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Abstract: Object detection is essential to the interpretation of optical remote sensing images and can
serve as a foundation for research into additional visual tasks that utilize remote sensing. However,
the object detection network currently employed in optical remote sensing images underutilizes the
output of the feature pyramid, so there remains potential for an improved detection. At present,
a suitable balance between the detection efficiency and detection effect is difficult to attain. This
paper proposes an enhanced YOLOv5 algorithm for object detection in high-resolution optical remote
sensing images, utilizing multiple layers of the feature pyramid, a multi-detection-head strategy, and
a hybrid attention module to improve the effect of object-detection networks for use with optical
remote sensing images. According to the SIMD dataset, the mAP of the proposed method was 2.2%
better than YOLOv5 and 8.48% better than YOLOX, achieving an improved balance between the
detection effect and speed.

Keywords: object detection; remote sensing image; attention mechanism; large resolution image;
feature reuse; deep learning

1. Introduction

With the rapid development of remote sensing technology, high-resolution optical
remote sensing images have been utilized to depict numerous items on the Earth’s surface,
including aircrafts, automobiles, buildings, etc. [1]. Object detection plays a crucial role in
the interpretation of remote sensing images and can be used for their segmentation [2,3],
description [4,5], and target tracking [6]. However, aerial optical remote sensing images
manifest a diversity of scale, viewpoint specificity, random orientation, and high back-
ground complexity due to their relatively large field of view and the necessity for a high
altitude [7,8], whereas the majority of conventional datasets contain ground-level views.
Therefore, the object-detection techniques used in the construction of artificial features tra-
ditionally have a poor track record for accuracy and speed. The target-detection algorithm
based on a convolutional neural network is significantly more efficient and effective than
traditional target-detection algorithms. Due to the needs of society and supported by the
development of deep learning, the use of neural networks for target detection in optical
remote sensing images is a necessity.

Current object-detection algorithms incorporating deep learning to analyze optical
remote sensing photographs can be classified as supervised, poorly supervised, or unsu-
pervised. However, due to the complexity and instability of unsupervised and weakly
supervised algorithms, supervised algorithms are the most frequently used. Moreover,
supervised object-detection algorithms can be classified as either single-stage or two-stage.
For instance, the two-stage capsule network SAHR-CapsNet [9] can accurately detect
targets in remote sensing pictures. Due to the comparatively late discovery of capsule
networks, however, the vast majority of modern two-stage object-detection algorithms
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have been based on the RCNN [10–12] series. The methods described by previous re-
searchers [13] have integrated the techniques of dilation convolution [14] and OHEM [15]
into Faster RCNN [12] frameworks to improve the detection precision of small objects
with a high density in optical remote sensing images. A similar practice is described in
reference [16]. Wang et al. [17] proposed a fine detector with contextual information to
improve the region suggestion network (RPN) in Faster RCNN to overcome background
clutter and difficulties in recognition of foreground items in remote sensing images. The
detection of airports and ports in downsampled satellite images, followed by mapping the
discovered items back to the original ultra-high resolution satellite images, can successfully
enable the concurrent detection of objects of varying sizes, according to research [18], based
on the assumption that airplanes are often located in airports and ships are in ports and
oceans. Weng et al. [19] proposed a rotating object-detection approach based on RCNN [10]
to improve the accuracy of object detection in remote sensing images by addressing the
randomization of target orientation.

