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Abstract: Over the last two decades, globally coastal areas have urbanized rapidly due to various
socioeconomic and demographic driving forces. However, urban expansion in towns and cities
of the developing world has been characterized by entangled structures and trends exacerbating
numerous negative consequences such as pollution, ecological degradation, loss of agricultural land
and green areas, and deprived settlements. Substantially, spatial simulation of urban growth and
their consequences on coastal areas particularly in Egypt is still very rare. Geospatial modelling
coastal urban growth is crucial and has enormous potential for coastal land use transformation and
urban sustainability. The key aim of this study was to analyze spatiotemporal changes (2010–2020)
and simulate future dynamics (2030 to 2050) of land use/land cover (LULC) in Alexandria Gov-
ernorate, Egypt. Artificial Neural Network–Multiple Layer Perceptron (ANN-MLP) and Markov
Chain techniques were employed within the GIS platform to assess processes of land transitions
and predict urban growth trends, patterns and dimensions. The forecasting process was based on
three maps of LULC derived from classified Landsat images of 2000, 2010 and 2020. In addition,
topographical, demographic, accessibility, proximity factors were generated and developed in the
form of raster spatial parameters of urbanization driving forces. The findings revealed that the ob-
served expansion of the built-up area during one decade (2010–2020) was 12,477.51 ha, with a decline
in agricultural area (7440.39 ha) and bare land (4904.91 ha). The projected change was forecasted
to be 71,544 ha by 2030 and 81,983 ha in 2040 with a total of 35,998 ha increase in the built-up area
and residential expansion by 2050. Despite this expected pattern of rapid changes, urban growth
will be shaped by the key drivers of proximity to coastline and agricultural land transformation.
The analysis indicates that the vertical urban growth will be most likely dominant along the coastal
zone due to the lack of vacant lands, whereas the horizontal urban expansion will primarily take
place towards the east-northeastern and south-southeastern directions of the city. The present work
provides a holistic framework for establishing initial coastal land use plans not only for planners
and urban administrators in Alexandria but also for policymakers and coastal municipalities in
developing nations.

Keywords: monitoring; urban growth; coastal cities; GIS; artificial neural network; Markov Chain

1. Introduction and Theoretical Framework

At present, approximately 4 billion people (55% of the world’s population) live in
cities and urban zones and more than 2.4 billion people (40% of the world’s population)
live within 100 km of the coasts [1]. It is projected that global urban population will double
by 2050, and that 7 out of 10 persons will live in urban agglomerations [2]. Globally, coastal
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urban settlements have always attracted human populations for their rich natural resources,
economic revenues and high living standards [3]. Therefore, coastal areas are undergoing
unprecedented and intricate urban processes that are impacting environmental diversity
and marine ecosystems. Coastal urban growth is a multifaceted, heterogeneous and
entangled phenomenon that is highly associated with numerous spatial, socioeconomic and
demographic driving forces. Indeed, in most developing countries, coastal urban expansion
leads to rapid and unplanned forms of agglomerations and settlements [4]. Accordingly,
several coastal cities and towns are being subjected to human-induced development and
conversion of natural resources. In most cases, coastal cities serve as major ports and are
therefore important economic centres, particularly for external and internal trades.

As polarized urban centers, coastal cities are desirable places for living and working
and serve as major hubs for rural–urban population migration. Nevertheless, and due to the
limited vacant lands, urbanization has resulted in several forms of vertical growth, housing
overcrowding, sprawl and slums. In essence, the rapid urban dynamics of coastal cities
in developing nations trigger inevitable stressors on local biospheres, species extinction
and habitat loss. Besides the natural population increase, rural–urban mobility is another
crucial indicator in predicting urban expansion in large coastal cities. Migration and the
movement of people from villages and rural places to cities is an essential driver of housing
growth and contributes significantly to urbanization.

Owing to several socioeconomic and demographic factors, specifically urban-based
employment, coastal cities have experienced significant population growth and urban
expansion in the last two decades [5]. In coastal areas, the growth rate is outpacing that
of the surrounding rural areas, due to economic diversification and migration to coastal
cities [6]. One major concern of unplanned residential expansion and urban sprawl in
coastal cities is the conversion of agricultural lands into residential areas where ecosystem
services and habitats are altering [7–9]. The shrinking of agricultural hinterland areas
usually negatively influences the ecosystem of coastal urban agglomeration, particularly
the rise in air pollution due to increasing urban heats and concentration of carbon dioxide
emissions [10].

The agricultural land transition is primarily associated with spatial factors, specifically
proximity to urban cores, education and health facilities, amenities and major roads. The
decision and likelihood of agricultural land conversion into residential and commercial
properties is also associated with land prices and the economic value [11,12].

Given the growing awareness of urbanization trends globally and their consequences,
utilizing GIS and remote sensing methods on monitoring and forecasting spatio-temporal
changes of the LULC is quite effective in terms of enhancing our understanding of the
essential key components of land changes and their spatial ramifications [13,14]. Such
advanced techniques and models combine satellite images, aerial photos, spatial layers and
ancillary attribute data for the projection of urban changes at different scales [15–19]. A
variety of models offer platforms to characterize and simulate LULC patterns and human
activities that shape the driving forces of change processes. Therefore, the growing body
of literature that has adopted such geospatial techniques has fundamentally provided a
more profound and comprehensive understanding of land change. The geospatial mod-
els range from mathematical approaches that involve all components of the transition
mechanism [17,20,21] to agent-based models that undertake the modelling process accord-
ing to individual decision making [22–24]. Similarly, and to improve the accuracy of urban
land use/cover prediction, other studies have relied on the integration of mathematical
models, particularly Markov Chain and Cellular Automata (CA-Markov) with agent-based
models [25–28].

The increasing availability of satellite images at finer resolutions has allowed the
incorporation of advanced geospatial techniques to monitor land changes globally at
different scales [29]. Furthermore, the employment of Machine Learning techniques, as
computational algorithms, in LULC projections has also enriched image classification
and provided accurate estimates for land dynamics [30]. For instance, emulating the
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nerve biological system of the human brain, Multi–Layer Perceptron–Artificial Neural
Networks (MLP-ANN) is a computational model which is utilized to recognize land
patterns and simulate urban changes [31–34]. Aburas et al. 2016 conducted an invaluable
review highlighting the strength of utilizing Cellular Automata (CA) models in simulating
spatiotemporal urban growth [35]. Another example [36] employed advanced models
(Dynamics of Land System (DLS) and Computable General Equilibrium of Land Use
Change (CGELUC)) to spatially simulate land use structure across Shandong Province,
China. The findings indicated that spatial variations in land allocations are expected to
occur within two decades. In addition, grass, cultivated and vacant lands will decline
based on green development and resource consumption scenarios.

