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Abstract: Road markings are reflective features on roads that provide important information for
safe and smooth driving. With the rise of autonomous vehicles (AV), it is necessary to represent
them digitally, such as in high-definition (HD) maps generated by mobile mapping systems (MMSs).
Unfortunately, MMSs are expensive, paving the way for the use of low-cost alternatives such as
low-cost light detection and ranging (LiDAR) sensors. However, low-cost LiDAR sensors produce
sparser point clouds than their survey-grade counterparts. This significantly reduces the capabili-
ties of existing deep learning techniques in automatically extracting road markings, such as using
convolutional neural networks (CNNs) to classify point cloud-derived imagery. A solution would
be to provide a more suitable loss function to guide the CNN model during training to improve
predictions. In this work, we propose a modified loss function—focal combo loss—that enhances the
capability of a CNN to extract road markings from sparse point cloud-derived images in terms of
accuracy, reliability, and versatility. Our results show that focal combo loss outperforms existing loss
functions and CNN methods in road marking extractions in all three aspects, achieving the highest
mean F1-score and the lowest uncertainty for the two distinct CNN models tested.

Keywords: low-cost mobile mapping; modified loss function; image segmentation

1. Introduction

Road markings, such as lane lines and crossing marks, are features made of highly
retro-reflective materials that are painted on the road. In complex urban road networks,
these markers provide the necessary information for reliable routing and collision preven-
tion [1]. As such, they must be correctly depicted in their virtual counterparts, such as those
found in high-definition (HD) maps. HD maps are centimeter-level three-dimensional
(3D) maps that support autonomous vehicles (AVs); self-driving cars that better localize
themselves in their environments forecast occurrences outside the reach of their sensors
and enhance path planning in complicated traffic scenarios [2–4].

Due to the surface characteristics of road markings, they return relatively high-
intensity values during light detection and ranging (LiDAR) scanning. This unique feature
enables effective road marking extraction using point clouds [5]. This made LiDAR a viable
alternative to cameras that have shown poor performance in low light [6].

A common method for automatically extracting road markings from point clouds is to
project them to a 2D plane in a top-down or bird’s-eye-view (BEV) manner, using intensity
as pixel values, and then making use of 2D image-based techniques, such as threshold-
ing [1,6]. Additionally, by converting 3D point clouds to 2D images, the computational
complexity of the automated procedure significantly decreases [1]. To reduce the effects
of varying intensity, Cheng et al. used dynamic intensity thresholding, a method that
combines scan–angle–rank-based intensity correction and large-size high-pass filtering.
However, it still proved insufficient for inconsistencies in intensity brought by uneven road
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surfaces (e.g., cracks and potholes) [7]. To improve road marking visibility, Pan et al. com-
bined conditional Euclidean clustering, Otsu thresholding, and statistical outlier remover
(SOR) to remove unwanted noise and retain only points with high intensity and density.
Unfortunately, due to subsequent filtering, the proposed method struggles with short and
broken geometries, such as dashed center lines [8]. To compensate for small changes in
intensity caused by large differences in elevation, Soilan et al. used adaptive thresholding.
It relies on the laser beam angle to compute several masks grouped by angle similarity.
However, when compared to preceding thresholding methods, it showed the equivalent
performance in terms of extracting road markings [9].

All of these prove that traditional image processing is inadequate in instances where
road marking intensity is inconsistent, the road surface varies, and the contrast to the
surrounding surface is minimal [10]. This led to the exploration of deep learning techniques,
such as semantic segmentation via convolutional neural networks (CNNs), on point cloud-
derived images to extract road markings. Wen et al. demonstrated that U-Net, a full CNN,
can extract road markings in scenarios where there are varying intensities, point densities,
and poor distinctions with the surrounding surface [10]. Lagahit et al. have also shown
that U-Net successfully extracts road markings at varying point densities using different
sample sizes when projecting the point cloud to an image [11]. Lagahit et al. made use of
transfer learning (i.e., a deep learning method that retrains a previously trained model on a
more task-specific dataset) on multiple scales and proved that it outperforms traditional
image processing as well as a single-trained U-Net in some cases [12]. Lastly, Ma et al. took
it one step further by modifying the structure of U-Net and introducing capsule networks
for improved extractions [13].

