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Abstract: High-precision finite difference (FD) wavefield simulation is one of the key steps for the
successful implementation of full-waveform inversion and reverse time migration. Most explicit
FD schemes for solving seismic wave equations are not compact, which leads to difficulty and low
efficiency in boundary condition treatment. Firstly, we review a family of tridiagonal compact FD
(CFD) schemes of various orders and derive the corresponding optimization schemes by minimizing
the error between the true and numerical wavenumber. Then, the optimized CFD (OCFD) schemes
and a second-order central FD scheme are used to approximate the spatial and temporal derivatives
of the 2D acoustic wave equation, respectively. The accuracy curves display that the CFD schemes
are superior to the central FD schemes of the same order, and the OCFD schemes outperform the
CFD schemes in certain wavenumber ranges. The dispersion analysis and a homogeneous model test
indicate that increasing the upper limit of the integral function helps to reduce the spatial error but is
not conducive to ensuring temporal accuracy. Furthermore, we examine the accuracy of the OCFD
schemes in the wavefield modeling of complex structures using a Marmousi model. The results
demonstrate that the OCFD4 schemes are capable of providing a more accurate wavefield than the
CFD4 scheme when the upper limit of the integral function is 0.5π and 0.75π.

Keywords: wavefield simulation; compact finite difference; acoustic wave equation; numerical
dispersion; optimization schemes

1. Introduction

Seismic forward modeling plays an important role in seismic data processing and
interpretation and is the basis of migration and full-waveform inversion [1–5]. Acoustic
wave equation has attracted wide interest in 2D and 3D seismic exploration due to its advan-
tages, such as low computational costs and storage requirements. To date, finite difference
(FD) methods [6–9], finite-element methods [10,11], spectral-element methods [12–15],
boundary integral methods [16–19], pseudo-spectral methods [20–22], and finite volume
methods [23] have been used to calculate the propagation of seismic waves in various
media. Among them, FD methods are widely used in exploration seismology for their
simple implementation and high efficiency.

Conventional FD methods can be simply classified into two categories: explicit and
implicit (compact) schemes. Explicit FD schemes are based on recursion relations and are
popular for numerically approximating wave equations due to their lower computational
costs and simplicity [24,25]. However, the computational accuracy of lower-order explicit
FD methods is lower, while the stability conditions of higher-order explicit FD schemes
are more stringent [26,27]. The compact finite difference (CFD) schemes use a linear
combination of function values to represent the derivative of the function, which can
effectively improve accuracy and stability. Early in the 1970s, several compact Hermitian
FD schemes were proposed to solve partial differential equations in the field of fluid
mechanics [28–30]. In [31], the author introduced a family of CFD schemes with spectral-
like resolution and went through a careful analysis of them. Mahesh [32] proposed a
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more general version of the standard CFD schemes summarized by Lele [31]. Later, the
compact spectral scheme was used to approximate first-order and second-order derivatives
in the simulation of three-dimensional turbulent flows [33]. Combined CFD schemes were
developed to solve the convection–diffusion equation [34], Navier–Stokes equation [35],
and advection equation [36] because they are more accurate and compact than conventional
CFD schemes. The CFD schemes mentioned above are implemented on regular grids.
Geodheer and Potters [37] and Shukla and Zhong [38] reported the application of the CFD
schemes on non-equidistant grids. Up to now, various CFD schemes have been widely
used in aerodynamics, hydrodynamics, and electromagnetics.

The CFD schemes also show great potential in solving seismic wave equations in
exploration seismology. Yang [39] applied the CFD schemes to model the elastic and
acoustic wave propagation in a 2D TI medium. Du et al. [40] combined the CFD scheme
with a staggered-grid technique, developed a compact staggered-grid FD method, and
applied it to simulate elastic wave propagation in a VTI medium. Kosloff [41] proposed
a general CFD scheme that can calculate the derivative value at the current point using
the function values at any number of points and used it to solve the elastic and acoustic
wave equation. Subsequently, Chu and Stoffa [42] and Liu [43] applied the CFD schemes to
solve seismic wave propagation in the frequency domain. Liao [44] discussed the accuracy,
stability, and dispersion of a Padé approximation-based CFD scheme for the numerical
simulation of a 3D acoustic wave equation. In [45], the authors proposed a new CFD
scheme to solve a 3D acoustic wave equation, which has fourth-order accuracy in time and
space and is simple to implement.