Recently, a great body of literature has been developed that has incorporated spatial
algorithms and geospatial techniques to forecast urban dynamics. For instance, many
attempts have been made to project changes in land use distribution patterns in coastal
cities of developing countries utilizing integrated GIS and remote sensing techniques
(e.g., [16,37–39]) and a growing number of studies focus on investigating land use dynamics
in coastal areas of the Middle East region, e.g., [40–42]. However, few studies have explored
land use changes in Egyptian coastal areas [43,44]; even fewer have projected urban growth
and expansion along northwestern coasts of Egypt [45,46]. Despite the numerous studies
that have addressed the LULC changes in the Egyptian coastal and non-coastal areas,
e.g., [45,47–49], no study has accounted for the prediction of Alexandria’s urban growth
over the coming decades.

Alexandria is one of Egypt’s oldest cities and the country’s second most populous
metropolis after Cairo. Alexandria Governorate reached a population of 5,450,371 inhab-
itants in August 2021 [50]. The name Alexandria stems from its founder, Alexander the
Great, who established it in 331 BC [51]. Throughout its history, the city has served as
a melting pot of several global and local cultures and therefore it is regarded as a multi-
cultural and exceptional coastal metropolis [52]. Due to these characteristics, Alexandria
attracts people from all across the country, which has made the city a rich and diversified
place. Consequently, and during the last two decades, Alexandria has exhibited rapid urban
growth and extraordinary land cover changes [53]. The changes in LULC are predominately
due to a variety of driving forces that influence built-up area expansion including popu-
lation mobility, immigration from rural areas, industrialization, port commercialization,
employment opportunities and modernization. In a rapidly urbanizing coastal zone like
Alexandria, understanding LULC dynamics is crucial to sustain the urban ecosystems,
identify the driving forces of change and diminish the negative consequences of urban
expansion. The analysis and simulation of LULC changes in Alexandria Governorate, as
a coastal zone, is not only necessary for urban planning and policy actions but also is
essential for protecting agricultural land and controlling sprawl.

In order to enhance the understanding of coastal urban dynamics of Alexandria, the
main aim of the present study is to deploy advanced geospatial techniques, in particular the
Artificial Neural Network–Multi-Layer Perceptron (ANN-MLP) model, to spatially monitor
and forecast land changes across Alexandria Governorate. Conceptually, underlying this
research aim, the following questions were answered:

1. What are the spatial patterns of urban growth in the coastal governorate of Alexandria?
2. What are the major driving forces that have a significant impact on land changes and

what are its spatial characteristics?
3. To what extent can future scenarios of LULC changes be successfully projected using

remote sensing data and Machine Learning approaches?
4. How will unplanned urbanization affect ecosystems and natural resources, especially

agricultural land and biodiversity?

To achieve the research goal and answer the aforementioned research questions,
advanced geospatial techniques were deployed and spatial modelling processes were
carried out within GIS and remote sensing environments. The integrated GIS and image
processing platforms can offer invaluable information and an essential basis for modelling
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and forecasting land change patterns and identifying driving forces that are fundamentally
responsible for urban expansion and growth mechanisms.

An extensive amount of literature has addressed how rapid coastal urban growth
may influence marine ecosystems, e.g., [54,55]. For instance, in his seminal work about the
health of coastal marine ecosystem, the author of [54] pointed out that marine ecosystems
of coastal cities are under massive pressure, mainly from coastal development and urban
sprawl. Similarly, ref. [34] pinpoints a number of stressors that impact marine ecosystems,
particularly urban expansion and anthropogenic activities that cause severe environmental
pollution. In the same vein, ref. [55] 2015 adopted a geospatial analysis to examine pressure
on marine ecosystems in Latin America and its drivers, particularly socioeconomic activities,
development of settlements, population growth and land use dynamics. The findings of this
analysis indicated that during the last seven decades, populations of deltas and estuaries
increased eightfold.

In the same line of literature, several studies have highlighted human-induced threats
on Alexandria shorelines, e.g., [56–58]. For example, a broader perspective was adopted
by [58] to shed light on the influence of urban development in Alexandria on marine ecosys-
tems. The analysis specifically created a coastal vulnerability index (CVI) incorporating
many geological and physical criteria. The results of the analysis revealed that Alexan-
dria coasts encounter various environmental hazards and almost 32% of the shoreline
was under very high and high risks while 42% were at moderate vulnerability. Another
study explicitly reported significant negative influences of urbanization across Alexandria
Governorate on vegetation and agricultural lands [53].

Our review demonstrated that explicit geospatial modelling research on land use
dynamics, urban growth and future forecasting of urban change processes across Alexan-
dria Governorate is still very rare. Notably, the dynamics of coastal urban patterns, its
directions and associated consequences need to be spatially examined and estimated. Ac-
cordingly, this study, through integrated MC and ANN-MLP techniques within the GIS
platform, is the first attempt to bridge the gap in the existing literature by projecting urban
growth and its spatial ramifications in Alexandria up to 2050. The outcomes of this analy-
sis result in crucial information and may serve as essential guidelines for governmental
strategies and policy makers not only in the fields of controlling urban sprawl, agricultural
land loss and housing provision but also in the domains of coastal area management and
environmental degradation.

2. Study Area

Over the past two decades, Alexandria has been a fast-growing large coastal gover-
norate in Egypt as it emerged as the premier port commercial, industrial and transportation
centre of the northwest Nile Delta. The governorate stretches over a 70 km long coast with
a total area size of approximately 2300 km2. It is situated on the Mediterranean Sea and has
the most important harbor in Egypt. Alexandria encompasses a number of lakes and water
canals for agricultural activities and population needs. The governorate is bordered by El
Behera Governorate in the south and the east and Matrouh Governorate in the west while it
is bordered by the Mediterranean Sea in the north (Figure 1). Approximately half of Egyp-
tian industrial activities are located in and around Alexandria, particularly food, chemicals,
spinning and weaving, fertilizers and oil industries—mainly extraction and refining.