Although two-stage object-detection algorithms are comparatively advantageous in
terms of the accuracy and detection effect, they tend to involve complex models and operate
at a slower speed, so researchers have focused on single-stage algorithms allowing for a
trade-off of the speed and accuracy, such as YOLO [20–25], SSD [26,27], MobileNet [28–30],
etc., adding an attention mechanism that improves the network’s ability to detect remote
sensing images. Previous research [31] integrated the attention mechanism CBAM [32] into
the lightweight YOLOX network [33] to improve its detection accuracy for small targets
in remote sensing image datasets. Another study [34] replaced the backbone of YOLOv3
with the backbone of MobileNetV3. It combined the attention mechanism to develop a
lightweight single-stage object detection network SeMo-YOLO with an increased detection
speed in the remote sensing object-detection network. However, instead of using the output
of FPN and PANET simultaneously, the aforementioned YOLO-based network uses only
one. However, the feature pyramid’s output has been underutilized, and the detection
impact could still be enhanced. The single-stage object detection network is a dense anchor
box network with the problem of a positive and negative sample imbalance [35], so previous
researchers [36] added focal loss [35] into the training process to alleviate the positive and
negative sample imbalance and used the self-attention mechanism to extract high-level
semantic information from the depth-feature map for target spatial localization, thereby
improving the accuracy of the SSD model [26] for target localization. The aforementioned
single-stage target-detection technique, which is used in remote sensing photographs,
detects targets more quickly than a two-stage target detection network as it fixes the
network input to a particular size, such as 640 × 640 or 512 × 512. However, small targets
(dozens of pixels or even fewer) tend to be lost when this method is employed for high-
resolution remote sensing target-detection datasets, leading to the poor detection of small
targets and a deterioration in the model’s overall detection effect caused by a reduction in
the resolution [36–38].

The aforementioned techniques are crucial for object detection in remote sensing
images, yet the following issues remain.

(1) Some researchers employed a two-stage model for object recognition, which is
characterized by a high model complexity, a large number of parameter calculations, and a
sluggish performance.

(2) Some researchers used single-stage networks for object detection in optical remote
sensing images. However, most of them are scaled down to a lower input resolution, which
diminishes the effectiveness of model detection.

(3) The majority of YOLO-based networks utilize either the output of FPN [39] or
PAFPN [40], but not both.

(4) Some researchers have demonstrated that the hybrid attention mechanism can
enhance the precision of object detection in optical remote sensing images. Nevertheless,
hybrid attention modules are scarce now.
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We proposed a lightweight object detection network for high-resolution remote sensing
images based on the YOLOv5 framework in order to balance the detection accuracy, speed,
the number of model parameters, and the existing features. The following is a summary of
the contributions of this paper:

(1) Based on the YOLOv5 network topology, a single-stage object detection network
named YOLO-HR for high-resolution optical remote sensing photographs was suggested.

(2) A multi-detection-head approach that can exploit the features of both FPN and
PANET was proposed.

(3) A lightweight hybrid attention module was proposed.
(4) The model’s efficiency and viability were validated using the SIMD [41] dataset.
The article is structured as follows: Section 2 presents a brief summary of the related

works from the remote sensing object detection dataset, object detection network, and
attention mechanism. Based on an analysis of the existing detection head output strategy in
single-stage algorithms, Section 3 offers a multi-detection-head strategy and the YOLO-HR
network. Section 4 evaluates the proposed technique on the SIMD datasets and presents
the experimental results. The paper is summarized in Section 5.

2. Related Work
2.1. Datasets of Optical Remote Sensing Image Object Detection

Traditional remote sensing image datasets for object detection are reviewed in Table 1.
Where Dataset represents the name of the dataset, Categories denotes the number of cate-
gories in the dataset, Images is the number of images, Instances represents the total number
of targets, and Year represents the release year of the dataset. The recently published
SIMD [41] dataset was utilized for this study, with the majority of its images measuring
1024 by 768 pixels.

Table 1. Universal remote sensing image object detection dataset.

