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Abstract: Large-volume hydraulic concrete structures, such as concrete dams, often suffer from
damage due to the influence of alternating loads and material aging during the service process. The
occurrence and further expansion of cracks will affect the integrity, impermeability, and durability
of the dam concrete. Therefore, monitoring the changing status of cracks in hydraulic concrete
structures is very important for the health service of hydraulic engineering. This study combines
computer vision and artificial intelligence methods to propose an automatic damage detection and
diagnosis method for hydraulic structures. Specifically, to improve the crack feature extraction effect,
the Xception backbone network, which has fewer parameters than the ResNet backbone network,
is adopted. With the aim of addressing the problem of premature loss of image detail information
and small target information of tiny cracks in hydraulic concrete structures, an adaptive attention
mechanism image semantic segmentation algorithm based on Deeplab V3+ network architecture is
proposed. Crack images collected from concrete structures of different types of hydraulic structures
were used to develop crack datasets. The experimental results show that the proposed method can
realize high-precision crack identification, and the identification results have been obtained in the
test set, achieving 90.537% Intersection over Union (IOU), 91.227% Precision, 91.301% Recall, and
91.264% F1_score. In addition, the proposed method has been verified on different types of cracks in
actual hydraulic concrete structures, further illustrating the effectiveness of the method.

Keywords: structural damage detection; computer vision; concrete structures; crack detection;
feature extraction

1. Introduction

Large-volume hydraulic concrete structures such as concrete dams must bear the loads
caused by water pressure, temperature, and earthquakes. It may be affected by dry–wet
cycles under the action of many unfavorable factors during the service process [1,2]. The
tensile strength of concrete is low, and the complex working conditions and the material
properties of concrete make hydraulic concrete prone to cracks [3]. The existence and
development of cracks can lead to leakage and corrosion damage or cause dam failure,
endangering the safety of people’s life and property [4].

At present, the dam-crack detection method at home and abroad adopts mainly the
traditional manual inspection [5]. Not only is this method time-consuming and laborious,
but also, it is difficult to reach many high structures. The inspection method using manual
inspection can inspect only the cracks existing in the appearance of the structure, and
it is difficult to find hidden cracks inside the dam body, and the judgment of the status
of the cracks depends on subjective experience [6]. Moreover, the manual inspection of
high dams still has certain safety risks. In recent years, dam safety monitoring systems
have been introduced to achieve automatic sensing of structural changes [7,8]. At present,
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cracks in hydraulic structures such as concrete dams are generally monitored by in situ
monitoring instruments such as joint gauges and strain gauges. Since the occurrence of
cracks is spatially random and uncertain, the aging of internal observation instruments
cannot be easy [9]. It is hard to monitor cracks with this conventional point monitoring
method without a good solution.

In recent years, with the development of artificial intelligence and information technol-
ogy, computer vision (CV)-based structural crack recognition and detection technology has
been gradually applied to civil engineering operations and maintenance [10–12]. Inspection
equipment represented by drones can be equipped with various customized cameras to
carry out structural defect scanning inspection work [13,14]. CV-based technology has
significant advantages such as a large image acquisition range, high spatial resolution,
and short detection time. Due to the large size of the dam body and numerous ancillary
buildings, the single-machine inspection task will generate a large amount of image or
video data [15,16]. Because the occurrence of cracks is a probabilistic event, the proportion
of information directly related to structural damage is extremely low. It is necessary to com-
bine advanced digital image processing technology to extract information closely related to
cracks from these data.

In recent years, artificial intelligence technology has been widely used in many prac-
tical engineering fields to replace labor and reduce costs [17,18]. Among them, the deep
learning method represented by the convolutional neural network (CNN) is widely used
in the structural damage identification of civil infrastructure. For example, Cha et al. [19]
developed a vision-based method using a deep architecture of CNN for detecting concrete
cracks without calculating the defect features. Khani et al. [20] proposed a novel crack
detection framework that utilizes techniques from both classical image processing and deep
learning methodologies. Kim et al. [21] developed shallow convolutional neural network
(CNN)-based architecture for surface-concrete crack detection. However, most of the above
research focuses on crack recognition and classification and targets detection, and few
studies consider the feature extraction of hydraulic concrete structure cracks in drone-based
application scenarios. Due to the interference of various factors in the process of drone
aerial photography, there are many blurred and low-quality problems in the crack images
collected, so it is necessary to combine deep learning and artificial intelligence algorithms.