Geographically, the study area consists of 19 neighborhoods including New Borg
Al-Arab City. The population distribution and concentration across the administrative
zones vary from the far east, where population density is the highest, to the southwest
part, which is described as the least populous part. For instance, Al-Amiriya Second
Neighborhood is considered the largest area (596.7 km2), while only 5.38% of the total
population of the governorate (5,450,371) live within it [50]. In contrast, the area of Al-Raml
First Neighborhood is only 4.2 km2, while it is characterized by a large population concen-
tration and is the highest in terms of population density (66,115 people/km2). Likewise,
neighborhoods of ElGomrok (57,725 people/km2), Bab Shark (41,060 people/km2) and
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Al-Labban (39,288 people/km2) are characterized by high population density. On the other
hand, the administrative zones with low population concentration are located in the south
and southwest such as neighborhoods of the northern coastal part (195 people/km2), New
Borg Al-Arab City (263 people/km2) and the Borg Al-Arab City (286 people/km2) and
Second Al-Amiriya (466 people/km2).

Figure 1. Location of the study area.

As a main centre and destination for internal immigration, Alexandria has experienced
a rapid population growth. Therefore, population size had increased from 4,110,015 in 2006
to 5,163,750 in 2017 [50]. The increase in population size, particularly due to immigration
currents from the surrounding governorates, has led to rampant suburbanization patterns
and has significantly expanded the built-up areas outward onto the agricultural hinterland
in the south and southwest directions. Presumably, the rapid urban expansion in Alexandria
is likely to continue during the coming decades, which may impact the urban fabric and
alter the LULC structure.

3. Methods of Data Acquisition and Analysis

The methodological framework and the implemented stages of this analysis and
modelling process are depicted in Figure 2.
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Figure 2. Flowchart of the implemented methodological framework including data preparation,
analysis process, neural network type and simulation process.

3.1. Satellite Imagery and LULC Classification

In order to derive LULC classifications across the study area, Landsat 7 and 8 (LS)
satellite images for the years 2000, 2010 and 2020 with 30 m spatial resolution were acquired
from the United State Geological Survey (USGS). To avoid the influence of seasonal weather
variations, all images were selected based on scene quality (cloud and haze) and integrated
season period and thus all acquired images were cloud free and had 0% cloud cover over
the study area. The collected images were subdivided, stacked and mosaiced within ENVI
5.3 software. A detailed description of these images is given in Table 1.
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Table 1. Details of used Landsat satellite images.

Satellite/Sensor Pixel Size Path/Raw Date Acquired Product Type Correction

Landsat 7 ETM 30 m 178/038 9 November 2000 L1TP Scanline
Landsat 7 ETM 30 m 178/038 27 April 2010 L1TP -

Landsat 8 OLI-TIRS 30 m 178/038 7 October 2020 L1TP -

Using the Maximum Likelihood Classification (MLC) method, the three LS mosaics
were classified and four LULC classes (i.e., built-up, bare land, agricultural and water)
were produced. The category of built-up area includes spatial features of residential and
commercial zones, towns, urban agglomerations, transportation networks, bridges, urban
infrastructures, facilities and urban amenities. The second class represents barren land
including all bare soils, non-vegetated areas and lands that are not being used and are free
of buildings or human activities. Most of the barren land across Alexandria Governorate
consists of desert sands. The third land category is agricultural land, which comprises all
arable land and contains plant types, trees, farms, grass, pastures, cultivated lands, and
croplands. The last class is water which involves inland water, and ponds as well as water
bodies of Mariout and Abu Qir Lakes. Driving forces that influence change of LULC classes
are characterized in (Table 2).

Table 2. Description of spatial parameters and driving forces of LULC changes.

Parameters Suitability for Expansion Rationale for Urbanization Data Source

Elevation
−1 m to −10 m = high suitability
−11 m to 40 m = decreasing suitability
−41 m to 90 m = lowest suitability

Relatively low elevations are more suitable for
urban development and expansion than high
rugged lands [59–61].

Elevation data were extracted from
DEM (30 m), USGS:
http//www.edc.usgs.gov (accessed
on 11 July 2021).

Slopes

0 degree to 40 degree = high suitability
41 degrees to 70 degrees = decreasing
suitability
71 km to 97 degrees = lowest
suitability

Upslopes and steeper lands are less suitable for
built-up expansion, while lower slopes are
considered the most suitable for residential
development [20].

Slopes generation from DEM (30 m),
USGS: source:
http//www.edc.usgs.gov (accessed
on 19 June 2021)

Proximity to Points of Interests
10 m to 50 km = high suitability
51 m to 1000 m = decreasing suitability
1001 m to 13,000 m = lowest suitability

Major public and private infrastructure and
facilities such as schools, colleges, universities,
hospitals and banks play significant roles in
increasing residential expansion, particularly
over surrounded vacant land [62].

Central Agency for Public
Mobilization and Statistics
(CAPMAS), 2021.
https://www.capmas.gov.eg/
(accessed on 3 August 2021)

Proximity to Railways
<1 km = high suitability
1 km to 15 km = decreasing suitability
15 km to 22 km = lowest suitability

Railway network is considered an influential
driving force on urban development and often
new added stations accelerate urban expansion
[63,64].

Central Agency for Public
Mobilization and Statistics
(CAPMAS), 2021.
https://www.capmas.gov.eg/
(accessed on 10 May 2021)

Proximity to Urban Centres
<1 km to 1 km = high suitability
1 km to 6 km = decreasing suitability
6 km to 12 km = lowest suitability

Agricultural and barren lands near the existing
urban centres are often high in price and highly
suitable for urban development and
constructing new housing units; the shorter the
distance, the quicker the land transformation
into a built-up area [65].

Central Agency for Public
Mobilization and Statistics
(CAPMAS), 2021.
https://www.capmas.gov.eg/
(accessed on 10 May 2021)

Proximity to Major Roads
<1 km to 1 km = high suitability
1 km to 6 km = decreasing suitability
6 km to 9 km = lowest suitability

Vacant and agricultural lands near highways
and major roads are highly accessible and more
valuable; subsequently, are highly suitable for
housing construction and urbanization [64].

Central Agency for Public
Mobilization and Statistics
(CAPMAS), 2021.
https://www.capmas.gov.eg/
(accessed on 10 May 2021)

Population Concentration
(14 to 29 Age Group)

Very high density = high suitability
High to medium = decreasing
suitability
Low to very low = lowest suitability

Vacant, agricultural and desert lands near
densely inhabited neighborhoods are more
attractive than land adjacent to sparsely
populated settlements [20,66].