DataSet Categories Images Instances Year

TAS [42] 1 30 1319 2008
SZTAKI-INRIA [43] 1 9 665 2012
NWPU VHR-10 [44] 10 800 3775 2014

VEDAI [45] 9 1210 3640 2015
UCAS-AOD [46] 2 910 6029 2015
DLR-MVDA [47] 2 20 14,235 2015
HRSC-2016 [48] 1 1070 2976 2016

RSOD [1] 4 976 6950 2017
DOTA [49] 15 2806 188,282 2017
DIOR [1] 20 23,463 192,472 2018

LEVIR [50] 3 21,952 10,069 2018
ITCVD [51] 1 173 29,088 2018
SIMD [52] 15 5000 45,303 2020

2.2. Attention Mechnishem

Currently, attention mechanisms in deep learning are commonly categorized as soft
attention, hard attention, and self-attention. The soft attention mechanism assigns a weight
between 0 and 1 to each input item and evaluates the majority of the data, but not equally.
The hard attention mechanism assigns a weight of 0 or 1 to each input item. Unlike soft
attention, hard attention just considers the component that demands attention and promptly
discards unnecessary information. The self-attention mechanism assigns a weight to each
input item based on the interaction between the input items, i.e., the "voting" between the
input items determines which input items receive attention. The soft attention method is the
most widespread in the field of remote sensing image object detection, and its representative
articles include SE [53], CBAM [32], ECA [54], Co-Attention [55], Reverse Attention [56],
Cross Attention [57], etc. Numerous articles [31,58–62] have demonstrated that mixed
attention mechanisms improved the effect of a remote sensing target detection network,
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including strengthening the detection effect and increasing the detection accuracy. In this
study, the hybrid attention module MAB also consisted of hybrid soft attention mechanisms.

2.3. Object Detection Networks in Remote Sensing Image

Radar-based object detection and optical remote sensing object detection are the
two types of remote sensing picture object detection. Optical sensors require favorable
weather conditions and ample sunshine to produce high-quality photographs. The most
notable advantage of radar sensors is that they are unaffected by the weather [63]. For
example, the synthetic aperture radar (SAR) is a high-resolution image radar that can
detect camouflage and penetrate masking objects in all-weather situations. One of the
current hot topics in remote sensing is the application of neural networks to detect SAR
images with complex and variable scenes [63–66]. This paper focuses on object detection
in optical remote sensing images. Typically, image data are often derived from satellite
photographs, such as Google Earth, or aerial images, such as UAS. The recent applications
of deep learning to recognize objects in optical remote sensing images have produced
satisfactory results. Wang et al. [67–69] took advantage of the advancements in the Faster
RCNN [12], RetinaNet [35], and YOLOv3 [22] networks to detect wildlife in high-resolution
UAV images. Sun et al. proposed a comprehensive partial-based convolutional neural
network called PBNet for composite object detection in high-resolution optical remote
sensing images [70]. In the past, RCNN was used to identify aircraft targets in very
high-resolution remote sensing photographs with a poor precision and sluggish speed.
Therefore, a mix of dense convolutional networks, multi-scale representation methods,
and a number of enhancement techniques were utilized to strengthen the fundamental
VGG16-Net’s structure, raise accuracy, and more effectively recognize the target in satellite
optical remote sensing images. [13]. The experiments mentioned [13,35,63–70] above used
horizontal boundary boxes (HBB), which sometimes do not offer precise direction and
scale information and have an excessive number of superfluous pixels in the backdrop. In
addition, HBB and non-maximal inhibition (NMS) collaboration usually leads to missing
detection when detecting objects with high aspect ratios and dense parking. In recent
years, the recognition of directional objects (OBB) in RS images has garnered growing
attention [71–76]. OBBs are often slower than HBBs in training and deployment. Hence,
HBBs remain the focus of the current research. The algorithm of this study was also based
on HBB.

The majority of those above high-resolution optical remote sensing target detection
algorithms, which are typically classified into single-stage and double-stage target detection
networks, are based on the existing mainstream target detection networks. RCNN [10],
SPPNet [77], Fast RCNN [11], Faster RCNN [12], Cascade RCNN [78], etc., are examples of
two-stage ones. The single-stage products include RetinaNet [35], SSD [26,27], FCOS [79],
CenterNet [80], CornerNet [81], YOLOv1–7 [20–25,82], YOLOx [33], and YOLOF [83].
Traditional lightweight online models such as MobileNet [28–30], ShuffleNet [84,85], and
Efficientdet [86] are also available.