In this paper, considering these limitations, this paper uses the Xception backbone
network instead of the conventional kernels in DeepLab V3+, the internal convolution
kernel of which uses depth-separable convolution, and the hole rate of the convolution
kernel can be set by itself. The adaptive attention mechanism module is embedded into
the backbone network by utilizing the residual network and the channel attention strategy.
The purpose of this module is to supplement the detailed information of the unit input
feature map to the output feature map, to delay the trend of loss of detailed information.

The main contributions of this work are the following three points.

(1) The Xception backbone-based crack automatic segmentation network achieves faster
detection efficiency and few parameters because it uses depthwise separable convolu-
tion for its internal convolution kernel, and the hole rate of the convolution kernel can
be set by itself.

(2) The combination of the attention mechanism module and the Deeplab V3+ backbone
network can significantly improve the accuracy of the model for identifying small-
scale concrete cracks.

(3) The proposed method shows strong crack pixel-level detection performance on a
variety of different types and background roughness crack images.

The rest of the paper is organized as follows: Section 2 presents an overview of the
methodology developed in this paper, including the Deeplabv3+ neural network. Section 3
details the experimental setup, and the experimental results are presented and discussed in
Section 4. Conclusions are provided in the final section of the paper.
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2. Methodology and Materials
2.1. The Deeplabv3+ Semantic Segmentation Network

The structure diagram of the classic DeepLabv3+ network model is shown in Figure 1.
The DeepLab series is developed by Google and is currently a widely used image segmen-
tation model, using an end-to-end training method [22]. DeepLabv3+ consists of two parts,
including the Encoder and Decoder at the encoding end. The backbone network at the
encoding end selects the Xception model. The ASPP (Atrous Spatial Pyramid Pooling) is
designed to combined with atrous convolution can expand the receptive field of the convo-
lution kernel without losing resolution (no downsampling) [23]. Together with the ASPP
module as a feature extraction module, the feature maps (Feature maps) from Xception
in the backbone network are divided into two branches: one is the feature map output
by the last layer of the backbone network, which is sent to the ASPP module; the other
part is the backbone network output from the middle layer. The shallow Feature maps are
sent to the Decoder module, and the Decoder at the decoding end introduces the shallow
Feature maps and fuses the high-level semantic features output by the ASPP module. This
makes the two input feature maps through convolution (Conv) or upsampling (Upsample)
operations. If the size is the same, then use Concat to splice them together and send them
to a set of 3×3 convolution blocks for processing. Finally, perform linear interpolation and
upsampling again to obtain an output segmentation result image with the same resolution
as the original image.

Figure 1. The basic architecture of the DeepLabv3+ neural network.

2.2. The Xception Backbone

Considering that devices such as drones are difficult to achieve high-performance
computing, deep learning needs to be improved to improve its real-time detection capabili-
ties [24]. Considering the performance of the device, this paper uses the Xception backbone
network, the internal convolution kernel of which uses depth-separable convolution, and
the hole rate of the convolution kernel can be set by itself. The improved Xception-65
network has fewer parameters than the ResNet backbone network [25], showing the im-
provement of the DeepLabv3+ neural network, as shown in Figure 2. Equation (2) is to
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illustrate the introduction of hole convolution, which significantly reduces the amount of
model weight parameters. The specific calculation formula is as follows:

W1 = K ∗ K ∗ C1 ∗ C2 (1)

W2 = K ∗ K ∗ C1 + 1 ∗ 1 ∗ C1 ∗ C2 (2)

where the size of the ordinary convolution kernel and the depth-separable convolution
kernel with holes are both K ∗ K, the number of channels of the input feature map is C1, the
number of channels of the output feature map is C2, and the parameter quantity generated
after the convolution of the ordinary convolution kernel and the feature map is W1.

Figure 2. The flowchart of the improved framework.

Figure 2 shows the flowchart of the improved crack pixel-level segmentation and
quantification framework. It can be seen that on the left is the calculation process of
encoding and decoding construction, and on the right is the detailed composition of each
component. Inspired by the above research methods, for the current Deeplab V3+ semantic
segmentation framework, it is easy to cause the loss of detailed information or small targets.
In this paper, the adaptive attention mechanism module is embedded into the backbone
network by utilizing the residual network and the channel attention strategy. The purpose
of this module is to supplement the detailed information of the unit input feature map to
the output feature map in order to delay the trend of loss of detailed information.