Central Agency for Public
Mobilization and Statistics
(CAPMAS), 2021.
https://www.capmas.gov.eg/
(accessed on 10 May 2021)

Proximity to Water Canals
<1 km to 1 km = high suitability
1 km to 3 km = decreasing suitability
3 km to 6 km = lowest suitability

Proximity to water canals is a vital factor which
accelerates urban expansion where households
prefer to construct new houses along water
canals. Thus, land near water canals is highly
susceptible to urbanization [67].

Central Agency for Public
Mobilization and Statistics
(CAPMAS), 2021.
https://www.capmas.gov.eg/
(accessed on 10 May 2021)

3.2. Accuracy Assessment of Classification

The assessment of the classified images is an important step to examine the reliability
and accuracy of LULC classes [68]. In order to calculate the accuracy of the classified images,
a confusion matrix analysis was used and the overall accuracy assessment, including
both producer and user accuracies, was generated. Additionally, kappa coefficients were
computed to account for the random distribution effects and examine whether the result of
the error matrix was significantly better than any random classification pattern [69].

http//www.edc.usgs.gov
http//www.edc.usgs.gov
https://www.capmas.gov.eg/
https://www.capmas.gov.eg/
https://www.capmas.gov.eg/
https://www.capmas.gov.eg/
https://www.capmas.gov.eg/
https://www.capmas.gov.eg/


Remote Sens. 2023, 15, 601 8 of 24

3.3. Markov Chain (MC)

The Markov Chain algorithm, as a function for modeling urban growth, was imple-
mented in the present study to generate the required simulation maps. This approach
is suitable for simulating land cover change, particularly in areas where understanding
landscape relations is somehow challenging. Markov Chain works by employing the
immediate state of the inputs along with a spatially representative base of potential pixel
transformations to dynamically extrapolate a simulation [70]. The Markov Chain model
produces hard and soft simulation maps, which offers a unique change prediction map for
the area under investigation. The hard simulation displays specific pixels that will change,
while a soft simulation represents vulnerability of change in a continuous format.

The Markov Chain technique is a stochastic model which characterizes a sequence
of temporal events and substantially calculates temporal probability matrices of transfor-
mation from one LULC type to another [70,71]. However, the model lacks the advantage
of producing the forecasting results on explicit spatial bases. Utilizing this model in fore-
casting LULC changes, the algorithm determines a temporal base from which a matrix of
probability transformation change between land categories can be generated.

In this research, an MC model was implemented to project LULC changes three
decades ahead (2030, 2040 and 2050) as follows:

S(t + 1) = Pij×s(t) (1)

where S(t) and S(t + 1) specify the LULC types at time t and t + 1; Pij is the transition
probability matrix in a state and is calculated as follows:

Mt = Pij =

P11 P12 . . . P1n
P21 P22 . . . P2n
Pn1 Pn2 . . . Pnn

 (2)

S(t + 1) = P_(ij × s(t)) (3)

where Mt indicates the Markov transition matrix, i,j is the LULC type at the first and second
time, Pij shows the probability of LULC type i changing into type j and N represents the
number of LULC classes across the study area.

3.4. Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) is a feedforward neural network technique which mim-
ics the biological system of the human brain. It is eventually utilized to solve entangled
spatial problems. In this research, the MLP was employed to generate the potential transi-
tion of LULC changes according to the historical classified images (2000, 2010 and 2020).
The computed transitional probabilities have the advantage of capturing the influences
of environmental, socioeconomic, and demographic drivers on LULC transformation [70].
The algorithm is hierarchically structured in three major components: input (variables
or drivers), hidden and output layers, each of which consists of a set of neurons. Each
hidden layer receives values from the preliminary input layers and an assigned weight
is calculated before passing the total values to the output layers from which the results
are produced [71]. Through the first stage of processing, MLP allows the entered variables
(inputs) to transfer and each neuron receives the value from the previous layer and a
weighted sum is calculated as follows:

LULCi = f ∑n
j=1 wijxj + bi (4)

where LULCi specifies the output at node i while f represents an activation function; x
displays the inputs or drivers (x1, xi, . . . , xn), w is the weights (w1j, . . . , wij, . . . , wnj) and
wij is the weight connection from the ith node to node j. bi is a constant which adjusts the
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output along with synaptic weights to optimize the model fit. In the MLP, the value of a
neuron N can be computed as follows:

uN = ∑k
j=1 wkjxj (5)

where uN is a linear combination, and wk1, wk2, . . . , wkn indicate the synaptic weights of
neuron N. The output of the neuron N is computed as follows:

yN = ∅(uN − θN) (6)

where ∅ is the action function (linear or nonlinear) and θk is the threshold.

3.5. Spatial Trends

To measure the rate and directions of LULC changes across the study area, trend
surface analysis was employed, defined mathematically as:

S = ∑k
i=0 ∑i

j=0 bijxi−jyj (7)

where S denotes the interpolated surface; k signifies the maximum order to be generated,
while b displays a coefficient of the polynomial. Both i and j are iteration parameters
associated with k, in which i = 0, . . . , k and j = 0, . . . , i.

4. Results
4.1. Model Validation and Accuracy

To assess the predictive capabilities of the model, both the 2020 reference map and
the simulated map were compared and assessed. The first map reflects the actual LULC
categories, whereas the simulated map was projected by implementing the same procedures
that were employed to predict the future of LULC changes in 2030 (Figure 3). A cross
tabulation analysis was performed to assess the model accuracy. The output reveals several
Kappa indices which examine quantity, agreement, disagreement and pixel allocation such
as Kno, Klocation and Kstandard. Overall, a kappa statistic of 0 indicates that the agreement
between the actual and simulated maps is due to chance, while a value of 1 means a high
level or perfect agreement. In this modelling process, 49.4% of the projected LULC changes
were correctly allocated and the agreement quantity was 26.6 of the changes. On the other
hand, quality and location disagreement together exhibited only 4% (Figure 4).

Measuring the overall model accuracy, Kno, Kstandard and Klocation were computed
and illustrated much higher values. The Kno parameter was 87.30, indicating a very high
agreement between the actual and projected maps. Similarly, the value of the Klocation
parameter was 83.4 indicating higher accuracy of the LULC category locations. Overall, the
outcome of the validation process clearly shows great similarity between the two maps.
Therefore, the model was vigorous, has much better performance and is quite accurate in
projecting the future scenarios of LULC changes in Alexandria.

