform and channel and spatial attention modules are proposed.
Wavelet transform can obtain the details of different directions of the image, highlight the
texture structure features of the image, and enhance the topological structure information
of the image, hence improving the network’s ability to recognize changes. The channel and
spatial attention module can model the dependencies between channels and the importance
of spatial regions. The difference between images from different domains can be suppressed
using an organic combination of wavelet transform and attention module.

(3) We conduct extensive experiments on three public datasets and comprehensively
compare our method with other methods for CD in heterogeneous RS images. The ex-
perimental results showed that the proposed method achieves significant improvements
compared to the state-of-the-art methods for CD in heterogeneous RS images.

The rest of this article is organized as follows. Section 2 provides an overview of the
related work on wavelet transforms and attention mechanisms. Section 3 presents the
proposed framework and algorithm. Section 4 presents the experimental setup and results.
The conclusions are provided in Section 5.
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2. Related Works
2.1. Wavelets and Their Application in Deep Learning

For 20 years, sparsity-based methods represented by wavelets were state-of-the-art in
the field of inverse problems before being surpassed by neural networks [35]. The sparsity,
multi-scale characteristics and fast computation of discrete forms of wavelet transform
make it play an important role in image processing fields such as compression, denoising,
enhancement, fusion, etc. [36,37].

With the development of deep learning research in recent years, wavelet transform has
been introduced into deep learning network architecture to improve network performance
and application range [38]. Fergal and Nick [39] explored the concept of a learning filter,
that is, in the architecture of convolutional neural networks (CNNs), a learning layer is set
to replace the loop base, which brings the activation into the wavelet domain, learns the
mixing coefficients, and returns them to the pixel space to improve the training speed of
thousands of samples. Other studies [40,41] used discrete wavelet transform (DWT) and
inverse wavelet transform (IWT) instead of downsampling and upsampling layers in MR
image reconstruction of dense connected deep networks and single image defogging of
U-Net, respectively. In [42,43], the authors achieved single image super-resolution and
image compression, respectively, through deep learning coefficient prediction mechanism
based on wavelet domain sub-bands. In recent years, deep learning based on wavelets has
also attracted some attention in RS image classification, change detection enhancement,
and other fields [44–46].

2.2. Attention Mechanism

The attention mechanism is a product that imitates the visual system of humans. When
observing an object, the human visual system focuses on a certain portion of the object and
ignores the rest of the irrelevant information. Attention mechanisms have been developed
in the neuroscience community for decades. In recent years, it has been widely used in the
construction of neural network models, and it has a vital impact on the performance and
accuracy of deep neural networks [47]. The attention mechanism is essentially a distribution
mechanism whose purpose is to highlight the object’s most important characteristics. The
weights are redistributed according to the importance of the features. Its primary principle
is to acquire the attention matrix through query and key–value pair calculation, and the
attention matrix represents the correlation between data. The attention matrix is then
applied to the original data, thereby enhancing the focus information.

Attention models are becoming a crucial field of research in neural network science.
Attention mechanisms are introduced to the network in order to capture more interesting
features, resulting in more efficient network models. Wang et al. [48] proposed a Non-
local Neural Network to express non-local operations as a collection of generic building
blocks that capture long-range relationships. This connection between two pixels with
a certain distance on the image is an attention mechanism. Hu et al. [49] proposed the
Squeeze-and-Excitation (SE) unit structure, which is a channel attention method that can
obtain the feature response values of each channel and model the internal dependencies
between channels.

Existing heterogeneous RS image CD networks concentrate on the overall transfor-
mation of the image, frequently ignoring the impact of specific image regions. We should
place greater emphasis on the area of interest, such as the changing area, and less emphasis
on the areas that are not of interest. In addition, the majority of networks are preoccupied
with the extraction of spatial characteristics and lack efficient modeling of the dependency
relationship between channels. Therefore, this paper proposes a joint attention mechanism
of space and channels, which can not only effectively enhance meaningful spatial features,
but also model the link between channel features.
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3. Methodology

This paper proposes a topologically coupled convolutional neural network for change
detection in bi-temporal heterogeneous remote sensing images. The network can success-
fully convert the image domain so that the difference map can be generated using the
homogeneous CD method in the same domain, and the final change detection result can
then be acquired. In addition, a wavelet transform layer is introduced into the network to
capture the texture features of the input image. There are clear variances in pixel values
in heterogeneous images, and the appearance of images varies significantly. Therefore,
we consider that the presence of change frequently indicates that the shape of the ground
object or a specific section of the graphic arrangement has changed. Although invariant
regions show inconsistent appearances in heterogeneous images, their topological informa-
tion remains unchanged. As a result, we employ the wavelet transform to extract image
texture structure features, which are primarily represented by the spatial distribution of
high-frequency information on the image. The combination of high-frequency and low-
frequency information improves the topological features of the image, reduces interference
caused by different feature spaces, and improves the network’s ability to capture fine
changes. In addition, the spatial attention mechanism and channel attention mechanism
are introduced in the proposed network. Existing heterogeneous change detection neural
networks frequently only employ simple convolution operations to capture the correlation
across channels and fail to sufficiently mine the dependency between channels. In addition
to utilizing the spatial attention module to improve the spatial information, we also im-
plement the channel attention module to adaptively alter the feature response value for
each channel. The organic combination of wavelet transform and attention mechanism can
effectively suppress unnecessary features and focus on the interesting texture information.
Furthermore, the network’s performance for mutual conversion of heterogeneous images
is substantially improved, boosting the accuracy of change detection.

3.1. Data Processing

First, define two heterogeneous RS images X ∈ Rx
M×N×C1 and Y ∈ Ry

M×N×C2 in the
same area at different times. Images X and Y were collected at times t1 and t2 and have been
co-registered. The two images are in their characteristic Rx and Ry domains, respectively.
Among them, M×N denotes the size of the two images, C1 represents the number of
channels in image X, and C2 represents the number of channels in image Y.

Second, according to Formula (1), the input RS image X = {Xi|i = 1, · · · , C1} is
normalized to obtain X̂ =

{
X̂i
∣∣i = 1, · · · , C1

}
. Among them, Xi represents the ith channel

of X, and X̂i represents the ith channel of X̂. According to Formula (2), the input RS image
Y = {Yi|i = 1, · · · , C2} is normalized to obtain Ŷ =

{
Ŷi
∣∣i = 1, · · · , C2

}
. Among them, Yi

represents the ith channel of Y, and Ŷi represents the ith channel of Ŷ.