However, in the aforementioned studies, the point clouds used to extract road mark-
ings are highly dense, reaching around 0.5 to 1.0 points per square centimeter [10–13]. These
are obtained through the use of mobile mapping systems (MMSs). MMSs employ survey-
grade cameras and LiDAR sensors integrated with global navigation satellite system(s)
(GNSS) and inertial measurement unit(s) (IMU) or through simultaneous localization and
mapping (SLAM) for positioning and georeferencing [14]. Unfortunately, MMSs can be
quite expensive [15], making it costly to frequently deploy for road marking extraction in
tasks such as roadway monitoring and HD map updates.

Together with the increasing interest in the development of AVs, this has increased
the investigations toward the use of lower-cost MMSs to acquire reliable spatial data [15].
However, low-cost LiDAR sensors produce sparser point clouds at single and aggregated
sweeps, resulting in projected BEV images with numerous no-value pixels—no correspond-
ing point in the point cloud—and hardly any target road marking pixels. This extreme
data imbalance is demonstrated to have a negative effect on the performances of existing
deep-learning methods. Lagahit et al. and Lagahit et al. trained two different CNN mod-
els, U-Net and Fast-SCNN, both trained with cross-entropy loss as a benchmark. Both
displayed little to no detection of pixels in the road marking class [16,17].

As a solution, Lagahit et al. and Lagahit et al. explored the use of a more suitable loss
function to boost the CNN model’s extraction performance [16,17]. Loss functions help
guide model training by measuring the difference between predicted and reference images
and adjusting the weights of a neural network [18,19]. Their findings show that shifting
to a weighted focal loss function allowed the model to significantly improve predictions
on a sparse target feature class [16,17]. The switch in loss function has also been proven to
strengthen the model performance for dense point cloud-derived images. Wen et al. and
Ma et al. obtained better results by using the semantic segmentation metric, intersection-
over-union, as their loss function [10,13]. Despite these recent advances, no work has
been done to develop a loss function suitable for extracting features from sparse point
cloud-derived images, such as road markings.

In this work, we propose a modified loss function, focal combo loss, which aims
to further improve road marking extraction on sparse point cloud-derived images in
terms of (1) accuracy—obtaining the highest F1-score; (2) reliability—attaining the highest
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minimum resulting accuracy after factoring in uncertainty from multiple trials; and (3)
versatility—consistently achieving the best performance on different CNN models with
completely distinct structures. To accomplish this goal, (1) a comprehensive comparison of
existing related loss functions was conducted; (2) a thorough analysis of the loss function
parameters was performed; and (3) an extensive comparison with existing CNN methods
was conducted.

2. Materials and Methods

Our proposed loss function, focal combo loss, will be applied to the CNN used for road
marking extraction, as shown in Figure 1. As an overview of the methodology, the sparse
point cloud collected from low-cost mobile LiDAR scanning will be converted to intensity
images to serve as training and testing inputs for CNN-based road marking extraction.
Furthermore, as an extension of the concept, a classified point cloud can be generated by
coupling these classified images with a depth image from the same point cloud.
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2.1. Dataset Preparation

The sparse point cloud used in this experiment was captured using a Velodyne Puck
(VLP-16) LiDAR sensor mounted in front of a small vehicle tilted 45 degrees downward
from horizontal. As shown in Figure 2, it was temporarily attached to the vehicle’s large
windscreen, since there was no available space in front for a permanent installation. This
enabled the scanning to obtain more ground surface points.
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As shown in Figure 3, the scanning was carried out on roadways within the East
Area of the Ookayama Campus, Tokyo Institute of Technology. The roads contained an
assortment of road marking features but mainly consisted of lane lines and crosswalks. As
a result, the target road markings were restricted to only these types.
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Figure 3. Encircled in red are the scanning location (left) taken from the Tokyo Tech website and road
marking types visible in the area (right) taken from Google Earth.