4.2. Driving Forces of Urban Changes

LULC changes can be predominately caused by a variety of socioeconomic and envi-
ronmental factors. Identifying driving forces that influence LULC dynamics is crucial in
understanding and forecasting change patterns and trends. In addition to development pro-
cesses and governmental intervention and policies, multiple environmental, demographic
and socioeconomic factors contribute effectively to land use changes and act directly as
driving forces. Figure 5 exhibits the essential driving forces of LULC across the study
area. Elevation and slope are physical factors and both are considered as restrictive drivers
where flat areas witness a rapid expansion and high density of housing units, while hilly
lands and areas with high elevations often are vacant (Figure 5a,b). Further, the steep areas
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across Alexandria are located in the south and southwest and are characterized by low
rates of urban expansion as constructing houses and infrastructure is highly costly.

Figure 3. The reference and projected 2020 LULC classes.

Distance to public and private facilities (e.g., schools, banks, sport centres, shopping
malls and hospitals) is another vital driver that affects urban development (Figure 5c).
Short distances to these facilities always indicate a rapid pattern of urbanization. Barren
lands near public and private facilities are high in price and value, and thus are favored by
households for new home construction. Similarly, in the south, east and southwest of the
governorate, the agricultural lands that are located close to these facilities are more likely to
be converted into residential zones. That is, the higher the concentration of these facilities,
the more they contribute to the quick conversion of bare and agricultural land into new
housing clusters and built-up areas.

In Alexandria, urban growth directions and trends are significantly associated with
railways and major road networks (Figure 5d,f). The railways in the city are extended
in a longitudinal direction from the northeast towards the southwest (Figure 5d). Spa-
tial distance from railways is a key driver influencing urbanization. Thus, through the
marginal parts of the governorate, particularly in eastern neighborhoods, the railway line
(Abou Qir to City Centre) has significantly accelerated urban expansion through providing
populations with better mobility and accessibility. This railway line has reconfigured the
economic value of the nearby lands, specifically in the southern direction. This extension
has contributed to the growth of some areas such as El Muntazah neighborhood (e.g.,
Sidi Bishr, Asafra and Mandara neighborhoods), which is now becoming one of the most
densely populated areas in Alexandria. In addition, the main roads that link the urban
centres of eastern and western Alexandria (the Geesh Road, Abu Qir (also known as the
Gamal Abdel Nasser), the Mahmoudia Canal and recently the International Coastal Road)
have all stimulated residential and built-up area development.
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Figure 4. Statistics of kappa parameters.

As an exogenous factor for urban growth, distance from urban centres is an indicator
that estimates urban expansion pace. The proximity of vacant and agricultural lands to old
residential coastal neighborhoods is an important proxy of urban development in Alexan-
dria. Most of the bare and agricultural land in the northeast and southwest is near core
residential areas (Figure 5e). The vacant land near these centres is being rapidly converted
into residential and built-up areas; in particular, most of the new public infrastructure
(e.g., bridges and water plants) and private facilities (e.g., private international schools and
hospitals) are constructed within these land parcels.

Population concentration and density is an essential driver of urban growth in Alexan-
dria where vacant and agricultural lands that are near the highly populated areas are
exposed to rapid shift into residential zones. Figure 5g illustrates the spatial distribution of
the population aged 14–29 as a group of marriage age and persons often seeking to buy or
rent a housing unit. Neighborhoods with high shares of youth and young people in the age
of marriage such as El Muntazah in the east and Mina El-Basel in the west tend to show a
high rate of urban expansion over bare and agricultural lands.

Water canals are a major factor affecting urbanization where populations prefer to
construct their houses along canal banks and near sources of irrigation water as well
as other economic activities such as agriculture, trade and fishing. Figure 5h shows the
distribution of water canals over the study area. It is obvious that a high concentration of
canals is found in the south and southeast where large areas of agricultural lands and a
high number of villages are located.
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Figure 5. Raster layers of driving forces: elevation (a), slopes (b), distance to public and private
facilities (c), distance to railways (d), villages and urban centres (e), distance to major roads (f),
population concentration (14 to 29 age group) (g), distance to canals (h).

4.3. Simulation of Potential Transition Changes

Two transition probability maps, including vacant land and agricultural land, were
mainly generated to quantify land transformation into urban and built-up areas. The
transition layers were generated through the implementation of MLP, which is a robust
neural network-based technique due to its capacity to produce multiple transitions (up to 9)
at once. Consequently, any driving force was specifically selected if it was significantly
influential on the overall model accuracy and skill measure.

The outcome of the MLP performance showed a high value of 95.9%, which is much
larger than the cut off percentage of 80% suggested by Sangermano and Eastman (2010),
demonstrating excellent model accuracy (Table 3). Similarly, assessing the skill measure
statistic (a value of −1 denotes no skill while a value of +1 indicates perfect forecasting)
indicates that the model has significantly performed well. The high skill measure value of
0.92 (91.8%) signifies an accurate simulation of urban dynamics and affirms an appropriate
selection of driving forces of urban expansion in Alexandria.

Table 3. Parameters of MLP performance.

Parameter Outcome

Input layer neurons 8
Hidden layer neurons 4
Output layer neurons 2
Requested samples per class 10,000
Final learning rate 0.0000
Momentum factor 0.5
Sigmoid constant 1
Acceptable RMS 0.01
Iterations 10,000
Training RMS 0.2196
Testing RMS 0.2217
Accuracy rate 95.94%
Skill measure 0.9188
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Table 4 presents the results of testing the transition from bare land to built-up area
and forcing a single independent variable to be constant. The outcome shows that the
most influential driving force on potential transition from bare land to urban was elevation
while the least influential was distance to water canals. This pattern of influence can be
interpreted as the steepest and hilly vacant lands being characterized by low suitability
while flat lands are highly suitable for constructing new houses and settlements. On the
other hand, water canals are located mainly outside of the major urban centers and far from
the populous areas.

Table 4. The results of testing transition from bare land to urban.

Model Accuracy (%) Skill Measure Influence Order

With all variables 95.94 0.9188 N/A
Var. 1 constant (Elevations) 62.07 0.2414 1 (most influential)

Var. 2 constant (Slope) 96.80 0.9360 7
Var. 3 constant (Facilities) 95.94 0.9188 6
Var. 4 constant (Railways) 95.94 0.9188 5

Var. 5 constant (Urban Centres) 95.94 0.9188 4
Var. 6 constant (Major Roads) 95.94 0.9188 3
Var. 7 constant (Populations) 95.94 0.9188 2
Var. 8 constant (Water canals) 95.94 0.9188 8 (least influential)

As the skill performance of the MLP model increases by eliminating a chosen one
driving force each time, the backward stepwise technique was adopted and the findings
(Table 5) reveal that the selected eight driving forces were the best combination and, thus,
these variables can be used to forecast LULC changes.