3. Materials and Methods
3.1. YOLO-HR
3.1.1. Comparison of Prediction Head

The majority of the current YOLO series detection heads are based on the output
feature of FPN and PAFPN, where FPN-based networks such as YOLOv3 and its variants
are shown in Figure 1a, which directly utilize the one-way fused features for the output, and
the PAFPN-based algorithms of YOLOv4 and YOLOv5 add a low-level to high-level channel
on top of this, which directly transmits the low-level information upwards (Figure 1b).
As demonstrated in Figure 1c and similarly in some studies [87–89], Zhu et al. added a
detection head for a particular detection task in the TPH-YOLOv5 model. In Figure 1b,c,
only the PAFPN features are used for the output, while the FPN features are underutilized.
Therefore, YOLOv7 attaches three auxiliary heads to the FPN output, as depicted in
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Figure 1d, although the auxiliary heads are only used for a “rough selection” and have a
low weight. The detecting head of SSD was proposed to improve the too-coarse design
of the anchor set by the YOLO network, as depicted in Figure 1e, and the design concept
consists mostly of a dense anchor design with multiple aspect ratios at multiple scales.
Inspired by Figure 1c–e, this paper proposed a multi-detection-head strategy for the YOLO
detection head, as depicted in Figure 1f, which could utilize the feature information of
PANet and FPN simultaneously. Additionally, an output head was added directly at the
64-fold downsampling, which caused the network to contain the prior global information.
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3.1.2. Overall Structure of YOLO-HR

The multi-detection-head method could efficiently use the network’s output features.
YOLO-HR was an object detection network for high resolution remote sensing photographs.
As depicted in Figure 2, the YOLO-HR network described in this paper can be separated
into Backbone, Neck, and Head. The basic structure of Backbone was a CSP-DenseNet
with C3 and Convolutional modules at its core. After the data enhancement, images
were fed into the network and numerous convolutional modules retrieved features after
channel mixing by the Conv module with a kernel size = 6. They were connected to
PANet in Neck after the feature enhancement module named SPPF. Bidirectional feature
fusion was undertaken to enhance the network’s detecting capability. Conv2d was used
to independently scale the fused feature layers to generate the multi-layer outputs. As
depicted in Figure 3a, the NMS algorithm combined the outputs of all single-layer detectors
to produce the final detection frame.
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Figure 3. Composition modules of YOLO-HR. (a) The principle of YOLO-HR multi-head output;
(b) the other composition modules of YOLO-HR.

Figure 3b depicts the structural composition of each module of the YOLO-HR network.
Conv comprises a 2D convolutional layer, BN layer batch normalization, and Silu activation
function, C3 comprises two 2D convolutional layers plus a bottleneck layer, and Upsample
is the upsampling layer. The SPPF module is a sped-up version of the SPP module, and
the MAB module is depicted in Figure 2, where the ECA [54] is depicted in the bottom
left corner. After channel-level global average pooling without dimension reduction, the
ECA is efficiently performed using the rapid 1D convolution of size k to capture local cross-
channel interaction information, taking into account each channel’s relationship with its k
neighbors. The CA attention mechanism [55] is depicted in Figure 1’s lower right corner,
which encodes each channel along the horizontal and vertical coordinates, respectively,
using a channel-level global average pooling of size (H,1) or (1, W) pooling kernel. The
above two transformations collect features along two spatial directions to produce a pair of
direction-aware feature maps, which are then concatenated and modified with convolution
and Sigmoid functions to provide the attention output.

Table 2 displays the parameter settings for the entire network’s structure. Input
displays the input size of the image, Output displays the output size of the current layer,
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Argvs are the input parameters of the current module, From represents the input source
of the current layer, N represents the number of repetitions of the current module, and
Parameters displays the size of the parameter number of the current layer.

Table 2. Parameter setting of the network structure.