Similar to explicit FD schemes, the CFD schemes also suffer from grid dispersion, espe-
cially when large time and spatial steps are involved. Increasing the order of a specific CFD
scheme can suppress the dispersion to some extent. However, higher-order CFD schemes
require more computing and storage costs. To decrease the dispersion error at a large
wavenumber range, optimization-based strategies are usually adopted to obtain modified
FD coefficients. Kim and Lee [46] applied the dispersion–relation–preserving (DRP) method
proposed by Tam and Webb [47] to minimize the dispersive errors in the wavenumber do-
main and obtained the optimum coefficients of tridiagonal and pentadiagonal CFD schemes.
Liu et al. [48] optimized the pentadiagonal compact scheme using a sequential quadratic
programming method and demonstrated its increased performance. Yu [49] proposed
an optimized DRP-combined CFD scheme to solve the advection equation. Based on the
least-squares method, Venutelli [50] developed two optimized fourth-order CFD schemes
and presented classical applications for 1D and 2D nonlinear shallow water equations.

In this paper, we will investigate the validity of a family of tridiagonal CFD schemes
and its optimization schemes for solving the 2D acoustic wave equation in an isotropic
medium. The rest of this paper is as follows. In Section 2, the new CFD schemes with
optimized coefficients are derived, which is followed by the dispersion and stability anal-
ysis. In Section 3, two numerical examples are used to demonstrate the feasibility and
effectiveness of the proposed method, which is followed by a discussion and a conclusion
in Sections 4 and 5, respectively.

2. Theory and Methods
2.1. Tridiagonal Compact Finite-Difference Schemes for 2D Acoustic Wave Equation

Consider the 2D acoustic wave equation in an isotropic medium:

1
v2

∂2u
∂t2 =

∂2u
∂x2 +

∂2u
∂z2 + s(t) = ∆u + s(t) (1)

where u(x, y, z) is the scalar acoustic wavefield, v(x, y, z) is the velocity field, s(t) denotes
the source function, and ∆ denotes the Laplace operator.

The key to solving Equation (1) is to approximate ∆u using high-order FD schemes.
For simplicity, let f (x) be a function of one variable, xi be the i-th grid point in the x-
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direction, and fi be the value of f (xi). In [31], a multi-parameter family of pentadiagonal
CFD schemes was proposed to approximate the second derivative of f (x):

β f ′′i−2 + α f ′′i−1 + f ′′i + α f ′′i+1 + β f ′′i+2 =
M

∑
m=1

am
fi+m − 2 fi + fi−m

m2h2
x

(2)

where M ∈ {1, 2, 3}, hx denotes the grid interval in the x-direction, and α, β and am are
difference coefficients. By matching the Taylor series coefficients of different orders, we
obtain the relations between α and am as follows:

a1 + a2 + a3 = 1 + 2α + 2β (second order) (3)

a1 + 22a2 + 32a3 =
4!
2!
(α + 22β) (fourth order) (4)

a1 + 24a2 + 34a3 =
6!
4!
(α + 24β) (sixth order) (5)

a1 + 26a2 + 36a3 =
8!
6!
(α + 26β) (eighth order) (6)

a1 + 28a2 + 38a3 =
10!
8!

(α + 28β) (tenth order) (7)

According to Equations (3)–(7), only the tenth-order compact scheme has unique FD
coefficients since there are five coefficients to be determined. Other lower-order compact
schemes are not uniquely determined because of insufficient constraint conditions.

For β = 0, a family of tridiagonal schemes is generated:

α f ′′i−1 + f ′′i + α f ′′i+1 =
M

∑
m=1

am
fi+m − 2 fi + fi−m

m2h2
x

(8)

when M = 1 and Equations (3) and (4) are chosen as constraints, the classical Padé scheme
with fourth-order accuracy (CFD4) is recovered. If M = 2, we can obtain a sixth-order
compact (CFD6) scheme constrained by Equations (3)–(5). For M = 3, an eighth-order
compact (CFD8) scheme constrained by Equations (3)–(6) is obtained, which is the highest-
order scheme that Equation (8) can achieve. The coefficients of these schemes are tabulated
in Table 1. If a further choice of α = 0 is made, conventional central FD schemes are
obtained. We focus on the ability of Equation (8) to approximate ∆u in this paper.

Table 1. Coefficients of the tridiagonal compact schemes.