The method proposed in this paper consists of the following four parts. The method
of using channel compression is inspired by the above research methods and aims at the
problem that the current Deeplab V3+ semantic segmentation framework is prone to loss
of detailed information or small targets. In this paper, the adaptive attention mechanism
module is embedded into the backbone network by utilizing the residual network and
the channel attention strategy. The purpose of this module is to supplement the detailed
information of the unit input feature map to the output feature map to delay the trend of
loss of detailed information.

Figure 3 shows the comparison of the standard convolution process and the depthwise
separable convolution process. It can be seen from Figure 3a that the process of convolving
an ordinary convolution kernel with a feature map, and Figure 3b shows the process of
convolving a depthwise separable convolution kernel with a hole and a feature map [26].
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Figure 3. The comparison of the standard convolution process and depthwise separable convolution
process. (a) Standard convolution process; (b) depthwise separable convolution process with dilation.

2.3. The Adaptive Attention Mechanism

Most of the cracks in hydraulic concrete structures are tiny and hidden in complex
backgrounds, making them difficult to identify [27]. In image semantic segmentation, it is
usually necessary to obtain high-level semantic information about the image to strengthen
the understanding of the whole image. However, in the down-sampling process of obtain-
ing the high-level semantic information of the image, the detailed information of the image
will inevitably be lost, especially for some small objects. The number of pixels occupied in
the image is small, and it is easy to lose in the process of multiple downsampling. However,
this detailed information and these small objects will exist in the channels of low-level
feature maps.

In this paper, the residual network is used in combination with the channel com-
pression method and the attention mechanism to build an adaptive attention mechanism
module, and it is embed into the Xception backbone network. Specifically, the attention
mechanism module is embedded in the input layer, middle layer, and output layer of the
Deeplab V3+ backbone network, and a weight value is introduced to multiply each atten-
tion mechanism module to achieve the purpose of constraining the attention mechanism
module. First, a global average pooling process is performed on the input feature map
of the attention mechanism module. Then, after that, a 1 × 1 × C feature map is output,
where C is the number of channels, which is the same as the channel number of the output
feature map of the residual block. Equation (3) is to illustrate the calculation process of the
residual block output feature map to obtain richer high-level semantic information. The
specific calculation formula is as follows:

gC =
1

H∗W

H

∑
i=1

W

∑
j=1

GC(i, j) (3)

where gc ∈ Rc from a feature graph G of size H ×W and number of channels C, C (i, j)
generated; (i, j) represents the coordinates of the pixel on the feature map.
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Based on the above-mentioned methods, the calculation process of the self-attention
mechanism is described. Firstly, the attention mechanism module is embedded in the
input layer, middle layer, and output layer of the Deeplab V3+ backbone network, and
a weight value is introduced to multiply each attention mechanism module to achieve
the purpose of constraining the attention mechanism module. Secondly, the Deeplab V3+
embedding the attention module is trained on the constructed concrete crack dataset, so as
to manually obtain the weight value (empirical value) of the attention mechanism module;
then, the input layer, the middle layer, and the output layer are explored. Finally, the
weight value of the attention mechanism module is changed to automatically update by
backpropagation, so as to obtain the optimal weight value of the attention mechanism
module and the optimal segmentation model.

2.4. Evaluation Indicators

In this study, three evaluation metrics are used to calculate the model’s ability to crack
segmentation, including recall, precision, and F1_score. The details about these evaluation
indicators are shown as follows:

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1_score =
2 · Precision · Recall

Precision + Recall
(6)

where TP is the True Positives, FN is the False Negative, and FP is the False Positives.
To quantitatively evaluate the effect of crack identification, an evaluation index of

intersection ratio, which is called the Intersection over Union (IOU), is introduced. Figure 4
demonstrates the visual display of IOU indicators.

Figure 4. The visual display of IOU indicators.
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3. Experimental Setup
3.1. Project Description

Figure 5 shows the overall layout of the water conservancy project. This project is
composed of a dam, a flood discharge structure, a power station, a navigation structure, and
an irrigation canal head. This project is located in the middle reaches of the Huangbai River
East branch of the first tributary of the Yangtze River. The rainwater collection area above
the dam site is 862 km2, the annual average rainfall is 1150 mm, and the annual average
runoff is 388 million m3. The total storage capacity of the reservoir is 196 million m3. It is a
large (2) type reservoir that focuses mainly on water storage and irrigation and also has
comprehensive benefits such as flood control, power generation, and urban water supply.
The reservoir is the main water source for farmland irrigation, and the average annual
power generation of the power station is 55.1 million KW.h.