The point clouds were then filtered to retain only points on the ground and in a portion
in front of the vehicle, removing any unwanted points, such as vegetation and overhead
structures, as illustrated in Figure 4. After which it was projected top-down into a 2D plane
with a 1 cm square grid and average intensity as pixel values, yielding 2048 by 512-pixel
BEV intensity images.
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The intensity images were manually labeled into three classes to be used as training
data for the CNN: ‘black’, which has no point cloud value, ‘road marking’, which is the
target road marking, and ‘others’ which are all remaining pixels. A sample labeled image
can be seen in Figure 4. These, along with the BEV intensity images, make up the training,
validation, and testing datasets. Around 90% of all the processed images were used as
training and validation data, which were further densified using the data augmentation
method of multi-orientation flipping [20]. The remaining were used as testing data to assess
the model performance in road marking extractions.

In this paper, the resulting predicted images will be dilated using a 3 × 3 kernel solely
for visualization purposes. As shown in Figure 5, this is done to increase the interpretability
of the results since the target features on the images are too small. Because of this, there
may also be minor changes, but nothing significant enough to alter the outcome.
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2.2. Convolutional Neural Network Models

To test for versatility, our proposed loss function will be applied to two differently
structured convolutional neural networks, the popular and robust U-Net and a more
lightweight fast-SCNN.

U-Net is a CNN that was originally designed for biomedical image segmentation.
Its structure, as seen in Figure 6, consists of a symmetrically connected succession of
convolution layers with pooling operators in the first half and upscaling operators in the
latter half for better and more precise predictions [21]. It is a popular CNN model that is
now widely used in varying scientific fields, including the extraction of road markings from
point cloud-derived images. It has also surpassed other CNN models in terms of accuracy
by achieving the highest F1 score, reaching up to 90% in extracting road markings [10–13,16].
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FSCNN is a lighter CNN model that achieves real-time segmentation by utilizing
popular techniques, such as pyramid pooling, inverted residual bottlenecks, and feature
fusion, as seen in Figure 7 [22]. Recently, it has been explored for road marking extraction
due to its suitability for low-cost applications, but its results were still inferior to U-Net’s
under the same conditions. Nonetheless, it has been shown to achieve an F1-score of more
than 70% at prediction speeds of 0.2 s [16,17].
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2.3. Loss Functions

In deep learning, the loss function:

J(W) = k − k̂, (1)

is used to compute the difference between the predicted results (k̂) and the actual labels (k)
after going through an activation function. The resulting loss value is then minimized by
backpropagating through the network layers to modify the network’s weights and biases
through an optimization function:

W(k+1) = W(k) − ∂

∂W(k)
J(W). (2)

This is done by adding the gradient of the loss function in the opposite direction to
the previous weights [18,19]. By applying the appropriate loss function when training, the
CNN could be guided to make better predictions.
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To begin with, a commonly used loss function is the cross-entropy loss,

Cross Entropy Loss = −log(Pt) where Pt =

{
p i f k̂ = 1

1 − p otherwise
. (3)

It calculates the difference between two probability distributions for a set of events [23].
However, cross-entropy loss fails for imbalanced datasets, where certain classes greatly
outnumber the other classes.

To address the issue of imbalanced datasets, predetermined class weights (w) can be
introduced to cross-entropy loss:

Weighted Cross − Entropy Loss = −wlog(Pt). (4)

where the weights are computed by taking the inverse ratio of the number of pixels in that
class (#samplesi) multiplied by the total number of classes (#classes), with the total number
of pixels in the image (#samples) [24].

Class Weight =
#samples

#classes · #samplesi
(5)

Further improving the performance on imbalanced datasets, focal loss,

Weighed Focal Loss = −w(1 − Pt)
γlog(Pt), (6)

introduced a modulating term (1 − Pt)
γ to penalize the contribution of easier classes and

enabled the CNN model to concentrate more on learning harder classes [25]. The focal
loss combined with class weights significantly boosts the capability of a CNN model in
detecting sparse features in datasets with extreme class imbalance.