A = mean(Xi) + 3× std(Xi)

Xt =


0 , Xi < 0
Xi , 0 < Xi < A

A , Xi > A
X̂i =

2Xt−max(Xt)
max(Xt)

(1)



B = mean(Yi) + 3× std(Yi)

Yt =


0 , Yi < 0
Yi , 0 < Yi < B
B , Yi > B

Ŷi =
2Yt−max(Yt)

max(Yt)

(2)

where mean(·) is the mean value of the image, std(·) is the standard deviation of the image,
and max(·) represents the maximum value of the image.
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Extract pixel point sets X̂H =
{

X̂H,a
∣∣a = 1, · · · , m

}
and ŶH =

{
ŷH,a

∣∣∣a = 1, · · · , m
}

in

X̂ and Ŷ, respectively. Separate X̂ and Ŷ into a sequence of 100 × 100-pixel blocks centered
on each pixel point in X̂H and ŶH , respectively. Then, perform data augmentation on the
initial training set. Rotate each pixel block counterclockwise in the training set by 90◦,
180◦, 270◦, and 360◦ from its center. At the same time, flip each pixel block up and down.
Finally, the sum of the initial training set and the augmented training set is used as the final
training set XTrain

H =
{

xTrain
H,a

∣∣∣a = 1, · · · , m
}

and YTrain
H =

{
yTrain

H,a

∣∣∣a = 1, · · · , m
}

. The
final training set is then sent to the network to be trained. The schematic diagram of the
network structure is shown in Figure 1.
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3.2. Network Setting

(1) Encoder

Set up encoders Enc_x and Enc_y for the Rx and Ry domains, respectively, to extract
the features from the heterogeneous images X and Y. The structure of both encoders is
identical, consisting of a wavelet layer, convolutional layers, and attention mechanism
layers, but their weights are distinct. The structure diagram of the encoder is shown in
Figure 2. The wavelet layer is used to extract image texture information and improve
image topology representation. The convolutional layer refines the extracted texture
information further. The attention mechanism simulates the correlation between distinct
pixels and different bands, balances the influence of various regions, and guides the
network’s attention to areas of interest, therefore enhancing effective information and
suppressing invalid characteristics. The two encoders can finally obtain an accurate latent
space representation of the input images X and Y after iterative training of the network.
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For the encoder, the image F is first input to the wavelet transform layer. The input
image is then subjected to a wavelet transform to decompose the original image F into four
sub-images. The output of the wavelet transform layer, Fwavelet, is obtained by connecting
the sub-images along the channel direction. Fwavelet is input into two consecutive sets
of Conv modules to get feature FConv1 . Among them, each group of Conv modules
consists of a layer of 2D convolution operation, a layer of activation operation using a
nonlinear activation function LeakyReLU with a parameter of 0.3, and a layer of Dropout
operation with a parameter of 0.2. Then, our proposed channel attention module and
spatial attention module receive the feature FConv1 . The attention modules assign larger
weights to channels and regions of interest, suppress unnecessary information, and obtain
the feature Fs. Finally, feature Fs is subjected to a layer of convolution operation and a layer
of activation operation with a nonlinear activation function tanh to yield a latent space
representation Fcode. The input image block XTrain

H can get the feature Fx_code through the
encoder Enc_x, and the input image block YTrain

H can get the feature Fy_code through the
encoder Enc_y.

(2) Decoder

Set the Dec_x and Dec_y decoders for the Rx and Ry domains, respectively. The latent
space representation is reconstructed into the original image, and the source domain image
is transformed into the target domain image. The two decoders have the same structure
but do not share weights and consist of convolutional layers, attention mechanism layers,
and inverse wavelet transform layers. A schematic diagram of the structure of the decoder
is shown in Figure 3. Convolutional layers and attention mechanisms are used to aggregate
local information and restore detailed features and spatial dimensions of images. For the
final reconstruction of the image, the inverse wavelet transform layer is used to recover as
much of the original image’s style and texture structure information as possible, so that
the result closely resembles the original. Under the constraint of reconstruction loss, the
decoder can get an output that is closer and closer to the original image.
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For the decoder, the latent space representation Fcode is first input into a set of con-
volution modules to initially restore the details of the target image. The obtained features
are then fed into the attention module for further screening of important features such as
image edge information. Two sets of convolution modules are then applied to the output of
the attention module to aggregate the local image information and yield high-level features
FConv2 . Among them, each group of Conv modules includes a layer of 2D convolution
operation, a layer of activation operation using a nonlinear activation function LeakyReLU
with a parameter of 0.3, and a layer of Dropout operation with a parameter of 0.2. Finally,
the feature FConv2 is input into the inverse wavelet transform layer, which performs the
operation of reconstructing the sub-image into the original image and obtains the decoder’s
output image FRe. The latent space feature Fx_code can obtain the reconstructed image X̃H
of the original domain through the decoder Dec_x, or input the decoder Dec_y to convert
the image domain to obtain the converted image Y′H. Similarly, the latent space feature
Fy_code can obtain the reconstructed image ỸH of the original domain through the decoder
Dec_y, or input the decoder Dec_x to convert the image domain to obtain the converted
image X′H.
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We only set three convolution layers in both the encoder and decoder since the training
samples are insufficient and a network that is too deep will result in overfitting and a
reduction in accuracy. Therefore, we employ a shallower network to obtain a higher
performance. In the experiment, we also show the effect of different convolution layers on
the detection results. A well-trained network can transform the image domain, allowing it
to use a homogeneous method for change detection in the same domain. The final change
map is generated by combining the results from both domains. According to Formula (3),
use X̃H, ỸH, X′H, and Y′H to calculate the change detection result map Change_map:

dX = ‖ X̃H − X′H‖2
dY = ‖ Y ˜H − Y′H‖2

diff = CY×dX+CX×dY
CX+CY

Change_map = Otsu(diff)

(3)

where CX denotes the number of channels in the image X̃H , CY denotes the number of
channels in the image ỸH , and Otsu(·) represents the Otsu method. The Otsu method
divides the image into two parts using the concept of clustering so that the gray value
difference between the two parts is the greatest and the gray value difference between each
part is the smallest. The variance is calculated to find an appropriate gray level to divide.
It is easy to calculate, unaffected by image brightness and contrast, and has a high level
of robustness.

3.3. Wavelet Transform Module

Wavelet transform can decompose image information using low-pass and high-pass
filters, and it is capable of powerful multi-resolution decomposition. By filtering in the
horizontal and vertical directions, 2D wavelet multi-resolution decomposition can be
accomplished for 2D images. A single wavelet decomposition can produce four sub-bands:
LL, HL, LH, and HH. Among them, the LL sub-band is an approximate representation of
the image, the HL sub-band represents the horizontal singular characteristic of the image,
the LH sub-band represents the vertical singular characteristic of the image, and the HH
sub-band represents the diagonal edge characteristic of the image. Inspired by this, we
apply the 2D Haar wavelet transform to the network’s first layer, which serves as the front
end for the two encoders. The input image is then decomposed into four sub-images in
order to obtain the original image’s details in all directions. In this way, we can capture the
structural features of the image and focus on highlighting the image’s texture information.