Figure 5. Real photos from the project.

3.2. Drone Inspection

The project developed a set of high-precision UAV inspection systems for dam surface,
which applies to dam surface from the aspects of dam surface inspection path planning
and independent safety inspection control, dam surface defect identification, and health
diagnosis system construction. Figure 6 shows the drone techniques used for dam inspec-
tion tasks. Table 1 demonstrates the related parameters of drones. Independent inspection
of the development of the prototype. Before carrying out the inspection work, drone path
planning is carried out according to the actual layout of the dam, so as to realize the shoot-
ing of the whole range of the dam. The relevant parameters of the drone equipped with the
camera are shown in Table 1. In the data post-processing stage, real-time return of on-site
data such as ultra-high-definition images, cloud computing, artificial intelligence in-depth
data analysis, graphic image detection, and other technologies to implement intelligent
risk diagnosis, realize independent inspection of the dam surface, and seamlessly acquire
honey image information on the dam surface.
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Figure 6. The drone used in this dam inspection task.

Table 1. The related parameters of drones and cameras.

Parameters Values

weight 570 g
size 180 × 97 × 74 mm (fold); 183 × 253 × 77 mm (stretch)

flight time 34 min
maximum ascent speed 4 m/s

maximum descent speed 3 m/s
maximum horizontal flight speed 19 m/s

maximum flight altitude 500 m
maximum wind resistance rating Level 5 wind
maximum transmission distance 10,000 m

maximum supported storage 8 G (airborne memory) + 256 GB
camera pixels 3840 × 2160 pixels

equivalent focal length 24 mm
aperture f/2.8

angle of view 84◦

3.3. Dataset Label and Generation

In this study, images of surface cracks of relevant hydraulic concrete structures were
extensively collected through on-site shooting, report review, and network retrieval. These
hydraulic structures include dam surface, face rockfill dam face, sluice pier, channel lining,
and other hydraulic concrete structures. The original resolution of the collected images is
high, and it is difficult to directly input the network for training. In this study, the original
acquired image is divided into 200×200 low-resolution small images for further model
annotation and model training.

Figure 7 shows some images from the constructed hydraulic concrete structure crack
dataset. Moreover, it can be seen from Figure 7 that crack images acquired from the hy-
draulic structures suffer from severe environmental interference noises, such as water stains,
alkaline substances precipitation, etc. It is of great significance to carefully label the crack
information and morphological features under the inference of these unfavorable factors.

Figure 8 shows the comparison of the crack image and refined annotation image.
It can be seen from the figure that there are significant differences in the background of
the cracks in the constructed hydraulic concrete structure crack dataset. There are both
smooth concrete surfaces and rough concrete surfaces. As observed from Figure 8, the
pixel-wise annotations of cracks include mainly two parts, including the original images
and annotation images at the pixel level.
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Figure 7. Sample images of the constructed dataset.

Figure 8. Comparison of crack image and refined annotation image.

4. Result and Discussion
4.1. Model Training

All experiments were implemented based on Pytorch, and the operating system is
Windows 10. The dataset is randomly divided into a certain proportion, with a total of
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5000 images, which are divided into the training set, verification set, and test set according
to the ratio of 6:2:2. Table 2 shows the hardware and software environment in which the
comparative experiment was run. Specifically, the central processing unit (CPU) is Intel
i7-12700KF, and the graphics card is NVIDIA GeForce RTX 3070. Note that the proposed
and compared methods are trained on the same computing station. The number of model
batches is uniformly set to 8, and the number of training rounds (Epoch) is set to 100. The
learning rate is set to 0.0005.

Table 2. Experimental hardware and software environment configuration.

Lab Environment Configuration Details

Hardware environment
CPU: Intel i7-12700KF

GPU: NVIDIA GeForce RTX 3070
Memory:32 GB

Software environment Window 10 system
Development environment VS code

Model Computing Environment Pytorch

Figure 9 shows the changes in the loss functions in both the training and validation
sets during 100 iterations. As can be seen from the figure, with the increase in the number
of iterations, the loss function of the model on the training set and verification set shows a
gradual and smooth downward trend, indicating that the model effectively learns the rules
from the dataset. After 100 iterations, the loss function of the model tends to converge,
indicating that the model is fully trained.

Figure 9. Loss function changes during model training.

4.2. Ablation Experiments

In this study, a series of ablation studies were implemented to analyze the importance
of these proposed components. Table 3 shows the contribution comparison of different
improvements of the proposed method. It can be seen from the table that the detection
effect of the crack identification model applying the improved backbone network and
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the attention enhancement mechanism on the test set is significantly better than that only
applying the improved backbone network and the attention enhancement mechanism.