Table 5. The outcome of MLP model with backwards stepwise constant forcing.

Model Variables Included Accuracy (%) Skill Measure

With all variables All variables 95.94 0.9188
Step 1: var. [2] constant [1,3–8] 96.80 0.9360

Step 2: var. [2,3] constant [1,4–8] 96.80 0.9360
Step 3: var. [2–4] constant [1,5–8] 96.80 0.9360
Step 4: var. [2–5] constant [1,6–8] 96.80 0.9360
Step 5: var. [2–6] constant [1,7,8] 96.80 0.9360

Step 6: var. [2–6,8] constant [1,7] 96.80 0.9360
Step 7: var. [2–8] constant [1] 96.79 0.9358

The transition maps of potential areas and the likelihoods of urban transformation are
illustrated in Figure 6. Projecting land use dynamics of year 2030, the potential transition
map indicated that high probability of agricultural land conversion into residential area
appeared substantially in the eastern part of Alexandria, particularly in the area of El-
Muntazah. In contrast, low probabilities of transformation were found specifically in the
central east of the governorate. The transition map of bare land showed that the probability
of transformation varies markedly across the study area. For example, lands that are
located in the southwest will most likely be transformed into residential zones while low
probabilities appeared substantially in other parts of the governorate. Noticeably, most
areas located in the southwest are characterized as sandy vacant land and open space areas
and the probability of land transforming into built-up areas is particularly high especially in
Al-Amreia and Burg Al-Arab (see Figure 1). The potential transition of LULC change in 2040
exhibits isolated patches of agricultural lands with high probability of transformation into
urban areas. These places are located especially in the southeast and far east. The potential
likelihood of bare land conversion into built-up areas was also high in the central parts
of Al-Amreia and Burg Al-Arab neighborhoods. In 2050, the probability of agricultural
land conversion into urban areas appeared to be mainly located and spread towards the
southeast direction. In addition to these changes and during the modelled period of 2050,
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the bare land to built-up area will remain active. Nevertheless, the matrix of probabilities
of transition illustrates some changes that might be less expanded in this period compared
to 2030 and 2040. This is the case with the probability of bare land conversion into urban
areas which is observed specifically in the central and north south.

Figure 6. Potential transition from agricultural and bare lands into built-up areas during the coming
three decades (2030, 2040, 2050).

4.4. Observed LULC Changes

Over one decade (2010–2020) and with the pressures of population growth and local
demand for housing units, Alexandria Governorate witnessed a significant change from
agricultural and bare lands into residential zones (Figure 7). The distribution pattern of
LULC changes during this period occurred specifically over the agricultural lands where
large areas were transformed into housing units. The urban expansion had taken place
in the northeastern part with recognized trends in the eastern section of El-Muntazah.
Similarly, the urban expansion concentrated predominately near the central part of Mariout
Lake and towards the eastern direction. Table 6 lists the calculated changes for all the
observed LULC categories between 2010 and 2020. The agricultural land lost the largest
area (7440.39 ha), while there was a decline in the bare land of 4904.91 ha (19.7% of
total change). In contrast, the urban area exhibited a massive increase where an area of
12,477.5 ha was added to the built-up area in 2020. Overall, the spatial distribution of the
historical LULC changes revealed a rapid urban expansion from the coastal area in the
north and west towards the agricultural land in the south and east. Likewise, a recognized
pattern of growth was observed from the west to the east and from the north toward
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the southeast, particularly in Al-Amreia and Burg Al-Arab. Nevertheless, the depleting
trend of agricultural and bare lands varies from place to place across the governorate. For
instance, rapid expansion and high rates of land transformation into built-up area occurred
in the far north and northeast and across El-Muntazah, while the urban growth rate was
less in the southwest.

Figure 7. Historical changes of LULC classes between 2010 and 2020.

Table 6. Calculated LULC changes between 2010–2020.

LULC Type Area in 2010 (ha) Area in 2020 (ha) Change (2010–2020)

Built-up 42,599.45 55,076.96 12,477.51
Agriculture 78,873.57 71,433.18 −7440.39
Bare land 31,549.08 26,644.17 −4904.91

Water 20,735.90 20,735.90 0.00

4.5. Spatial Forecasting of LULC Changes

In accordance with the computed transitional matrices using satellite images of 2010
and 2020, urban dynamics and LULC changes were projected for the coming three decades
(2030, 2040, 2050). Figure 8 exhibits potential striking negative changes for the agricultural
lands, which essentially indicates a higher rate of loss, accounting for 50% of the total
change in all land categories. This is more likely and is due to the rapid urban develop-
ment and population increase; agricultural land will continue its decreasing trend and
lose nearly 11,023 ha by 2030 (Table 7). Correspondingly, Alexandria will experience a
pronounced decline in bare land, which is likely to be the spatial context of governmental
and national urban planning of new residential neighborhoods. Thus, bare land will exhibit
a sharp decrease from 26,644 ha in 2020 to 21,200 ha in 2030, losing almost 5444 hectares
particularly in the south and southwest areas. In contrast, the built-up area will continue to
expand where a large area of 16,467 ha is expected to be transformed into built-up areas
(Figure 8a,b).
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Figure 8. Spatial distribution of predicted LULC dynamics: potential transition (a), projected LULC
in 2030 (b), projected LULC in 2040 (c) and projected LULC in 2050 (d).

In the second forecasted period of time (2030–2040), the same trends of growth and
expansion will continue where residential and urban areas expand while the extent of
agricultural and barren lands largely decreases. Large areas (10,439 ha) of agricultural lands
are expected to be converted into residential zones and at the same rate of change (50%) as
the previous period (2020–2030). The estimated urbanization pattern is expected to cover
about 81,983 ha, demonstrating an increase of approximately 10,439 ha in only one decade
(between 2030 and 2040) (Figure 8c). Moreover, the bare land is expected to contribute about
3152 ha to the total increase in built-up area, which reflects a comprehensive loss of fertile
land, green cover and open spaces due to expansion of urban settlements. The projected
map for 2040–2050 demonstrates a significant increase in built-up areas, which proves that
residential zones are expected to be the dominant LULC (91,074.7 ha), while massive areas of
agricultural lands (6257 ha), bare soils and sandy lands (2835 ha) primarily will be converted
into residential and housing units (Figure 8d). Such a constantly intensive increase in built-
up area will add millions of urban dwellers which indisputably underscores the spatial
association with the pronounced driving forces of natural population increase, rural–urban
migration, and the ongoing development across the study area.
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Table 7. Projected changes in LULC between the years 2030 and 2050.