ID Module From N Argvs Output Parameters

Input 1024 × 1024 × 3
0 Conv −1 1 (3, 32, 6, 2, 2) 512 × 512 × 32 3520
1 Conv −1 1 (32, 64, 3, 2) 256 × 256 × 64 18,560
2 C3 −1 1 (64, 64, 1) 256 × 256 × 64 18,816
3 Conv −1 1 (64, 128, 3, 2) 128 × 128 × 128 73,984
4 C3 −1 2 (128, 128, 2) 128 × 128 × 128 115,712
5 Conv −1 1 (128, 256, 3, 2) 64 × 64 × 256 295,454
6 C3 −1 3 (256, 256, 3) 64 × 64 × 256 625,152
7 Conv −1 1 (256, 384, 3, 2) 32 × 32 × 384 885,504
8 C3 −1 1 (384, 384, 1) 32 × 32 × 384 665,856
9 Conv −1 1 (384, 512, 3, 2) 16 × 16 × 512 1,770,496

10 C3 −1 1 (512, 512, 1) 16 × 16 × 512 1,182,720
11 SPPF −1 1 (512, 512, 5) 16 × 16 × 512 656,896
12 Conv −1 1 (512, 384, 1, 1) 16 × 16 × 374 197,376
13 Upsample −1 1 (None, 2, ‘nearest’) 32 × 32 × 384 0
14 Concat (−1, 8) 1 (1) 32 × 32 × 768 0
15 C3 −1 1 (768, 384, 1, False) 32 × 32 × 384 813,312
16 Conv −1 1 (384, 256, 1, 1) 32 × 32 × 256 98,816
17 Upsample −1 1 (None, 2, ‘nearest’) 64 × 64 × 256 0
18 Concat (−1, 6) 1 (1] 64 × 64 × 512 0
19 C3 −1 1 (512, 256, 1, False) 64 × 64 × 256 361,984
20 Conv −1 1 (256, 128, 1, 1) 64 × 64 × 128 33,024
21 Upsample −1 1 (None, 2, ‘nearest’) 128 × 128 × 128 0
22 Concat (−1, 4) 1 (1) 128 × 128 × 256 0
23 C3 −1 1 (256, 128, 1, False) 128 × 128 × 128 90,880
24 Conv −1 1 (128, 128, 3, 2) 64 × 64 × 128 147,712
25 Concat (−1, 20) 1 (1) 64 × 64 × 256 0
26 C3 −1 1 (256, 256, 1, False) 64 × 64 × 256 296,448
27 Conv −1 1 (256, 256, 3, 2) 32 × 32 × 256 590,336
28 Concat (−1, 16) 1 (1) 32 × 32 × 512 0
29 C3 −1 1 (512, 384, 1, False) 32 × 32 × 384 715,008
30 Conv −1 1 (384, 384, 3, 2) 16 × 16 × 384 1,327,872
31 Concat (−1, 11) 1 (1) 16 × 16 × 896 0
32 C3 −1 1 (896, 512, 1, False) 16 × 16 × 512 1,379,328
33 MAB 11 1 (512, 512) 16 × 16 × 512 1,361,477
34 Detect (23, 26, 20, 16, 29, 32, 33) 81406 × (5 + 15)

3.2. Data Augmentation

The essence of data augmentation is to artificially introduce human visual prior knowl-
edge, which can improve the performance of the model very well, and it has basically
become the standard for model training. The more commonly used geometric transforma-
tion methods are flip, rotate, crop, scale, pan, dither, etc. The pixel transformation methods
include adding pretzel and Gaussian noise, performing a Gaussian blur, adjusting the HSV
contrast, and adjusting the brightness, saturation, histogram equalization, white balance,
etc. In addition to the above methods, this paper also uses a variety of data enhancement
methods in the training phase, each with different random ratios, such as Mosica, CUTOUT,
small target replication, etc. Among them, flip and rotation are used to solve the problem
of Angle diversity in remote sensing images, zoom and shift are used to solve the problem
of the multi-scale in remote sensing images, dithering and adding noise are used to im-
prove the problem of a complex background in remote sensing images, and small target
replication is used to expand the samples and improve the detection effect of small targets.
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3.3. Loss Function