Another loss function that handles class imbalance well is dice loss,

Dice Loss = 1 − 2TP + c
2TP + FP + FN + c

, (7)

Dice loss originates from the dice coefficient, or F1-score, evaluation metric modified
with the addition of a smoothing constant to prevent gradient explosion. It makes use of the
metric’s property as a harmonic mean to obtain a more accurate measure of the difference
in correct overlaps even on harder features [26].

Leveraging this property, combo loss,

Combo Loss = α (Modi f ied(−wlog(Pt))) + (1 − α)

(
1 − 2TP

2TP + FP + FN

)
, (8)

takes the weighted sums of the dice loss and a modified cross-entropy loss as another
approach to further improve the classification of poorly represented features [27]. However,
it was demonstrated that using the proposed modified cross-entropy loss yielded the same
F1-score as using the cross-entropy loss. Hence, in this paper, the non-modified version of
cross-entropy will be used instead.

Returning to dice loss, a modulating term, in the form of an exponent factor
(

1
β

)
, is

introduced in focal dice loss,

Focal Dice Loss = 1 −
(

2TP
2TP + FP + FN

) 1
β

. (9)

Similar to focal loss, it aimed to direct dice loss into giving more focus to poorly
segmented classes [28].
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Our proposed loss function is a modified version of the combo loss,

Focal Combo Loss = α
(
−w(1 − Pt)

γlog(Pt)
)
+ (1 − α)

(
1 −

(
2TP

2TP + FP + FN

) 1
β

)
, (10)

in which we take the weighted sum of the weighted focal combo loss and the focal dice
loss, both developed to better focus on harder-to-classify features. This will be highly
advantageous, given the scarcity of features in sparse point cloud-derived images.

2.4. Model Training

To speed up the training of multiple models, training was done on two computers.
Tsubame 3.0, a supercomputer at the Tokyo Institute of Technology with four 16 GB GPU
and 256 GB of RAM, was used to train U-Net models. A desktop computer with an 11 GB
GPU and 48 GB of RAM was used to train fast-SCNN models.

Parameter limitations were set based on the computer with lower processing capacity
to ensure a fair comparison. Because of these constraints, the batch size was limited to 16,
and images for training and validation were downscaled to a quarter within the network.
In addition, an Adam optimizer and a learning rate of 0.0001 was used.

To account for uncertainty, models were trained in three batches, each with fixed seeds,
when training multiple models with changing loss functions. A total of 100 epochs were
performed for each trial, using the model version at an epoch with the lowest loss value for
road marking extraction.

3. Results
3.1. Generated Dataset

Table 1 lists the breakdown of pixels per class of the generated datasets used in the
experiment. The overwhelming number of ‘black’ pixels makes it clear that there is an
extreme class imbalance. Additionally, we can see that the target class ‘road marking’ is
still considerably smaller than the ‘others’ class, which is already scant. This can have a
significant impact on a CNN’s capability to correctly detect such sparse features.

Table 1. Dataset statistics.

Dataset Number of Images
Number of Pixels per Class

Black Others Road Marking

Training 1000 99.03% 0.88% 0.09%
Validation 100 99.04% 0.76% 0.20%

Testing 100 99.03% 0.94% 0.03%

3.2. Resulting Images of Extracted Road Markings

Figures 8 and 9 show the sample cropped predictions of road marking extractions
using our proposed loss function, focal combo loss, in comparison to other related existing
loss functions using the U-Net and fast-SCNN models, respectively. Projected versions of
the classified images are shown alongside them, with only those with corresponding point
cloud values retained.

Cross-entropy loss fails to classify road marking pixels for U-Net and does not classify
anything at all for fast-SCNN. The addition of weights and a modulating term, in case of
focal loss, proved to enhance model performance reflected by a partially visible depiction
of the target road marking. For dice loss and focal dice loss, although they fared poorly, the
results in the two models were completely different. In U-Net, dice and focal dice loss barely
caught any road markings and showed a focused misclassification in a different region.
In fast-SCNN, dice and focal dice loss were able to correctly classify all road markings
but overreached and included a large portion of the surrounding pixels. Nonetheless,
only combo loss and our proposed focal combo loss produced good representations of
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road markings. However, it is important to notice that only our proposed focal combo loss
prediction achieved a cleaner result when only pixels with point cloud values were retained.
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3.3. Assessment Criteria