LULC Type Area in 2020 (ha) Area in 2030 (ha) Change (2020–2030)

Built-up 55,076.96 71,543.99 16,467.03
Bare land 26,644.17 21,200.25 −5443.92

Agriculture 71,433.19 60,410.08 −11,023.11
Water 20,735.90 20,735.90 0.00

LULC Type Area in 2030 (ha) Area in 2040 (ha) Change (2030–2040)

Built-up 71,543.99 81,982.95 10,438.96
Bare land 21,200.25 18,047.80 −3152.45

Agriculture 60,410.08 53,123.58 −7286.50
Water 20,735.90 20,735.90 0.00

LULC Type Area in 2040 (ha) Area in 2050 (ha) Change (2040–2050)

Built-up 81,982.95 91,074.71 9091.76
Bare land 18,047.80 15,213.01 −2834.79

Agriculture 53,123.58 46,866.61 −6256.97
Water 20,735.90 20,735.90 0.00

The map of soft prediction output indicates the spatial distribution of intensified
vulnerable agricultural and barren lands to significant urbanization (Figure 8a). Overall, the
major projected urbanization trends concentrate in three areas: First, in the northeast part
where urban expansion follows an outer longitudinal trend from northwest to southeast.
Indeed, in this area, urban settlements expand while agricultural lands sharply decline.
Second, a considerable increase of housing clusters and residential patches is likely to
spread over the lands that are located in the southeast direction from the central part of
Mariout Lake. Noticeably, this pattern of urban growth is predominantly linked to the
underlying construction of a new road network. Third, while the urban expansion towards
the east and southeast directions occurs rapidly horizontally in all places that are located in
the east and south of Mariout Lake, a vertical urban growth pattern takes place along the
coastal neighborhoods associated with the renewing of old buildings.

4.6. Spatial Trends of LULC Changes

Exploring the spatiotemporal change dynamics, trends and orientations of the pre-
dicted LULC changes, Figure 9a demonstrates gradually increased urban expansion in 2030
over agricultural lands from the far south outwards. This dispersed pattern of residential
patches indicates a spatial tendency and high concentrations of the projected newly built-up
areas located near and surrounding the Amreia neighborhood. During the same period, the
transformation of barren land into built-up area is likely to occur in the far southwest where
sandy soils and desert land are dominant (Figure 9b). In the second period (2030–2040), the
direction of the estimated urban expansion over green areas appears to be concentrated in
the central eastern part near Mariout Lake and the outer part (Figure 9c). However, the
transformation intensity and concentration are likely to be less compared to the previous
period. Additionally, the lowest intensity of this transformation pattern is expected to be in
the neighborhoods located in the northeast and northwest (e.g., El-Muntazah).

The contribution of desert land to urban expansion in this period of time is expected to
be relatively concentrated in the southwest direction and the major loss of vacant land will
be around core settlements within Borg-Al-Arab and Al-Amriea neighborhoods (Figure 9d).
In 2050, the built-up areas are expected to expand more over agricultural land and towards
the southeast direction, while bare lands are likely to contribute largely to urban sprawl and
expansion towards the southwest Figure 9e,f. Notably, during the next three decades, these
places are initially expected to witness the highest rates of urban expansion and sprawl as
well as planned residential settlements through governmental polices.
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Figure 9. Spatial trends (4th order) of LULC dynamics: transition from agriculture to built-up 2030 (a),
transition from bare land to built-up 2030 (b), transition from agriculture to built-up 2040 (c), transition
from bare land to built-up 2040 (d), transition from agriculture to built-up 2050 (e), transition from
bare land to built-up 2050 (f).

5. Discussion

Despite the fact that urban areas are accelerating globally, impacted by various so-
ciodemographic and environmental factors, urbanization in coastal areas of developing
countries has specific shape, trends and structure. Even though the urban population is
projected to continue increasing, most of this expansion will occur in developing countries
triggering several significant societal and environmental ramifications. One of the key goals
of this study was substantially to address, simulate and forecast urban growth patterns
across the coastal governorate of Alexandria. Spatial driving forces in the context of topo-
graphical, socioeconomic and environmental factors were generated and integrated with
remotely sensed classified images to project coastal urban dynamics. Methodologically,
the ANN-MLP model within the advanced GIS environment was implemented to forecast
urban growth patterns and trends up to 2050 across the study area. To assess the reliability
of the predicted outcomes, the model was validated utilizing cross-tabulation and kappa
statistics. The indices revealed quite satisfactory accuracy and fair agreement between the
reference and simulated 2020 maps.

Overall, the findings clearly indicate that, during the upcoming three decades, Alexan-
dria will experience rapid urban growth initially due to population-induced increase and
internal migration pressures. Focusing on the historical (2010–2020) dynamics, significant
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LULC changes were observed from the city centre outwards to the east and southeast
directions. Consequently, it is likely that over these longitudinal trends and directions
built-up areas will continue to expand over agricultural and barren lands.

Incorporating several driving forces, the model successfully projected the LULC
changes up to 2050; throughout that period the topographical variables were identified as
the most influential driving forces. That is, flat and less steep lands are likely to largely
diminish, contributing to residential, infrastructure and housing expansions. The shrinking
of agricultural land area is expected to be the key pattern which shapes urbanization in
Alexandria, particularly in the northeast, south and southwest. This prominent pattern can
be specifically attributed to land availability and proximity to the old core urban centres.
The increase rate of urbanization and the agricultural land conversion are significantly
associated with natural increase in population as well as rural–urban migration. In addition,
this expansion is associated with infrastructure development, specifically the construc-
tion of new private and public infrastructure and facilities such as major roads, banks,
international schools, institutions, companies and warehouses.

The simulation results indicated a substantial increase in built-up area over bare and
agricultural lands where each category is expected to contribute largely to urbanization
during the next three decades, losing approximately 11,430 and 24,566 ha, respectively.
However, rates of urban growth vary across neighborhoods of Alexandria due to several
spatial driving forces, particularly bare land availability and attractiveness as well as
governmental regulation of housing construction over agricultural lands. The dynamism of
Alexandria, as a major harbor city, provides social mobility, attractive livelihood activities
and economic opportunities that undoubtedly are not found in the surrounding rural
areas [50,51]. Accordingly, there is tremendous pressure—and this pressure will continue—
on vacant land availability, generating rapid and unprecedented urbanization rates over
agricultural lands, particularly across coastal neighborhoods.