Specifically, we perform a Haar wavelet transform on each band of the input image
F = {Fi|i = 1, · · · , C}, where M×N is the image size and C is the number of channels. In
this way, each band of the original image generates four sub-bands respectively, represent-
ing the information from different directions of the image. Then the generated sub-images
are connected according to the channel direction to generate a new image with size M

2 ×
N
2

and the number of channels C× 4. The image is then sent to the succeeding convolution
layer to extract features. Because the bi-temporal heterogeneous images usually have
different channel numbers, the channel numbers of new images generated after wavelet
transform are also different. However, the two images can be processed by the convolution
layer using the same number of filters, and the output features with the same number of
channels can be obtained. As a result, we adjust the number of channels of output features
by adjusting the number of filters in the network’s convolutional layer. A schematic dia-
gram of the structure of the wavelet transform module is shown in Figure 4. We utilize all
sub-images, which not only provide a clearer description of the image’s details but also
prevent the information loss caused by conventional subsampling, which is advantageous
for image reconstruction. It is worth mentioning that we add an inverse wavelet transform
layer at the end of the network to reconstruct the image and restore the overall image
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representation. For the 2D Haar wavelet, the four kernels fLL, fLH, fHL, and fHH defined by
Equation (4) are used for the wavelet transform [50].

fLL =

[
1 1
1 1

]
, fLH =

[
−1 −1
1 1

]
fHL =

[
−1 1
−1 1

]
, fHH =

[
1 −1
−1 1

]
(4)
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When an image X undergoes 2D Haar wavelet transformation, the (i, j)th value of the
transformed image X′ is defined as:

X′(i, j) = X(2i− 1, 2j− 1) + X(2i− 1, 2j) + X(2i, 2j− 1) + X(2i, 2j) (5)

3.4. Attention Module

(1) Channel attention module

All of the RS images in the three datasets used in this paper have multiple bands. In
the study of heterogeneous CD, we discovered that the majority of methods only enhanced
the spatial features and usually utilized a simple convolution operation to describe the
connection between channels, without effectively defining the channels’ internal depen-
dencies. In addition, we performed wavelet transform on each band and connected the
generated sub-bands according to the channel direction. Each channel of features extracted
by subsequent convolutional layers represents a distinct meaning. As a result, a channel
attention module must be introduced to adaptively adjust the feature response value of
each channel, pay attention to which layers at the channel level will have stronger feedback
capabilities, and model the internal dependencies between channels.

A schematic diagram of the structure of the channel attention module is shown in
Figure 5. Each channel of the feature map responds differently to the image’s features,
reflecting different information in the image. We also need to selectively focus on the various
channels of the feature map to concentrate on the features of the changing region. We
employ global average pooling and global max pooling to compress the spatial dimension
of the input feature in order to calculate the channel attention matrix and minimize network
parameters. The degree information of the object can be learned using the average pooling
method, and its discriminant features can be learned using the max pooling method. The
combined use of two pooling methods can improve image information retention. Therefore,
we input the feature into the GlobalAveragePooling2D layer and the GlobalMaxPooling2D
layer and calculate the mean value and maximum value of each channel of the input
features, respectively, to get two 1× 1× C feature descriptions FGlobalAvg and FGlobalMax.
Among them, FGlobalAvg and FGlobalMax aggregate the average and maximum information
of the input feature in spatial dimension, respectively. Then, FGlobalAvg and FGlobalMax are
fed into two convolution layers, which are used to further process these two different
spatial contexts. The two convolution layers have 4 and 50 filters of size 1× 1. The first
convolutional layer employs 4 filters to reduce the number of parameters and prevent
network overfitting. The second convolutional layer employs 50 filters to ensure that the
output feature has the same number of channels as the input feature. The two output
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features are then added element by element and the weight coefficient Fc_a is obtained
by a Sigmoid activation function. Finally, multiply the weight coefficient with the input
feature to get the scaled new feature. The information we care about is enhanced in this
new feature, while the less important information is suppressed.
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(2) Spatial attention module

When we perceive an image, the first thing we notice is not the entire image, but
a portion of it; this portion is the image’s focal point. The spatial features of images
contain rich location information, and the importance of spatial location information varies
depending on the task, with the area related to the task receiving more attention. Therefore,
the spatial attention module is introduced to process the most important parts of the
network while suppressing uninteresting regional features.

A schematic diagram of the structure of the spatial attention module is shown in
Figure 6. The spatial attention module, unlike the channel attention module, focuses on
where the information of interest is located and can effectively model the spatial relation-
ships within the feature. The spatial attention module is complementary to the channel
attention module. After the input features are processed by the channel attention module
and the spatial attention module, they can not only enhance the features we are interested
in, but also highlight the areas related to the task. In order to compute the spatial attention
matrix, the channel dimensions of the input features need to be compressed first. For chan-
nel compression, we employ both average and max pooling, as with the channel attention
mechanism. The two methods of pooling can achieve information complementation while
retaining image features. Specifically, the input feature is first pooled using reduce_mean
and reduce_max along the channel direction to produce two H×W× 1 spatial features.
The feature Fcon is then obtained by connecting these two spatial features according to
the channel direction. Fcon can highlight the information area. Then, Fcon is input into
the convolution layer for the calculation to obtain the spatial attention matrix Fs_a. The
convolutional layer has a filter of size 7× 7 and is activated by the sigmoid function. The
spatial attention matrix Fs_a can then be multiplied with the input feature to yield the
output feature of the spatial attention module. This enables us to concentrate on regions of
greater interest and improve the performance of change detection.
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We apply the attention module to the encoder and decoder to better encode and restore
the image’s critical parts, therefore significantly enhancing the performance of the network.

3.5. Network Training Strategy

The network proposed in this paper takes the form of two inputs. The two-phase het-
erogeneous RS image training sample blocks XTrain

H and YTrain
H are input into the proposed

network framework in the form of patches for unsupervised training. Inspired by [32], this
paper comprehensively uses four loss functions Lenc, L1, L2, and L3 to train the network.
To achieve accurate image domain conversion, the loss function Lenc is used to constrain
the commonality of the encoder’s latent space, ensuring that the statistical distribution of
the two encoders’ output features is more consistent. Because Lenc is calculated based on
the input images and latent features, it is only used to train two encoders. L1, L2, and L3
loss functions constrain image source domain reconstruction, image cycle reconstruction,
and image cross-domain conversion, respectively. The weighted sum of these three loss
functions is used to obtain L, which is then used to update the parameters of the entire
network. In each epoch of training, Lenc is used to update the encoder parameters first, and
then L is used to update the parameters of the entire network.