Schemes Constraints Order α a1 a2 a3

CFD4 Equations (3) and (4) fourth 0.1 1.2 0 0
CFD6 Equations (3)–(5) sixth 0.181818 1.090909 0.061818 0
CFD8 Equations (3)–(6) eighth 0.236842 0.967105 0.536842 −0.030263

Equation (8) can be solved using the Thomas (chase) algorithm because the coefficient
matrix consisting of α is tridiagonal. The computational effort of the Thomas algorithm for
solving linear equations is (5X-4), where X is the number of grid points.

2.2. Optimization of Compact Finite-Difference Coefficients

By relaxing the constraints of each CFD scheme, we can obtain corresponding low-
order schemes, which provides the possibility to improve the difference coefficients using
various optimization methods. For example, if the CFD4 scheme is only restricted to
Equation (3), it will degenerate into a new scheme with second-order accuracy.

Fourier analysis is usually used to measure the accuracy of the FD schemes. Let w
denote the product of the scaled true wavenumber k and the sampling interval h. Applying
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a Fourier transform to Equation (8), we obtain the scaled modified (numerical) wavenumber
as follows:

L(w) =

√√√√√2
M
∑

m=1
am[1− cos(mw)]

1+2α cos(w)
(9)

where L(w) denotes the product of the scaled numerical wavenumber and the sampling
interval h. We define a weighted deviation (integrated error) that aims to minimize w
and L(w):

E(α, a1, a2, a3) =
∫ t

0

(
L2(w)− w2

)2
G2(w)dw (10)

where E denotes the error between w and L(w), 0 < t ≤ π is the upper limit of the
integral function, and G(w) denotes the weighting function. The weighting function makes
Equation (10) integrable analytically and reduces the numerical dispersion in the high-
wavenumber ranges by weighting the integrated error. The following weighting function
is adopted:

G(w) = 1 + 2α cos(w) (11)

The optimization condition that makes E a local minimum is as follows:

∂E
∂α

= 0 (12)

Equations (3)–(6) and (12) provide a system of linear equations by which the optimiza-
tion coefficients of the tridiagonal compact schemes can be determined. Table 2 shows the
optimization schemes (OCFD) with different upper limits of integral functions.

Table 2. Coefficients of the tridiagonal compact optimization schemes.

Schemes Constraints Order Integral
Limit α a1 a2 a3

OCFD4 Equation (3) second
π 0.166054 1.332109 0 0

0.75π 0.131511 1.263021 0 0
0.5π 0.112531 1.225063 0 0

OCFD6 Equations (3) and (4) fourth
π 0.277327 0.963564 0.591090 0

0.75π 0.224304 1.034262 0.414346 0
0.5π 0.198053 1.069262 0.326844 0

OCFD8 Equations (3)–(5) sixth
π 0.332545 0.751775 0.996214 −0.082900

0.75π 0.277486 0.875656 0.731933 −0.052617
0.5π 0.251903 0.933217 0.609136 −0.038547

For comparison, as shown in Figure 1, we plot the difference error curves of these
CFD and OCFD schemes in which the square of the numerical wavenumber varies with the
true wavenumber. Figure 1a–c suggest that when the upper limit of the integral function is
0.5π or 0.75π, the curves of the OCFD schemes are closer to the exact curve than that of the
CFD scheme. When the upper limit of the integral function is π, over-optimization occurs
in a certain wavenumber range. In addition, as the upper limit of the integral function
decreases, the accuracy curve of the OCFD scheme gradually approaches that of the CFD
scheme. In fact, the OCFD scheme will degenerate into the CFD scheme if the upper limit
of the integral function infinitely approaches zero. Figure 1d displays a comparison of the
CFD schemes and standard central FD schemes. We observe that the accuracy of the CFD
schemes is much higher than that of the FD schemes of the same order.
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2.3. Dispersion Analysis and Stability Analysis

Numerical dispersion is a significant issue in FD forward modeling because the
discretized form of the seismic wave equations is usually dispersive [51–53]. The dispersion
can be measured by the error of the phase velocity vFD with respect to the true velocity
vTR. Let un

i,j denote the numerical solution of the acoustic wavefield at time level nτ and
grid point

(
xi, zj

)
. The numerical approximation of Equation (1) using second-order central

finite-difference in time and various-orders compact finite-difference in space is written as:

un+1
i,j = 2un

i,j − un−1
i,j + τ2v2

[
(uxx)

n
i,j + (uzz)

n
i,j

]
(13)

where τ denotes the time step. The spatial derivatives uxx and uzz are solved by Equation (8).
Based on the plane-wave theory, we let:

un
i,j = exp[I(ikxhx + jkzhz − ω̃nτ)] (14)



Remote Sens. 2023, 15, 604 6 of 19

where θ is the inclination angle between the x-axis and the direction of plane wave prop-
agation, the vector wavenumber k = (kx, kz) = (|k| sin θ, |k| cos θ), ω̃ = vFD|k| = vFDk,
and I =

√
−1 ∈ C.