Road marking extraction was evaluated through the following criteria obtained from
the calculated confusion matrix between the predicted and actual image: recall, precision,
F1-score, and intersection-over-union (IoU), as shown in Equations (11)–(14). Recall means
that pixels in the reference image correspond correctly to those in the predicted image.
Precision, on the other hand, means that pixels in the predicted image correspond correctly
to those in the reference image. High values in both of those criteria indicate that the



Remote Sens. 2023, 15, 597 11 of 16

extraction was successful. Taking both into account, the F1-score, also known as the dice
coefficient, is the harmonic mean of precision and recall. The harmonic mean tends to
favor smaller values; it is a reliable criterion for uneven precision and recall. As a final
measure, the IoU, also known as the Jaccard index, is also included. It divides the correctly
overlapping pixels by the union of the reference and the prediction, making the resulting
value nearer the minimum of precision and recall [29]. Tables 2 and 3 shows the initial
assessment results based on these criteria.

Recall =
True Positive

True Positive + False Negative
, (11)

Precision =
True Positive

True Positive + False Positive
, (12)

F1score =
2 × Precision × Recall

Precision + Recall
, (13)

IoU =
True Positive

True Positive + False Positive + False Negative
(14)

Table 2. Initial results for U-Net in (%) for the road marking class.

Loss Recall Precision F1-Score IoU

[23] Cross Entropy 7.3 ± 4.5 67.2 ± 6.1 12.8 ± 7.6 6.9 ± 4.2
[24] Weighted Cross Entropy 46.9 ± 5.4 42.7 ± 5.2 44.3 ± 0.6 28.4 ± 0.5
[25] Weighted Focal (γ = 1) 52.5 ± 6.0 37.9 ± 5.7 44.0 ± 5.9 28.3 ± 4.9
[26] Dice 3.0 ± 5.0 1.2 ± 1.4 0.7 ± 0.8 0.3 ± 0.4
[28] Focal Dice (β = 3) 8.3 ± 14.1 5.4 ± 6.2 1.3 ± 1.8 0.7 ± 0.9
[27] Combo (α = 0.50) 96.2 ± 2.7 10.5 ± 2.2 18.8 ± 3.4 10.4 ± 2.1

Focal Combo
(γ = 1, β = 3, α = 0.25) 95.3 ± 1.3 9.9 ± 0.8 18.0 ± 1.3 9.9 ± 0.8

Table 3. Initial results for fast-SCNN in (%) for the road marking class.

Loss Recall Precision F1-Score IoU

[23] Cross Entropy 0.0 ± 0.0 - - - - - - 0.0 ± 0.0
[24] Weighted Cross Entropy 55.4 ± 12.2 6.4 ± 0.6 11.4 ± 1.0 6.0 ± 0.6
[25] Weighted Focal (γ = 5) 52.7 ± 8.8 5.9 ± 0.4 10.5 ± 0.7 5.6 ± 0.4
[26] Dice 56.8 ± 46.9 3.3 ± 1.0 4.6 ± 1.2 2.4 ± 0.6
[28] Focal Dice (β = 1.5) 57.4 ± 48.4 3.4 ± 0.7 4.8 ± 2.5 2.5 ± 1.3
[27] Combo (α = 0.25) 61.5 ± 10.4 5.2 ± 0.4 9.6 ± 0.8 5.0 ± 0.4

Focal Combo
(γ = 5, β = 1.5, α = 0.25) 66.6 ± 1.7 5.5 ± 0.8 10.1 ± 1.3 5.3 ± 0.7

For the succeeding tables, rows with a gray background contain our results and values
in bold refer to the highest mean score in the corresponding evaluation criteria.