According to Equation (6), the parameters of encoders Enc_x and Enc_y are updated
using the loss function Lenc. This loss function restricts the commonality of encoder-
generated features, enabling image domain transformation.

Ax = affinity
(

XTrain
H

)
Ay = affinity

(
YTrain

H

)
S = 1− ‖Ax−Ay‖2−min(‖Ax−Ay‖2)

max(‖Ax−Ay‖2)−min(‖Ax−Ay‖2)

R =
Fy_code·Fx_code+Cx_code

2×Cx_code

Lenc =
1
M‖S− R‖2

2

(6)

where affinity(·) represents the image’s affinity matrix, which is used to represent the
probability of similarity between two points, and the pixel similarity relationship obtained
from the affinity matrix is used to reduce the influence of changing pixels [51]. Cx_code
represents the number of channels of Fx_code , and M represents the number of pixel points
of S.

According to Formula (7), the parameters of the entire change detection network are
updated using the loss function L.

L1 = 1
N

∥∥∥∥XTrain
H −

∼
XH

∥∥∥∥2

2
+ 1

N

∥∥∥∥YTrain
H −

∼
YH

∥∥∥∥2

2

L2 = 1
N

∥∥∥XTrain
H −

.
XH

∥∥∥2

2
+ 1

N

∥∥∥YTrain
H −

.
YH

∥∥∥2

2

L3 = clw
N

∥∥∥XTrain
H − X′H

∥∥∥2

2
+ clw

N

∥∥∥YTrain
H − Y′H

∥∥∥2

2
L = α1 × L1 + α2 × L2 + α3 × L3

(7)

where N represents the number of pixel points of XTrain
H , clw represents the change prior,

and α1, α2, and α3 represent the preset weight coefficients. In the experimental section, we
discuss the effect of various weight coefficients on the network’s accuracy.

Based on the above research, Algorithm 1 summarizes the proposed bitemporal
heterogeneous RS image change detection process.
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Algorithm 1 Change detection in bi-temporal heterogeneous RS image

Input: Bi-temporal heterogeneous RS images X and Y, training epoch, learning rate and patch size.

Output: Change map;
Initialization: Initialize all network parameters;
While{epoch < epochs}, do:

1: Input the bi-temporal heterogeneous RS images into the change detection network;
2: Encode heterogeneous images X and Y with encoders Enc_x and Enc_y to obtain latent
space features Fx_code and Fy_code ;
3: Use the decoder Dec_x to reconstruct the image of the latent space feature Fx_code , and
perform image transformation of the latent space feature Fy_code ; use the decoder Dec_y to
perform image transformation on the latent space feature Fx_code , and perform image
reconstruction on the latent space feature Fy_code ;
4: Calculate the loss function according to Formulas (6) and (7), and perform the Backward
process;

End While
According to Formula (3), obtain the final change detection result map Change_map.

4. Experiment and Analysis

All programs in this article were written in Python 3.6. The neural network was built
with TensorFlow. All experiments were done on a computer configured with Intel Core i7,
GeForce RTX 3070 Laptop, and Windows 10.

4.1. Datasets

(1) Forest fire in Texas

The “Forest fire in Texas” dataset [52] focuses on forest fires in Bastrop County, Texas,
USA. It is comprised of two bi-temporal multispectral optical images captured at different
times. The pre-fire image was taken by Landsat 5 TM in September 2011, and the post-fire
image was taken by Earth Observing-1 Advanced Land Imager (EO-1 ALI) in October
2011. The two registered images have a resolution of 1534× 808, with 7 and 10 bands,
respectively. Figure 7 shows pseudo-color images of the dataset and their corresponding
ground truth images.
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(2) Flood in California

The “Flood in California” dataset [53] focuses on flooding in Sacramento, Yuba, and
Sutter counties in California, USA. It is comprised of two multispectral and synthetic
aperture radar images captured at different times. The multispectral image has a size of
875 × 500 × 11 and was taken by Landsat 8 on 5 January 2017. The SAR image size is
875 × 500 × 3, acquired by Sentinel-1A on 18 February 2017, recorded in polarized VV and
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VH, and enhanced with the ratio between the two intensities as the third channel. The
original size of these images is 3500 × 2000. The images were resampled to 875 × 500 using
the bilinear interpolation method to reduce the computational complexity. Figure 8 shows
pseudo-color images of the dataset and their corresponding ground truth images.
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Figure 8. “Flood in California” dataset. (a) Landsat 8 (multispectral, t1). (b) Sentinel-1A (dual-
polarization SAR, t2). (c) Ground truth.

(3) Lake overflow in Italy

The “Lake overflow in Italy” dataset [20] focuses on the lake overflow in Sardinia,
Italy. It consists of a pair of near-infrared images and optical images taken at different times.
The pre-overflow image was taken by Landsat 5 in September 1995, and the post-overflow
image was taken by Google Earth (GEt2) in July 1996. The size of the two registered images
is 300× 412 with one and three bands, respectively. Figure 9 shows the two images of the
dataset and their corresponding ground truth images.
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(c) Ground truth.

4.2. Parameter Settings

(1) Patch size

The amount of information contained is determined by the difference in the size of
the input block, and the amount of information determines the number of features to be
extracted and the correlation between the features. This paper conducted experimental
comparisons on the three sets of test datasets using input data blocks of various sizes to
compare the influence of neighborhood blocks of different scales on the algorithm model.
Figure 10 shows the performance of our CD algorithm on the three datasets ranging from
60× 60 to 120× 120. The statistical graph shows that the optimal block size for the three
datasets was 100× 100.
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(2) The learning rate

Learning rate is an important hyperparameter in deep learning since it determines
whether and when the objective function can converge to the local minimum. It explains
how to use the gradient of the loss function to tune the network weight hyperparameters
in gradient descent. Figure 11 shows the performance of the CD algorithm on the three
datasets under different learning rates. The statistical graph shows that the optimal learning
rate for the three datasets was 0.00001.
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(3) The Loss function parameter

In Formula (7) of Section 3, we utilize the weighted sum of the loss functions L1, L2,
and L3 to calculate the overall loss function L. To balance the influence of different loss
functions on network training, hyperparameters α1, α2, and α3 determine the contribution
of L1, L2, and L3 to the total loss function, respectively. We set the following values for
α1, α2, and α3: (0.1, 0.1, 0.1), (0.2, 0.1, 0.1), (0.1, 0.2, 0.1), (0.1, 0.1, 0.2) and (0.2, 0.2, 0.2).
Figure 12 shows the performance of the proposed algorithm for CD of the three datasets
under various hyperparameter combinations. The statistical graph shows that the optimal
hyperparameter combination of the three datasets was α1, α2, and α3: (0.1, 0.2, 0.1).
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(4) The number of convolution layers