The loss function of YOLO-HR was composed of three components: target confidence
loss, target category loss, and target positioning loss. The loss function could be expressed
as follows:

Lall = λcon f Lcon f + λclsLcls + λlocLloc (1)

where Lall contained three hyperparameters, the weight of each component, which could be
modified before training based on the actual circumstances. In this work, the corresponding
weights of the three sections were 1.0, 0.5, and 0.05. The target confidence loss utilized the
BCE (binary cross-entropy) loss, with the following expression:

Lcon f = −
K∗K
∑
i=1

B

∑
j=1

Iij
obj[Ci

jlog(C′i
j)+ (1− Ci

j)log(1− C′i
j)]

−λnoobj

K∗K
∑
i=1

B

∑
j=1

Iij
noobj[Ci

jlog(C′i
j)+ (1− Ci

j)log(1− C′i
j)]

(2)

Among them, K ∗ K could take on three distinct values, with the particular size being
dependent on the image size. Taking 1024× 1024 as an example, they were 16× 16, 32× 32,
64 × 64, and 128 × 128, respectively, illustrating the number of grids on the feature maps
generated by YOLO-HR at three different scales. B represented the number of preceding
boxes. Iij

obj specifies whether the jth previous box of the ith grid had a prediction target.
Iij

obj is 1 if the condition was met; else, it was 0. Iij
noobj indicated if the jth previous box of

the ith grid did not contain a predicted target. If not, Iij
noobj was 1; otherwise, it was 0. Ci

j

and C′i
j represented the actual and expected confidence values, respectively. λnoobj was a

constant coefficient, typically assumed to be 0.5, that was used to balance the positive and
negative samples.

The target confidence loss was also the BCE loss, and the expression is as follows:

Lcls = −
K∗K
∑
I=0

Iij
obj ∑

c∈classes

{
Pi

j(c)log[P′i
j(c)] +

[
1− Pi

j(c)
]
log[1− P′i

j(c)]
}

(3)

where K ∗ K, B and Iij
obj were consistent with Equation (1), c was the target category, and

Pi
j(c) and Pi

′j(c) were the probability that the target in the jth prediction box in the ith grid
belongs to the real value and the predicted value of a certain category, respectively.

The SIoU loss [90] replaced the CIoU loss [91] function for the target positioning loss
in order to increase the training speed and reasoning precision in this paper. The following
is the formula:

Lbox = 1− IoU +
Ω + ∆

2
(4)

IoU =

∣∣B ∩ BGT
∣∣

|B ∪ BGT |
(5) (5)

∆ = ∑t=x,y 1− e−γρt (6) (6)

Ω = ∑t=w,h (1− e−ωt)
θ
(7) (7)

where ∆ represented the Distance cost, γ the Angle cost, Ω the Shape cost, and θ expressed
the Shape cost level of concern.

4. Experiment
4.1. Experimental Platform and Related Indexes
4.1.1. Experimental Platform

The experimental platform of this paper is shown in Table 3.
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Table 3. Experimental platform.

Platform Name

CPU lntel(R) Core(TM) i9-12900K/32G
GPU NVIDIA GeForce RTX 3090/24G

Disk capacity SSD/500G + HDD/4T
The operating system Windows 10

Deep learning framework Pytorch 1.7

The SIMD dataset is a multi-category, open-source, high-resolution remote sensing
object detection dataset containing a total of 15 classes, as illustrated in Figure 4. Addition-
ally, the SIMD dataset is more distributed with small- and medium-sized targets (w < 0.4,
h < 0.4), and the detection head used by YOLO-HR proposed in this paper to detect this
region is double the number of detection heads used by the common YOLO algorithm, so
YOLO-HR has greater advantages on this dataset.
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Figure 4. Distribution of targets in SIMD dataset. (a) shows the distribution of the number of
categories; (b) shows the distribution of target width and height in the image; the color from white to
blue (from light to dark) indicates a more concentrated distribution.