Similar to other coastal cities and places in developing countries [4–6], the rapid
expansion of urban residential areas in Alexandria is associated predominantly with the
lack of proper hinterlands, limited public spaces and demographic pressures. Indeed,
urban growth in Alexandria is spatially shaped by socioeconomic and social class structure
factors. Hence, housing type and affordability are significant indicators that imitate the
distribution patterns of land prices and residential expansion. That is, the elite and upper
income class populations are located along the coastlines and near the city centre. Within
these central and coastal neighborhoods (e.g., Sidi Gaber, Bab Sharqi and Al-Attrain),
residents have easy spatial access to public facilities and urban amenities. However, the
prices and demand on vacant lands are both high, while the supply and land availability
are limited. Therefore, urban growth is characterized by vertical expansion, causing various
negative impacts, particularly traffic congestion, air pollution, housing overcrowding and
ventilation obstacles. On the other hand, urban households of low incomes usually live in
the marginal areas as houses were constructed on barren or agricultural lands and thus
cheaper accommodation is available.

The urban growth across Alexandria is also influenced by natural topographical
barriers, particularly Mariout Lake, which stretches from the northwest to the southeast in
four major parts (Figure 1). The lake is considered a key natural barrier to urban expansion,
specifically from the northwest towards the east and south. Subsequently, horizontal urban
growth in most coastal neighborhoods is restricted by the locations of the lake water bodies
and salt marches. On the other hand, and from the lake towards the east and southwest,
urban sprawl is a dominant pattern, where converting agricultural land into residential and
built-up areas is a low cost and preferable option. The forecasted urban sprawl patterns
over the east and southeast directions can be mainly attributed to the unbalance between
population increase and the availability of housing units. The desert hinterlands (Borg
Al-Arab and the far southeast part) not only are less attractive as residential places, but
also the housing units over the agricultural lands are more affordable and closer to the
old existing settlements and the city centre. In many instances, however, urban sprawl



Remote Sens. 2023, 15, 601 20 of 24

areas form a specific type of slum that tends to be a main hub for social problems and
deprivation. Moreover, these areas are characterized by deterioration of public services,
facilities and infrastructure where residents have low access to basic needs such as drinking
water and sanitation.

The dynamics of urban expansion across coastal cities in Egypt puts a strain on a
range of environmental aspects, particularly ecological balance, air quality degradation and
natural habitats [7–9]. Given its entangled and complex urban growth patterns, Alexandria
as a coastal governorate, faces formidable challenges with regards to to controlling and
managing the effects and spatial ramifications of demographic development and urban
sprawl. The inability of new planned settlements and desert hinterlands to attract pop-
ulations will accelerate urbanization along the existing urban centres and thus intensive
anthropogenic pressures will negatively influence the productive lands and green areas.
The forecasted conversion of large agricultural areas to residential patches mostly across
the east and southwest parts of the governorate will cause significant destruction to the
natural resources of ecological services as well as impairment of biodiversity. In addition,
such unplanned urban growth alters urban fabrics, producing compact and dense urban
structures that lead to a spread of deprived urban settlements.

6. Conclusions

Alexandria, as a coastal governorate and the second largest city in Egypt, may be
under immediate threat with regard to environmental challenges, particularly the risks of
climate change ramifications and sea level rise. Furthermore, while the impacts of sea level
rise may increase salinity levels of groundwater, which directly decreases the productivity
of agricultural lands in the interior neighborhoods, residents of coastal zones that are
located on low-laying lands are more likely to suffer from severe floods and inundations.
Nonetheless, urban expansion and sprawl across the governorate is another key challenge
and should be taken into account.

This study represents a significant contribution to the simulation and forecast of urban
changes and the variability of urban growth patterns across the coastal city of Alexandria.
The robustness of the implemented ANN-MLP model and the remotely sensed data within
advanced GIS platforms has produced reliable and accurate spatiotemporal prediction of
urban development. Incorporating several driving forces (e.g., topography, population
and transportation factors), the model has successfully projected LULC changes up to
2050. Moreover, over the past two decades, residential growth and urbanization have
dramatically increased. For example, during the period 2010–2020, urban sprawl grew by
29% throughout the study area. This pattern of accelerated urban expansion has caused a
pronounced decline in fertile agricultural lands and produced fragmented urban fabrics
and scattered settlements. The major findings reveal that expansion of residential areas
and infrastructure over agricultural and bare lands are directly causing loss of large areas
of arable and cultivated lands. The forecasted patterns of urban changes are generally
expected to occur within the eastern neighborhoods and along the stretch of Mariout Lake in
the east and southeast directions. Furthermore, the decline of agricultural areas is expected
to continue in the future due to severe urban pressures, with an estimated agricultural
land loss of about 11,023 ha, 10,439 ha and 6257 ha by 2030, 2040 and 2050, respectively.
The employed geospatial techniques successfully detected and predicted spatiotemporal
changes in LULC dynamics. Local municipalities and planners in Alexandria need to
adopt different planning policies to improve urban resilience and protect agricultural land
vulnerable to urbanization. The extensive and comprehensive outputs of the geospatial
modelling processes in this research may provide decision makers with a potent spatial
framework which strengths sustainable urbanization and promotes smart urban growth
and new urbanization policies. Likewise, utilizing advanced GIS methods and ANN
techniques to quantify and identify areas that are susceptible to urbanization would be
indispensable guidelines to help decision makers and planners develop national spatial
plans and local strategies that effectively control urban sprawl and alleviate its ramifications.
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Due to the absence of detailed environmental datasets and finer resolution images, this
research is limited to using coarse resolution satellite images. Future work could extend this
scope of analysis and add more detailed ancillary datasets which involve wider domains
and driving forces of urbanization. Nevertheless, this research provides new insights and
sheds lights on understanding urbanization dynamisms and their entangled urban fabrics
in the coastal governorate of Alexandria. To the best of our knowledge, this is the first
study which explicitly simulates coastal LULC changes and forecast its spatial patterns
during the upcoming three decades. Accordingly, the modelling processes and its results
could contribute effectively to the research on coastal urbanization not only in Alexandria
but also across all coastal cities and agglomerations in developing nations.
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