The setting of the number of convolution layers affects the performance of the network.
Because our training samples are insufficient, a network that is too deep will result in over-
fitting, which will degrade the model’s performance. The shallow network cannot extract
the deep semantic features, which limits the network’s ability to learn the meaningful
feature representation and impacts the accuracy of detection. Figure 13 shows the perfor-
mance of the proposed algorithm for CD of the three datasets under different numbers of
convolution layers. The statistical graph shows that the optimal number of convolution
layers for the three datasets was three. Moreover, when the number of convolution layers
is set to two, the performance of the algorithm on the Texas dataset decreased significantly.
Because the dataset has a high resolution, a network that is too shallow cannot learn the
precise feature representation.
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4.3. Analysis of Results

In order to verify the effectiveness of the algorithm, we conducted experiments us-
ing three sets of bitemporal heterogeneous RS datasets and compared the results of the
algorithm with the other five algorithms. These six algorithms include the Deep Image
Translation with an Affinity-Based Change Prior (ACE-Net) [51], Conditional Adversarial
Network (CAN) [25], Deep Convolutional Coupling Network (SCCN) [24], Non-local Patch
Similarity-based Graph (NPSG) [20], Improved Non-local Patch-based Graph (INLPG) [54],
and Code-aligned autoencoders (CAA) [32]. Among them, ACE-Net, CAN, SCCN, and
CAA are all unsupervised deep neural network methods. The results of the experiments
were compared to the optimal parameters presented in the literature. Both NPSG and
INLPG performed heterogeneous RS image change detection based on non-local patch
similarity. To ensure the fairness of the comparative experiments, the experiments were
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conducted using parameter values that corresponded to the best experimental results
presented in the references. Figures 14–16 show the results of change detection for the three
datasets: Forest fire in Texas, Flood in California, and Lake overflow in Italy using different
algorithms. Figures 14h, 15h and 16h show the ground truth of the three datasets.
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Figure 14. CD results of Forest fire in Texas dataset under different algorithms. (a) ACE-Net. (b) CAN.
(c) SCCN. (d) NPSG. (e) INLPG. (f) CAA. (g) TSCNet. (h) Ground truth.

For the Forest fire in Texas dataset, Figure 14 shows that, when compared to ground
truth, the ACE-Net, CAN, and INLPG algorithms were insufficient in detecting the changed
areas. Their result maps contained more false negative pixels, and the CAN algorithm’s
result map had more noise points. In the conversion of the image feature space, the ACE-
Net and CAN algorithms lost some features, resulting in the omission of some changes.
Although the CAA algorithm produced good results, the method proposed in this paper
had fewer error points in the unchanged region. There were too many false positive pixels
in the results of the SCCN and NPSG algorithms. In contrast, the method proposed in this
paper yielded a result map with fewer misclassified points that is closer to the ground truth.
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For the Flood in California dataset, Figure 15 demonstrates that the ACE-Net result
map contained more noise points, whereas the CAN, SCCN, NPSG, and CAA result
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maps contained more false positive pixels. The CAA algorithm did not fully consider
the texture structure of the image, resulting in some conversion errors. The influence of
changed regions was not fully considered by the CAN and SCCN algorithms, resulting
in the inaccurate conversion of unchanged pixels. The NPSG algorithm had inadequate
capacity to model complicated regions. The INLPG algorithm produced satisfactory results.
However, the method proposed in this paper had fewer misclassification points.

For the Lake overflow in Italy dataset, Figure 16 demonstrates that the result map of
the ACE-Net algorithm had more noise. The result maps produced by the CAN, SCCN,
and INLPG algorithms contained more false positives. The NPSG algorithm was insuffi-
cient to detect the changing region. Although the CAA algorithm produced good results,
the method proposed in this paper had some advantages, including fewer errors and
clearer boundaries.

We conducted feature visualization of the attention module to test the effectiveness of
the attention mechanism. Figures 17–19 demonstrates the output features of the attention
module in the encoder and decoder for the three datasets. As shown in the figure, the
attention mechanism can highlight the changing region and improve the feature represen-
tation of the region of interest, thereby enhancing the ability of the network to capture fine
changes and effectively improving the accuracy of CD.
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Algorithm 
Forest Fire in Texas 
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attention module.
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The objective evaluation indicators of the three datasets under different algorithms
are shown in Tables 1–3.

Table 1. Objective evaluation indicators of the Forest fire in Texas dataset under different algorithms.

Algorithm
Forest Fire in Texas

OA Precision Recall F1-Score Kappa

ACE-Net 0.948 0.813 0.662 0.730 0.701

CAN 0.929 0.726 0.533 0.615 0.576

SCCN 0.928 0.604 0.935 0.734 0.694

NPSG 0.895 0.504 0.982 0.666 0.612

INLPG 0.932 0.765 0.519 0.618 0.582

CAA 0.975 0.895 0.876 0.885 0.871

TSCNet 0.976 0.908 0.852 0.879 0.873

Table 2. Objective evaluation indicators of the Flood in California dataset under different algorithms.

Algorithm
Flood in California

OA Precision Recall F1-Score Kappa

ACE-Net 0.919 0.455 0.515 0.483 0.437

CAN 0.925 0.463 0.351 0.400 0.362

SCCN 0.903 0.435 0.675 0.529 0.448

NPSG 0.924 0.496 0.480 0.488 0.429

INLPG 0.931 0.547 0.568 0.557 0.500

CAA 0.923 0.537 0.560 0.548 0.506

TSCNet 0.939 0.686 0.494 0.574 0.542

4.4. Ablation Experiment

The method proposed in this paper focuses on adding wavelet transform and attention
modules to the network to extract topological structure information from heterogeneous RS
images. The ablation analysis was performed on three datasets to validate the rationality
and effectiveness of the wavelet transform and attention mechanism proposed by the
algorithm in this paper. Table 4 shows the objective evaluation metrics for the three
datasets. The evaluation indicators in the table demonstrate that the wavelet transform and
attention mechanism proposed by us can improve the accuracy of the heterogeneous RS
image CD algorithm and significantly improve network performance.
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Table 3. Objective evaluation indicators of the Lake overflow in Italy dataset under different
algorithms.