4.1.2. Related Indexes

The network performance evaluation is mainly based on the mAP (mean average
accuracy) during training and the performance of the trained network in the validation set.
To measure the detection results quantitatively, the accuracy Precision, Recall, and mAP are
used here as the performance evaluation metrics. The expressions of P and R are as follows.{

Recall = TP/(TP + FN)
Precision = TP/(TP + FP)

(8)

where True positives (TP) are the number of samples that are actually positive and classified
as positive by the classifier; True negatives (TN) are the number of samples that are actually
negative and classified as negative by the classifier; False positives (FP) are the number
of samples that are actually negative but classified as positive by the classifier; and False
negatives (FN) are the number of samples that are actually positive but classified as negative
by the classifier.

Average Precision (AP) is the area enclosed by the P-R curve. Usually, the better
the classifier, the higher the AP value. Mean Average Precision (mAP) is the AP of each
category taken separately, and then the average of the AP of all categories is calculated,
representing a composite measure of the average precision of the detected targets. AP50 in
the later text means that the IoU threshold is greater than 0.5, mAP is mAP 0.5:0.95, and
step is 0.05.
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4.2. Experiments on SIMD
4.2.1. Ablation Test

It was possible to connect the output of the SPPF module to the output head and thus
identify large targets in the image. However, the output of the SPPF module had multiple
connections and is concerned with targets of multiple scales, so using it directly for the
detection head to identify large objects would result in a poor model representation, as
shown in Figure 5. Figure 5 depicts a visual comparison of the heat map of some detection
findings prior to and following the addition of the MAB module. After adding the MAB
module, this detection head focused on detecting large objects, while the prediction of
small targets was assigned to other prediction heads and the expression effect of the model
was improved, which was also more in line to divide the detection head based on the target
size in the YOLO algorithm.
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Figure 5. Heat map visualization of the partial detection results before and after adding the MAB
module. Both are visualized with Grad-CAM [92].

Using the calculation results of the YOLOv5s algorithm as a reference, the effects of
the MPH output strategy and MAB module on the calculation results were examined in
the SIMD dataset and 1024 × 1024 image resolution, as shown in Table 4 and Figure 6,
respectively, from top to bottom, indicating that the increase in the modules is in order.
Finetune means the model was pre-trained on the ImageNet dataset, and then the trained
model was fine-tuned on the SIMD dataset. The results showed that after the addition of
the MPH strategy and MAB module, the number of parameters in the model increased by
2.5 M. Still, the increase in the number of parameters was negligible compared with the
disk capacity of hundreds of G. The speed was not significantly improved, but the AP50 of
the model increased by 2.1%, mAP increased by 2.2%, and the accuracy increased by 1.5%.
The recall rate increased by 1.19%.

Table 4. Performance improvement of each part design on the result.

Name Params
(M)

FLOPS
(G)

Speed
(ms)

AP50
(%)

mAP
(%)

P
(%)

R
(%)

YOLOv5s 6.72 15.9 5.8 81.51 62.8 75.01 79.66
YOLOv5s + Finetune 6.72 15.9 5.8 83.85 66.05 83.10 79.65

YOLOv5s +MPH 11.9 16.3 6.5 82.96 65.12 80.73 79.40
YOLOv5s + MPH + Finetune 11.9 16.3 6.5 85.15 66.68 83.47 80.30

YOLO-HR 13.2 16.6 6.7 83.61 65.0 76.51 80.85
YOLO-HR + Finetune 13.2 16.6 6.7 85.59 67.31 85.95 81.28
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4.2.2. Comparison Experiments