Without loss of generality, let h = hx = hz. We obtain the dispersion relation of the
CFD schemes by substituting Equation (14) into Equation (13):

cos(ω̃τ) = 1− r2


M
∑

m=1
am[1− cos(mhkx)]

2α cos(hkx) + 1
+

M
∑

m=1
am[1− cos(mhkz)]

2α cos(hkz) + 1

 (15)

where r = vTRτ
h . The phase velocity error is defined as follows:

γ =
vFD
vTR
− 1 =

kvFDτ

kvTRτ
− 1 =

ω̃τ

k vTRτ
h h
− 1 =

ω̃τ

krh
− 1 =

arccos(cos(ω̃τ))

krh
− 1 (16)

If γ equals 0, the CFD scheme is non-dispersive. If γ is negative and far from 0, strong
spatial dispersion will occur. When γ is positive, the temporal dispersion of the scheme is
large. According to Equations (15) and (16), the phase error γ depends on θ and r. Next,
we fix one of them and calculate γ for kh ranging from 0 to π to compare the dispersion
curves for the other parameter.

First, we study the effect of θ on the dispersion. In Figure 2, we plot γ vs. kh for
different θ, while r is fixed at 0.1. From Figure 2, when r and θ are fixed, the phase velocity
error of the higher-order schemes is much smaller than that of the lower-order schemes.
From Figure 2a–f or 2g–i, we observe that the spatial dispersion of these schemes decreases
as θ increases in the high wavenumber ranges. In addition, the OCFD schemes show great
potential in eliminating the spatial dispersion in the high wavenumber ranges as the upper
limit of the integral function increases. However, they are not suitable for suppressing the
temporal dispersion, especially when the upper limit of the integral function is π. When
the upper limit of the integral function is 0.5π, we obtain three relatively good optimization
schemes: OCFD4 (0.5π), OCFD6 (0.5π), and OCFD8 (0.5π). The temporal error of these
optimization schemes is smaller than that of other optimization schemes.

Next, we fix the other parameter at θ = 0 to study the effect of r. Figures 2a,d,g and 3
show that all the CFD and OCFD schemes are sensitive to r, which indicates that using a
small time step may help to reduce the temporal dispersion error when the spatial grid
interval is fixed.

Stability analysis is the other key issue in measuring the effect of an FD scheme. Almost
all of the FD methods for approximating the seismic wave equations are conditionally stable
and subject to constraints on velocity, spatial grid interval, and time step. The stability
condition of the CFD schemes mentioned above can be derived by the Fourier method:

vmaxτ

√
1
h2

x
+

1
h2

z
≤
√√√√√ 2(1− 2α)

M
∑

m=1
am
[
1− (−1)m] = C (17)

where vmax denotes the maximum velocity of the model, and C is the Courant–Friedrichs–
Lewy (CFL) number. Table 3 shows the CFL number of the CFD and OCFD schemes. We
observe that the CFL number of the lower-order CFD schemes is larger than that of the
higher-order schemes. It should also be noted that the stability condition of the OCFD
schemes is slightly stricter than that of the general scheme.
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Table 3. CFL number of the CFD and OCFD schemes.

Schemes CFL Number Schemes CFL Number Schemes CFL Number

CFD4 0.817 CFD6 0.764 CFD8 0.750
OCFD4
(0.5π) 0.795 OCFD6

(0.5π) 0.752 OCFD8
(0.5π) 0.745

OCFD4
(0.75π) 0.764 OCFD6

(0.75π) 0.730 OCFD8
(0.75π) 0.735

OCFD4 (π) 0.708 OCFD6 (π) 0.680 OCFD8 (π) 0.708
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3. Numerical Examples
3.1. Homogeneous Model