Algorithm
Lake Overflow in Italy

OA Precision Recall F1-Score Kappa

ACE-Net 0.902 0.328 0.554 0.412 0.362

CAN 0.929 0.429 0.448 0.439 0.401

SCCN 0.892 0.333 0.754 0.462 0.412

NPSG 0.947 0.563 0.614 0.587 0.559

INLPG 0.918 0.415 0.796 0.546 0.506

CAA 0.949 0.563 0.792 0.658 0.631

TSCNet 0.955 0.595 0.782 0.676 0.654

Table 4. Comparison of wavelet and attention module on three datasets.

Method
Forest Fire in Texas Flood in California Lake Overflow in Italy

OA Kappa OA Kappa OA Kappa

None 0.961 0.781 0.919 0.455 0.914 0.434

Wavelet 0.971 0.838 0.933 0.504 0.949 0.622

Attention 0.966 0.810 0.928 0.500 0.921 0.468

Wavelet+Attention 0.976 0.873 0.939 0.542 0.955 0.654

In addition, we also performed an ablation experiment using only one attention mod-
ule in order to confirm the efficacy of using both channel and spatial attention mechanisms.
Table 5 shows the objective evaluation metrics for the three datasets. The evaluation in-
dicators in the table demonstrate that utilizing two attention modules concurrently can
effectively improve the accuracy of change detection.

Table 5. Comparison of single attention module on three datasets.

Method
Forest Fire in Texas Flood in California Lake Overflow in Italy

OA Kappa OA Kappa OA Kappa

Wavelet + Channel
Attention 0.966 0.812 0.932 0.492 0.951 0.627

Wavelet + Spatial
Attention 0.972 0.845 0.932 0.490 0.954 0.651

Wavelet + Attention 0.976 0.873 0.939 0.542 0.955 0.654

We performed a feature visualization comparison between the proposed method and
the original neural network to demonstrate that the proposed method can highlight the
topological structure information of the images. Figures 20–22 show the output features
of the proposed method and the original neural network in the three datasets. As shown
in the figure, the method proposed in this paper can highlight the changing region while
also effectively capturing the image’s topological structure features. As a result, the error
of image conversion can be reduced and the performance of change detection can be
effectively improved.
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5. Conclusions

This paper proposes a topological structure coupling-based method for detecting
changes in heterogeneous RS images. First, a neural network framework for CD in hetero-
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geneous RS images was introduced, which realizes the mutual conversion of heterogeneous
image domains through the network, thereby calculating the difference map in the same
domain. The final change result map is generated by combining the difference maps calcu-
lated in two different image domains, which greatly improves change detection accuracy.
Second, we employ the wavelet transform to extract image texture structure features, which
are primarily represented by the spatial distribution of high-frequency information on
the image. The combination of high-frequency and low-frequency information improves
the topological features of the image, reduces interference caused by different feature
spaces, and improves the network’s ability to capture fine changes. The channel attention
mechanism and the spatial attention mechanism are then used to assign more weights
to the region of interest while suppressing unnecessary features. The network can focus
on the texture information of interest and suppress the difference between images from
different domains by using an organic combination of wavelet, channel attention module,
and spatial attention module. Then, the algorithm proposed in this paper was tested on
three datasets. The experimental results demonstrated that the proposed algorithm for
heterogeneous RS image change detection takes into account the relationship between
image topological structures and improved network performance.

The proposed method also has some limitations. For example, the advanced se-
mantic features of the images are not fully utilized during the image domain conversion
process. Especially for changing regions, the completeness of semantic content ensures
that the changes are accurately identified. The consistency of semantic content can also
reduce change false detection in unchanged regions. Furthermore, a more robust super-
vised homogeneous CD network was not used to generate the final change map after the
realization of image feature space conversion, which limits the performance of change
detection to a certain extent. More focus will be placed in future work on the use of ad-
vanced semantic features of images to reduce errors in image conversion, as well as the
use of a deep neural network to generate the final change map to improve the accuracy
of change detection. The source code of the proposed method can be downloaded from
https://github.com/xiazhi-1090/TSCNet.

Author Contributions: Conceptualization and methodology, X.W.; Formal analysis and
writing—original draft preparation, W.C.; Investigation, validation, and data curation, Y.F.; Su-
pervision and writing—review and editing, R.S. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant No.
41971388), the China Postdoctoral Science Foundation (Grant No. 2022M723222), and the Innovation
Team Support Program of Liaoning Higher Education Department (Grant No. LT2017013).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the editors and the reviewers for their valu-
able suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gong, J.; Haigang, S.; Guorui, M.; Qiming, Z. A review of multi-temporal remote sensing data change detection algorithms. Int.

Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 757–762.
2. Luppino, L.T.; Anfinsen, S.N.; Moser, G.; Jenssen, R.; Bianchi, F.M.; Serpico, S.; Mercier, G. A clustering approach to heterogeneous

change detection. In Scandinavian Conference on Image Analysis; Springer: Cham, Switzerland, 2017; pp. 181–192.
3. Liu, Z.; Li, G.; Mercier, G.; He, Y.; Pan, Q. Change detection in heterogenous remote sensing images via homogeneous pixel

transformation. IEEE Trans. Image Process. 2017, 27, 1822–1834. [CrossRef] [PubMed]
4. Lambin, E.F.; Strahlers, A.H. Change-vector analysis in multitemporal space: A tool to detect and categorize land-cover change

processes using high temporal-resolution satellite data. Remote Sens. Environ. 1994, 48, 231–244. [CrossRef]
5. Nielsen, A.A.; Conradsen, K.; Simpson, J.J. Multivariate alteration detection (MAD) and MAF postprocessing in multispectral,

bitemporal image data: New approaches to change detection studies. Remote Sens. Environ. 1998, 64, 1–19. [CrossRef]

https://github.com/xiazhi-1090/TSCNet
http://doi.org/10.1109/TIP.2017.2784560
http://www.ncbi.nlm.nih.gov/pubmed/29346097
http://doi.org/10.1016/0034-4257(94)90144-9
http://doi.org/10.1016/S0034-4257(97)00162-4


Remote Sens. 2023, 15, 621 24 of 25

6. Celik, T. Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE
Geosci. Remote Sens. Lett. 2009, 6, 772–776. [CrossRef]

7. Dalla Mura, M.; Prasad, S.; Pacifici, F.; Gamba, P.; Chanussot, J.; Benediktsson, J.A. Challenges and opportunities of multimodality
and data fusion in remote sensing. Proc. IEEE 2015, 103, 1585–1601. [CrossRef]

8. Ghamisi, P.; Rasti, B.; Yokoya, N.; Wang, Q.M.; Hofle, B.; Bruzzone, L.; Bovolo, F.; Chi, M.M.; Anders, K.; Gloaguen, R.; et al.
Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art. IEEE Geosci. Remote
Sens. Mag. 2019, 7, 6–39. [CrossRef]