3.4. Assessment after ‘Black’ Pixel Omission

As a special property of sparse point cloud-derived images, misclassifications in the
‘black’ pixels can be omitted in the assessment computations, as these pixels correspond
to no value when projected as a point cloud, as shown in Figure 10. Since ‘black’ pixels
occupy most of the images, this has a significant impact on the evaluation.
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In Tables 4 and 5, after removing misclassifications in the ‘black’ pixels, we can see a
tremendous increase in the evaluation results. Our proposed loss function, focal combo loss,
achieved the highest mean F1-score in both models, outperforming all other loss functions.
Combo loss came close, but focal combo loss proved to be more reliable by having the
smallest uncertainty and the highest minimum value for both the F1-score and IoU.

Table 4. Results after the ‘black’ pixel omission for U-Net in (%) for the road marking class.

Loss Recall Precision F1-Score IoU

[23] Cross Entropy 7.3 ± 4.5 97.1 ± 0.2 13.3 ± 8.0 25.3 ± 15.2
[24] Weighted Cross Entropy 46.9 ± 5.4 95.6 ± 0.5 62.8 ± 4.7 50.7 ± 4.9
[25] Weighted Focal (γ = 1) 52.5 ± 6.0 94.3 ± 1.7 67.3 ± 55.2 5.2 ± 7.9
[26] Dice 3.0 ± 5.0 2.2 ± 1.9 1.8 ± 2.7 0.9 ± 1.4
[28] Focal Dice (β = 3) 8.3 ± 14.1 14.3 ± 16.7 3.9 ± 6.3 2.1 ± 3.3
[27] Combo (α = 0.50) 96.2 ± 2.7 76.4 ± 6.7 84.9 ± 3.1 73.9 ± 4.6

Focal Combo
(γ = 1, β = 3, α = 0.25) 95.3 ± 1.3 77.4 ± 2.7 85.4 ± 1.1 74.5 ± 1.7

Table 5. Results after the ‘black’ pixel omission for fast-SCNN in (%) for the road marking class.

Loss Recall Precision F1-Score IoU

[23] Cross Entropy 0.0 ± 0.0 - - - - - - - - -
[24] Weighted Cross Entropy 55.4 ± 12.2 80.9 ± 10.6 64.6 ± 6.5 48.2 ± 6.9
[25] Weighted Focal (γ = 5) 52.7 ± 8.8 85.2 ± 3.3 64.9 ± 6.7 48.7 ± 7.7
[26] Dice 56.8 ± 46.9 41.3 ± 5.2 37.7 ± 28.7 26.3 ± 19.3
[28] Focal Dice (β = 1.5) 57.4 ± 48.4 43.4 ± 10.0 40.0 ± 32.9 28.8 ± 23.7
[27] Combo (α = 0.25) 61.5 ± 10.4 78.2 ± 4.1 68.6 ± 7.6 53.7 ± 6.8

Focal Combo
(γ = 5, β = 1.5, α = 0.25) 66.6 ± 1.9 71.4 ± 6.9 68.9 ± 4.2 52.9 ± 4.8

3.5. Analyzing the Weighted Sum Combinations

The parameters γ and β, which were used in the focal combo loss, were derived from
the γ and β of the best-performing weighted focal loss and focal dice loss. Parameter α, on
the contrary, determines which of the loss functions in the weighted sum had the strongest
influence on achieving the best road marking extraction results. From Tables 6 and 7, we
can derive that focal dice loss had a greater influence on both models.
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Table 6. Results of analyzing parameter α for U-Net in (%) for the road marking class.

α Recall Precision F1-Score IoU
0.25 95.3 ± 1.3 77.4 ± 2.7 85.4 ± 1.1 74.5 ± 1.7
0.50 66.7 ± 19.3 79.0 ± 5.1 70.9 ± 8.1 55.3 ± 10.1
0.75 23.4 ± 10.5 85.7 ± 7.8 36.2 ± 13.4 22.7 ± 10.5

Table 7. Results of analyzing parameter α for fast-SCNN in (%) for the road marking class.

α Recall Precision F1-Score IoU
0.25 66.6 ± 1.9 71.4 ± 6.9 68.9 ± 4.2 52.9 ± 4.8
0.50 68.0 ± 3.9 69.0 ± 10.7 68.0 ± 4.4 51.9 ± 5.1
0.75 60.0 ± 21.7 70.5 ± 10.2 61.9 ± 11.1 45.7 ± 11.3

4. Discussion

We now compare the results of our proposed focal combo loss to those of existing
methods on road marking extractions from point cloud-derived BEV images using CNNS,
after comparing them to the results of related existing functions.