Simultaneously, the classic YOLOv3-Tiny, Faster RCNN, YOLOv7, and YOLOX models
were selected for comparison tests in this paper. The Yolov3-Tiny, YOLOv5 (DenseNet + PAN),
and YOLO-HR codes and pre-training models utilized in this experiment were obtained
through the YOLOv5 open-source framework and the YOLOv7 models through the
YOLOv7 open-source framework. The YOLOX(Darknet-53 + FPN) algorithm was derived
from the literature [33], while the other models, including Faster RCNN(Resnet-50 + FPN),
were derived from the MMDetection [93] open-source framework. We tested and compared
YOLO-HR and other algorithms at a 1024 by 1024 image resolution. We merely compared
the number of parameters to prevent variations caused by the model storage methods
of various formats. For instance, the amount of parameters in YOLOv5s is 7.11 M, but
Pytorch’s model storage format is 14.4 M. In order to rule out randomness, the running
time was computed as the average time for testing 1000 photos, as shown in Table 5. The
suggested approach outperformed YOLOv5, YOLOv3-Tiny, YOLOv7-Tiny, YOLOX, and
the Faster RCNN model using Resnet-50 as its backbone in terms of the detection outcomes
(mAP and AP50). Although slightly more sophisticated than the YOLOv5 and YOLOX
models, the number of references of a few meters was minimal, even compared to the
modest storage space of edge devices such as Nvidia TX2 and NX, which was only 32 giga-
bytes, so it was more than sufficient. In terms of the speed, it was superior to YOLOv3-Tiny
and Faster RCNN and the detection speed was only 0.5 ms higher than that of YOLOv5,
without a substantial reduction in the detection speed. The complete detection findings of
YOLO-HR proposed in this paper offered benefits over the appeal algorithm. The results
of the experiments indicated that the YOLO-HR algorithm struck a more suitable balance
between the reference number, speed, and detection effectiveness.
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Table 5. Comparison with other algorithms.

Name AP50 (%) mAP (%) Params (M) FLOPs (G) Speed (ms)

YOLOv3-Tiny [32,34] 77.23 54.53 8.3 12.9 4.3
YOLOv5n [24] 79.56 60.69 1.7 4.2 4.8
YOLOv5s [24] 83.85 66.05 6.72 15.9 5.8
YOLO-HR-n 83.01 64.04 3.34 4.4 6.3
YOLO-HR-s 85.59 67.31 13.2 16.6 6.7

YOLOX-s [33] 76.63 56.83 8.94 26.79 5.7
YOLOv7s [25] 83.80 66.55 8.92 26.8 6.3

YOLOv7-tiny [25] 82.08 64.16 5.77 13.1 5.2
Faster RCNN [12] 77.74 - 41.19 198.47 26.3

Some of the detection results are shown in Figure 7. From each detection result, there
was not much difference with other algorithms, but compared with other algorithms, the
algorithm in this paper improved the detection effect of the model while ensuring no
significant increase in the time consumption and enhanced the expression effect of the
model by using the attention mechanism.
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4.2.3. Qualitative Results

Some qualitative results of the YOLO-HR algorithm proposed in this paper on the
SIMD dataset are shown in Figure 8. As shown in the figure, the YOLO-HR model could
better detect objects in remote sensing images with special viewing angles, including objects
with complex backgrounds, random directions, and different scales.
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5. Conclusions

To address the issue that the majority of the current models utilized for optical remote
sensing image object detection underutilized the output features of the feature pyramid, we
proposed a multi-head strategy based on prior work and we proposed a hybrid attention
module, MAB, for the lack of hybrid attention mechanisms. Finally, we embedded the
aforementioned two methods into the YOLOv5 network and presented a high resolution
optical remote sensing target recognition algorithm named YOLO-HR. The YOLO-HR
algorithm employed several detection heads for object detection and recycled the output
features of the feature pyramid, allowing the network to enhance the detection effect fur-
ther. The experiments indicate that the YOLO-HR algorithm allows for a greater number
of downsampling multiples and faster detection results than other algorithms while pre-
serving the original detection speed. In subsequent work, we plan to extend and apply
the concept of modifying the network structure presented in this paper to other object
detection algorithms, study other feature reuse strategies, and investigate the deployment
and application issues of the algorithm presented in this paper in greater depth.
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