9. Su, L.; Gong, M.; Zhang, P.; Zhang, M.; Liu, J.; Yang, H. Deep learning and mapping based ternary change detection for
information unbalanced images. Pattern Recognit. 2017, 66, 213–228. [CrossRef]

10. Gong, M.; Niu, X.; Zhan, T.; Zhang, M. A coupling translation network for change detection in heterogeneous images. Int. J.
Remote Sens. 2018, 40, 3647–3672. [CrossRef]

11. Storvik, B.; Storvik, G.; Fjrtoft, R. On the combination of multi-sensor data using meta-gaussian distributions. IEEE Trans. Geosci.
Remote Sens. 2009, 47, 2372–2379. [CrossRef]

12. Gong, Z.; Maoguo, G.; Jia, L.; Puzhao, Z. Iterative feature mapping network for detecting multiple changes in multi-source remote
sensing images. ISPRS J. Photogramm. Remote Sens. 2018, 146, 38–51.

13. Jensen, J.R.; Ramsey, E.W.; Mackey, H.E.; Christensen, E.J.; Sharitz, R.R. Inland wet land change detection using aircraft MSS data.
Photogram. Eng. Remote Sens. 1987, 53, 521–529.

14. Mubea, K.; Menz, G. Monitoring land-use change in Nakuru (Kenya) using multi-sensor satellite data. Adv. Remote Sens. 2012, 1,
74–84. [CrossRef]

15. Wan, L.; Xiang, Y.; You, H. A post-classification comparison method for SAR and optical images change detection. IEEE Geosci.
Remote Sens. Lett. 2019, 16, 1026–1030. [CrossRef]

16. Wan, L.; Xiang, Y.; You, H. An object-based hierarchical compound classification method for change detection in heterogeneous
optical an d SAR images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9941–9959. [CrossRef]

17. Mercier, G.; Moser, G.; Serpico, S.B. Conditional copulas for change detection in heterogeneous remote sensing images. IEEE
Trans. Geosci. Remote Sens. 2008, 46, 1428–1441. [CrossRef]

18. Prendes, J.; Chabert, M.; Pascal, F.; Giros, A.; Tourneret, J.-Y. A new multivariate statistical model for change detection in images
acquired by homogeneous and heterogeneous sensors. IEEE Trans. Image Process. 2014, 24, 799–812. [CrossRef]

19. Ayhan, B.; Kwan, C. A new approach to change detection using heterogeneous images. In Proceedings of the 2019 IEEE 10th
Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 10–11
October 2019; pp. 0192–0197.

20. Sun, Y.; Lei, L.; Li, X.; Sun, H.; Kuang, G. Nonlocal patch similarity based heterogeneous remote sensing change detection. Pattern
Recognit. 2021, 109, 107598–107616. [CrossRef]

21. Lei, L.; Sun, Y.; Kuang, G. Adaptive local structure consistency-based heterogeneous remote sensing change detection. IEEE
Geosci. Remote Sens. Lett. 2020, 2020, 8003905. [CrossRef]

22. Sun, Y.; Lei, L.; Guan, D.; Kuang, G. Iterative robust graph for unsupervised change detection of heterogeneous remote sensing
images. IEEE Trans. Image Process. 2021, 30, 6277–6291. [CrossRef]

23. Zhang, P.; Gong, M.; Su, L.; Liu, J.; Li, Z. Change detection based on deep feature representation and mapping transformation for
multi-spatial -resolution remote sensing images. ISPRS J. Photogram. Remote Sens. 2016, 116, 24–41. [CrossRef]

24. Liu, J.; Gong, M.; Qin, K.; Zhang, P. A deep convolutional coupling network for change detection based on heterogeneous optical
and radar images. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 545–559. [CrossRef] [PubMed]

25. Niu, X.; Gong, M.; Zhan, T.; Yang, Y. A conditional adversarial network for change detection in heterogeneous images. IEEE
Geosci. Remote Sens. Lett. 2019, 16, 45–49. [CrossRef]

26. Wu, Y.; Bai, Z.; Miao, Q.; Ma, W.; Yang, Y.; Gong, M. A classified adversarial network for multi-spectral remote sensing image
change detection. Remote Sens. 2020, 12, 2098–2116. [CrossRef]

27. Jiang, X.; Li, G.; Liu, Y.; Zhang, X.-P.; He, Y. Change detection in heterogeneous optical and SAR remote sensing images via deep
homogeneous feature fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1551–1566. [CrossRef]

28. Li, X.; Du, Z.; Huang, Y.; Tan, Z. A deep translation (GAN) based change detection network for optical and SAR remote sensing
images. ISPRS J. Photogramm. Remote Sens. 2021, 179, 14–34. [CrossRef]

29. Wu, Y.; Li, J.; Yuan, Y.; Qin, A.K.; Miao, Q.-G.; Gong, M.-G. Commonality autoencoder: Learning common features for change
detection from heterogeneous images. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 4257–4270. [CrossRef]

30. Zhang, C.; Feng, Y.; Hu, L.; Tapete, D.; Pan, L.; Liang, Z.; Cigna, F.; Yue, P. A domain adaptation neural network for change
detection with heterogeneous optical and SAR remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102769. [CrossRef]

31. Liu, M.; Shi, Q.; Li, J.; Chai, Z. Learning token-aligned representations with multimodel transformers for different-resolution
change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4413013. [CrossRef]

32. Luppino, L.T.; Hansen, M.A.; Kampffmeyer, M.; Bianchi, F.M.; Moser, G.; Jenssen, R.; Anfinsen, S.N. Code-aligned autoencoders
for unsupervised change detection in multimodal remote sensing images. IEEE Trans. Neural Netw. Learn. Syst. 2022, 1–13.
[CrossRef]