We use a simple homogeneous model to evaluate the simulation accuracy of the new
schemes shown in Equation (13). The model is discretized into 200× 200 grids. The velocity
of this model is 3000 m/s. A Ricker wavelet with 30 Hz dominant frequency is used for
the simulation, which is located at the center of the model. The time step is 1 ms and the
spatial grid interval is 20 m. Figure 4 displays the snapshots at 0.5 s simulated by the
CFD4 scheme (Figure 4a), OCFD4 schemes (Figure 4b–d), and conventional central FD
schemes (Figure 4e,f). In Figure 4a, the spatial grid dispersion is strong because the spatial
grid interval is large. In Figure 4b–d, the spatial dispersion is gradually eliminated as the
upper limit of the integral function increases (indicated by the red arrows). However, when
the upper limit of the integral function is π, the time error generated in acoustic wave
propagation is too large to be ignored (indicated by the black arrow).
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We extract four traces from the snapshots simulated by the CFD4 and OCFD schemes
for further analysis, as shown in Figure 5a. The dashed arrows indicate the spatial numer-
ical dispersion, and the dashed box indicates the temporal dispersion. The single trace
waveform of the CFD4 and OCFD4 (π) schemes between 0.4 and 0.8 km is clearly different
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from that of other optimization schemes, which shows that increasing the upper limit of
the integral function contributes less to temporal simulation accuracy. To prove that the
simulation accuracy of the proposed scheme is better than that of conventional central FD
schemes, we extract single traces at a lateral distance of 2 km from the snapshots shown
in Figure 4b,e,f. The result is shown in Figure 5b. From Figure 5b, we conclude that the
modeling accuracy of the OCFD4 (0.5π) scheme is not inferior to that of the sixth-order
central FD scheme.
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The snapshots simulated by the CFD6 and CFD8 schemes and their optimization
schemes are shown in Appendix A. The simulation results displayed in Figures A1 and A2
are similar to those shown in Figure 4. Table 4 displays the computing time for the CFD
schemes of different orders. The result shows that the computational cost of the CFD4
scheme is much lower than that of the higher-order schemes.
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Table 4. Computing time for the CFD schemes of different orders.

Schemes Recording
Time (s)

Computing
Time (s)

Recording
Time (s)

Computing
Time (s)

Recording
Time (s)

Computing
Time (s)

CFD4 5 36.7 10 73.2 20 145.6
CFD6 5 70.9 10 142.0 20 283.7
CFD8 5 108.5 10 217.4 20 433.1

3.2. Marmousi Model

We use a Marmousi model to further illustrate the accuracy and effectiveness of the
OCFD4 schemes in modeling acoustic wave propagation. The model is shown in Figure 6,
which is discretized with 460 × 250 grids. The spatial grid spacing is 10 m and the time
step is 0.5 ms. The source is located at (2300, 10) m, which is a Ricker wavelet with 30 Hz
dominant frequency. A perfectly matched layer absorbing boundary [54,55] is used for
wavefield extrapolation.
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Figure 7 displays the wavefield snapshots at 0.9 s computed by the CFD4 (Figure 7a)
and OCFD4 (Figure 7c–e) schemes. The snapshot in Figure 7b is simulated by the CFD6
scheme, which is used as a reference. When the upper limit of the integral function is 0.5π
or 0.75π, the wavefield is calculated correctly. As indicated by the red arrows in Figure 7e,
the wavefield modeled by the OCFD4 (π) scheme is different from those simulated by
other schemes. Figure 8 shows the difference in the simulated wavefield. The error of
the residual wavefield in Figure 8a–d relative to the reference wavefield in Figure 7b at
L2-norm is 1.65%, 1.06%, 1.25%, and 1.74%, respectively. Obviously, the OCFD4 (0.5π)
scheme is the most helpful in improving the simulation accuracy of the Marmousi model.
Figure 9 displays the shot records simulated by the CFD4, CFD6, and OCFD4 (π) schemes,
respectively. We extract two traces from the records for further comparison, as shown in
Figure 10. The result shows that the simulation accuracy of the OCFD4 (π) scheme is better
than that of the CFD4 scheme. From Figures 7–10, we conclude that the OCFD4 (π) scheme
is effective, and it can be used to obtain more accurate simulation results than the general
CFD4 scheme.
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Figure 7. Snapshots of the Marmousi model at 0.5 s. They are simulated by: (a) CFD4 scheme,
(b) CFD6 scheme, (c) OCFD4 scheme (0.5π), (d) OCFD4 scheme (0.75π), and (e) OCFD4 scheme (π),
respectively. The red arrows indicate the dispersion error.
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4. Discussion

Compared to CFD schemes, most explicit FD schemes often used in seismic forward
modeling are not compact, which gives rise to difficulty in dealing with boundary condi-
tions. For example, a sixth-order central FD scheme requires a 13-points stencil and three
layers of boundary conditions for approximating the second derivative in 2D cases while
the CFD4 scheme with similar approximation accuracy only requires a 5-point stencil and
one layer of boundary conditions. In 3D cases, the CFD4 scheme requires a 7-points stencil
and one layer of boundary conditions, while the sixth-order central FD scheme requires
a 19-point stencil and three layers of boundary conditions. Therefore, the CFD schemes
require fewer boundary conditions than the explicit FD schemes. This advantage of the
CFD schemes also helps to save some storage space in numerical simulation.