Figure 11 clearly shows that our proposed loss function, focal combo loss, still manages
to outperform existing CNN methods that have been used for road marking extractions on
point cloud-derived BEV images. Table 8 backs this up by showing that it has the highest
F1-score and IoU among the competition. More importantly, we can see that a lighter
model, fast-SCNN with a focal combo loss, could best even the other methods that used
the U-Net model.

Table 8. Results in comparison to existing methods in (%) for the road marking class.

Method Recall Precision F1-Score IoU

[11] U-Net + Cross Entropy 7.3 ± 4.5 97.1 ± 0.2 13.3 ± 8.0 25.3 ± 15.2

[12] U-Net + Cross Entropy
(Transfer Learning) 6.7 ± 1.1 97.9 ± 0.9 12.5 ± 2.0 30.2 ± 1.5

[13] U-Net + Weighted Focal 52.5 ± 6.0 94.3 ± 1.7 67.3 ± 55.2 5.2 ± 7.9
[10] U-Net + IoU 8.4 ± 14.5 - - - - - - 2.4 ± 4.2

U-Net + Focal Combo 95.3 ± 1.3 77.4 ± 2.7 85.4 ± 1.1 74.5 ± 1.7
[14] Fast-SCNN + Weighted Focal 52.7 ± 8.8 85.2 ± 3.3 64.9 ± 6.7 48.7 ± 7.7

Fast-SCNN + Focal Combo 66.6 ± 1.7 71.4 ± 6.9 68.9 ± 4.2 52.9 ± 4.8

Overall, we can see that the inability of focal combo loss to produce high precision
values compared to cross-entropy loss is a limiting factor. This means that in its attempt to
focus on harder features, it tends to prioritize minimizing the difference to the actual labeled
image, even if it exaggerates predictions at the target class’s bounds. Furthermore, it can be
seen that it is unnecessarily the better-performing loss function that should be given more
weight in the weighted sum. Focal dice loss performed far less than the weighted focal loss,
but having a stronger influence on it caused the best performance in our proposed focal
combo loss.

In addition, as mentioned in the overview of the methodology, in Figure 12 the
extracted road markings can be combined with depth images to generate classified sparse
point clouds as an extension. Figure 8 shows that this procedure can produce promising
results for both CNN models trained with focal combo loss. However, it is clear that U-Net
provides better geometry than fast-SCNN, but given that fast-SCNN has shown prediction
speeds of 0.2 s, it shows potential for achieving real-time road marking extraction.
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5. Conclusions

In this work, we proposed a modified loss function, focal combo loss, to improve the
automatic extraction of road markings from sparse mobile point cloud-derived BEV images
using CNNs. It is an attempt to provide expensive alternatives by using data obtained
from lower-cost LiDAR sensors rather than survey-grade LiDAR sensors typically installed
on a MMS. This can be a practical approach for tasks involving multiple and frequent
deployments and involving road markings, such as road monitoring and HD map updates.

Focal combo loss was able to outperform all related existing loss functions as well as
existing CNN methods used for road marking extraction on three fronts. First is accuracy,
with U-Net and fast-SCNN achieving the highest mean F1-score values of 85.4 and 68.9,
respectively. Second is reliability, factoring in uncertainty values of ±1.1 and ±4.2 and
yielding minimum values of 84.3 and 64.7, respectively, which are the highest among all
other minima. The third and final front is versatility, which is reflected in the previous two
fronts by consistently being the best in both models.

In future work, we intend to implement our method on more complex road envi-
ronments with more diverse road markings. Modifications of the other components of
the deep learning framework will also be explored, such as the modification of the CNN
structure and the training procedure, to further improve road marking extractions on
sparse point cloud-derived images. Other feature extraction applications, such as targeting
vehicles, pedestrians, and cyclists from a different projection perspective, will also be
investigated. This could provide additional support for advocating the use of low-cost
sensors for mobile mapping.
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