33. Xiao, K.; Sun, Y.; Lei, L. Change Alignment-Based Image Transformation for Unsupervised Heterogeneous Change Detection.
Remote Sens. 2022, 14, 5622. [CrossRef]

http://doi.org/10.1109/LGRS.2009.2025059
http://doi.org/10.1109/JPROC.2015.2462751
http://doi.org/10.1109/MGRS.2018.2890023
http://doi.org/10.1016/j.patcog.2017.01.002
http://doi.org/10.1080/01431161.2018.1547934
http://doi.org/10.1109/TGRS.2009.2012699
http://doi.org/10.4236/ars.2012.13008
http://doi.org/10.1109/LGRS.2019.2892432
http://doi.org/10.1109/TGRS.2019.2930322
http://doi.org/10.1109/TGRS.2008.916476
http://doi.org/10.1109/TIP.2014.2387013
http://doi.org/10.1016/j.patcog.2020.107598
http://doi.org/10.1109/LGRS.2020.3037930
http://doi.org/10.1109/TIP.2021.3093766
http://doi.org/10.1016/j.isprsjprs.2016.02.013
http://doi.org/10.1109/TNNLS.2016.2636227
http://www.ncbi.nlm.nih.gov/pubmed/28026789
http://doi.org/10.1109/LGRS.2018.2868704
http://doi.org/10.3390/rs12132098
http://doi.org/10.1109/JSTARS.2020.2983993
http://doi.org/10.1016/j.isprsjprs.2021.07.007
http://doi.org/10.1109/TNNLS.2021.3056238
http://doi.org/10.1016/j.jag.2022.102769
http://doi.org/10.1109/TGRS.2022.3200684
http://doi.org/10.1109/TNNLS.2022.3172183
http://doi.org/10.3390/rs14215622


Remote Sens. 2023, 15, 621 25 of 25

34. Radoi, A. Generative Adversarial Networks under CutMix Transformations for Multimodal Change Detection. IEEE Geosci.
Remote Sens. Lett. 2022, 19, 2506905. [CrossRef]

35. Ramzi, Z.; Starck, J.L.; Moreau, T.; Ciuciu, P. Wavelets in the deep learning era. In Proceedings of the 28th European Signal
Processing Conference (EUSIPCO), Amsterdam, Holland, 18–22 January 2021; pp. 1417–1421.

36. Abdulazeez, M.; Zeebaree, D.A.; Asaad, D.; Zebari, G.M.; Mohammed, I.; Adeen, N. The applications of discrete wavelet
transform in image processing: A review. J. Soft Comput. Data Min. 2020, 2, 31–43.

37. Mamadou, M.D.; Serigne, D.; Alassane, S. Comparative study of iamge processing using wavelet transforms. Far East J. Appl.
Math. 2021, 110, 27–47.

38. Zhang, Z.; Sugino, T.; Akiduki, T.; Mashimo, T. A study on development of wavelet deep learning. In Proceedings of the 2019
International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR), Kobe, Japan, 7–10 July 2019; pp. 1–6.

39. Cotter, F.; Kingsbury, N. Deep learning in the wavelet domain. arXiv 2018. [CrossRef]
40. Aghabiglou, A.; Eksioglu, E.M. Densely connected wavelet-based autoencoder for MR image reconstruction. In Proceedings of

the 2022 45th International Conference on Telecommunications and Signal Processing (TSP), Prague, Czech Republic, 13–15 July
2022; pp. 212–215. [CrossRef]

41. Yang, H.-H.; Fu, Y. Wavelet U-Net and the chromatic adaptation transform for single image dehazing. In Proceedings of the 2019
IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2736–2740. [CrossRef]

42. Xin, J.; Li, J.; Jiang, X.; Wang, N.; Huang, H.; Gao, X. Wavelet-based dual recursive network for image super-resolution. IEEE
Trans. Neural Netw. Learn. Syst. 2022, 33, 707–720. [CrossRef]

43. Mishra, D.; Singh, S.K.; Singh, R.K. Wavelet-Based Deep Auto Encoder-Decoder (WDAED)-Based Image Compression. IEEE
Trans. Circuits Syst. Video Technol. 2021, 31, 1452–1462. [CrossRef]

44. Xu, J.; Zhao, J.; Liu, C. An effective hyperspectral image classification approach based on discrete wavelet transform and dense
CNN. IEEE Geosci. Remote Sens. Lett. 2022, 19, 6011705. [CrossRef]

45. Wang, X.H.; Xing, C.D.; Feng, Y.N.; Song, R.X.; Mu, Z.H. A novel hyperspectral image change detection framework based on
3d-wavelet domain active convolutional neural network. In Proceedings of the 2021 IEEE International Geoscience and Remote
Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 4332–4335.

46. Ma, W.; Pan, Z.; Guo, J.; Lei, B. Achieving super-resolution remote sensing images via the wavelet transform combined with the
recursive res-Net. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3512–3527. [CrossRef]

47. Mnih, V.; Heess, N.; Graves, A. Recurrent models of visual attention. Adv. Neural Inf. Process. Syst. 2014, 3, 2204–2212.
48. Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 7794–7803.
49. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42,

2011–2023. [CrossRef]
50. Liu, P.; Zhang, H.; Zhang, K.; Lin, L.; Zuo, W. Multi-level wavelet-CNN for image restoration. In Proceedings of the 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA, 18–22 June
2018; pp. 773–782.

51. Luppino, L.T.; Kampffmeyer, M.; Bianchi, F.M.; Moser, G.; Serpico, S.B.; Jenssen, R.; Anfinsen, S.N. Deep image translation with
an affinity-based change prior for unsupervised multimodal change detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4700422.
[CrossRef]

52. Michele, V.; Gustau, C.-V.; Devis, T. Spectral alignment of multi-temporal cross-sensor images with automated kernel canonical
correlation analysis. J. Photogramm. Remote Sens. 2015, 107, 50–63.

53. Luppino, L.T.; Bianchi, F.M.; Moser, G.; Anfinsen, S.N. Unsupervised image regression for heterogeneous change detection. IEEE
Trans. Geosci. Remote Sens. 2019, 57, 9960–9975. [CrossRef]

54. Sun, Y.; Lei, L.; Li, X.; Tan, X.; Kuang, G. Structure consistency-based graph for unsupervised change detection with homogeneous
and heterogeneous remote sensing images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4700221. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/LGRS.2022.3201003
http://doi.org/10.48550/arXiv.1811.06115
http://doi.org/10.1109/TSP55681.2022.9851354
http://doi.org/10.1109/ICIP.2019.8803391
http://doi.org/10.1109/TNNLS.2020.3028688
http://doi.org/10.1109/TCSVT.2020.3010627
http://doi.org/10.1109/LGRS.2022.3181627
http://doi.org/10.1109/TGRS.2018.2885506
http://doi.org/10.1109/TPAMI.2019.2913372
http://doi.org/10.1109/TGRS.2021.3056196
http://doi.org/10.1109/TGRS.2019.2930348
http://doi.org/10.1109/TGRS.2021.3053571

	Introduction 
	Related Works 
	Wavelets and Their Application in Deep Learning 
	Attention Mechanism 

	Methodology 
	Data Processing 
	Network Setting 
	Wavelet Transform Module 
	Attention Module 
	Network Training Strategy 

	Experiment and Analysis 
	Datasets 
	Parameter Settings 
	Analysis of Results 
	Ablation Experiment 

	Conclusions 
	References