Table 3. Contribution comparison of different components.

Xception
Backbone

The Adaptive Attention
Mechanism Network IOU Precision Recall F1

74.820 84.350 82.170 83.246√
86.094 90.178 81.070 85.385√
71.640 82.000 77.988 79.948√ √
90.537 91.227 91.301 91.264

4.3. Model Comparison with Other Algorithms

In this study, the proposed method is compared with several advanced semantic
segmentation methods to further verify the model performance. On the proposed hy-
draulic structure crack dataset, the method is compared with other state-of-the-art (SOTA)
semantic segmentation methods, including Unet [28], Deeplab V3+, fully convolutional
network (FCN) [29], and Canny [30]. All implementations of the SOTA algorithms are
based on the published paper and fine-tuned hyperparameters using only the developed
crack dataset. Table 4 shows the comparative evaluation of crack detection results of
different segmentation methods. Figure 10 demonstrates the crack detection effect of the
proposed method and other SOTA algorithm. It can be seen from the figure that the crack
identification effect of the proposed method is better than that of the digital image process-
ing method. Specifically, the recognition result of the proposed crack detection method
is smooth and continuous, whereas the traditional digital image processing method has
fracture and discontinuity. Compared with other DL-based methods, the proposed method
tends to have fewer fractures in the recognition results, which is more in line with the real
crack distribution.

Table 4. Comparative evaluation of crack detection results of different segmentation methods.

Models IOU Interference Speed/s

Proposed method 90.537 0.0192
Deeplabv3+ 74.820 0.0224

FCN 78.204 0.0215
UNet 82.030 0.0201

Canny 69.242 0.5

Figure 10. Comparison of calculation effects of different crack detection methods.
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It can be seen from Table 4 and Figure 10 that the proposed method using the improved
backbone network and attention mechanism has stronger feature extraction and crack
identification capabilities and has achieved better performance on the test set. Specifically,
the introduction of the Xception-based backbone network effectively reduces the number
of model calculation parameters, which effectively improves the inference speed of the
model on a single crack image with a resolution of 200× 200. In addition, the deep learning
method significantly outperforms traditional image processing algorithms in crack image
inference efficiency.

4.4. Test Result Visualization

To evaluate the recognition effect of the proposed method in crack segmentation better
and effectively, three kinds of crack images containing different backgrounds and crack
shapes are selected to evaluate the identification performance effect. Figure 11 demonstrates
the identification effect of the proposed method on different types of cracks for hydraulic
concrete structures. It can be seen from the figure that the proposed method has achieved
good performance on different types of cracks in the test set, and the results of neural
network segmentation and crack identification are basically consistent.

Figure 11. The demonstration of the identification effect of the proposed method on different types
of cracks.

5. Conclusions

Crack detection for hydraulic concrete structures is of great significance to ensure
the safety of dam operation. At present, the manual inspection method mainly used in
crack detection is not only inefficient but also high-risk. Moreover, the traditional image
processing method has a slow detection speed, low degree of automation, and weak
generalization ability. Considering these limitations, this paper develops an improved
Deeplab V3+ network via the Xception backbone and the adaptive attention mechanism
network for the crack identification and segmentation of hydraulic concrete structures.
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The proposed method can effectively identify cracks of different types and background
complexities. The specific contributions of this study are as follows.

(a) The experimental results show that the proposed method can realize high-precision
crack identification, and the identification results have been obtained in the test set,
achieving 90.537 IOU, 91.227 precision, 91.301 recall, and 91.264 F1_score.

(b) The fusion of a lightweight backbone network and attention mechanism can im-
prove the accuracy of model crack identification and improve the speed of model
crack detection.

(c) The proposed method can effectively identify different types of s types of cracks in
hydraulic concretes. It can be seen from the experimental results that the proposed
method has a good recognition effect on wide, narrow, transverse, and longitudi-
nal cracks.

However, some issues require further elaboration and clarification. The types of
defects in hydraulic concrete structures are highly complex and diverse. In addition to
cracks, there are also many types of defects such as spalling, collapse, and pitting. Therefore,
it is necessary to combine deep learning and semantic segmentation network models to
further study the identification methods of different types of defects. In addition, it is
necessary to further combine aerial photography technologies such as drones to study
automatic identification methods for defects to guide drone navigation.
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