We studied three CFD schemes and their corresponding optimization schemes in this
paper. In fact, the other two CFD schemes have more than one optimization scheme except
for the CFD4 scheme. For example, if the CFD6 scheme is only constrained by Equation (3),
a second-order OCFD6 scheme is generated. In this case, two optimization conditions, such
as Equation (12), must be solved to make Equation (10) a local minimum. For the second-
order OCFD8 scheme, it is necessary to solve a system of equations consisting of three
optimization conditions to obtain the optimization coefficients. All possible tridiagonal
optimization schemes are summarized in Table A1 of Appendix B. The coefficients for the
OCFD6_2, OCFD8_2, and OCFD8_4 schemes are not given in the paper due to the limitation
of computational power. In addition, Equation (10) can be regarded as a least square
problem. Therefore, some optimization algorithms, such as the minimax approximation
method [56], Newton method [57], and conjugate gradient method [58], can be used to
obtain these coefficients.

The selection of the upper limit of the integral function has a significant impact on
the OCFD schemes. For each optimization scheme, we only discussed three representative
cases where the upper limit of the integral is 0.5π, 0.75π, and π, respectively. The coefficients
in these cases are easily obtained by solving Equation (12) because some terms cancel out
in the calculation. The weighting function is also important for optimization results. Some
exponential weighting functions [46,59] can help to obtain better optimization coefficients
by weighting the integrated error in the high wave number range. However, it makes it
difficult to find the primitive function of Equation (10).

5. Conclusions

We have proposed a high-accuracy forward modeling scheme for simulating acoustic
wave propagation. A family of tridiagonal OCFD schemes with 2M-order accuracy in space
and the central FD scheme with second-order accuracy in time are used to approximate the
spatial and temporal second derivatives, respectively. The accuracy curves show that the
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CFD schemes are superior to conventional FD schemes of the same order, and the OCFD
schemes are better than the CFD schemes in a certain wavenumber range. The dispersion
analysis demonstrates that increasing the upper limit of the integral function helps to
reduce spatial error but contributes less to improving temporal dispersion. In addition,
the wavefield simulations on a homogeneous model confirm the conclusion drawn in
the dispersion analysis. The efficiency tests for the homogeneous model show that the
lower-order CFD scheme is more effective than the higher-order schemes. The numerical
experiments on the Marmousi model suggest that the OCFD4 (0.5π and 0.75π) schemes
facilitate improvement in the wavefield modeling of complex structures.
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Appendix A

Figure A1 shows the snapshots of the homogeneous model simulated by the CFD6
and its optimization schemes. Figure A2 shows the snapshots of the homogeneous model
simulated by the CFD8 and its optimization schemes. The two figures are shown below:
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Appendix B

Table A1 shows all tridiagonal optimization schemes with different orders. OCFD6_2
denotes the second-order OCFD6 scheme, OCFD8_4 denotes the fourth-order OCFD8
scheme, and OCFD8_2 denotes the second-order OCFD8 scheme.

Table A1. All tridiagonal optimization schemes with different orders.

Schemes Constraints Order Optimization Conditions

CFD4 Equations (3) and (4) fourth /
OCFD4 Equation (3) second ∂E/∂α = 0
CFD6 Equations (3)–(5) sixth /

OCFD6 Equations (3) and (4) fourth ∂E/∂α = 0
OCFD6_2 Equation (3) second ∂E/∂α = 0, ∂E/∂a1 = 0

CFD8 Equations (3)–(6) eighth /
OCFD8 Equations (3)–(5) sixth ∂E/∂α = 0

OCFD8_4 Equations (3) and (4) fourth ∂E/∂α = 0, ∂E/∂a1 = 0
OCFD8_2 Equation (3) second ∂E/∂α = 0, ∂E/∂a1 = 0, ∂E/∂a2 = 0
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