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Abstract: In modern electronic warfare, the intelligence of the jammer greatly worsens the anti-
jamming performance of traditional passive suppression methods. How to actively design anti-
jamming strategies to deal with intelligent jammers is crucial to the radar system. In the existing
research on radar anti-jamming strategies’ design, the assumption of jammers is too ideal. To establish
a model that is closer to real electronic warfare, this paper explores the intelligent game between
a subpulse-level frequency-agile (FA) radar and a transmit/receive time-sharing jammer under
jamming power dynamic allocation. Firstly, the discrete allocation model of jamming power is
established, and the multiple-round sequential interaction between the radar and the jammer is
described based on an extensive-form game. A detection probability calculation method based on
the signal-to-interference-pulse-noise ratio (SINR) accumulation gain criterion (SAGC) is proposed
to evaluate the game results. Secondly, considering that the competition between the radar and
the jammer has the feature of imperfect information, we utilized neural fictitious self-play (NFSP),
an end-to-end deep reinforcement learning (DRL) algorithm, to find the Nash equilibrium (NE) of
the game. Finally, the simulation results showed that the game between the radar and the jammer
can converge to an approximate NE under the established model. The approximate NE strategies
are better than the elementary strategies from the perspective of detection probability. In addition,
comparing NFSP and the deep Q-network (DQN) illustrates the effectiveness of NFSP in solving the
NE of imperfect information games.

Keywords: electronic warfare; intelligent game; jamming power dynamic allocation; neural fictitious
self-play; deep reinforcement learning; Nash equilibrium

1. Introduction

In modern electronic warfare, the radar faces great challenges from different advanced
jamming types [1]. Among different jamming types, main lobe jamming is especially
difficult to deal with because the jammer and the target are close enough and both in the
main lobe of the radar antenna [2].

Radar anti-main lobe jamming technologies mainly include passive suppression and
active antagonism. The passive suppression methods mean that, after the radar is jammed,
it can filter out the jamming signal by finding the separable domain between the target
echo and the jamming signal [3–6]. In contrast to the passive suppression methods, active
antagonism requires the radar to take measures in advance to avoid being jammed [7].
Common active countermeasures include frequency agility, waveform agility, pulse repeti-
tion frequency (PRF) agility, and joint agility [8]. Since the frequency-agile (FA) radar can
randomly change the carrier frequency in each transmit pulse, it is difficult for the jammer
to intercept and jam the radar, which is considered to be an effective means of anti-main
lobe jamming [9,10]. In [11], frequency agility combined with the PRF jittering method
for the radar transmit waveform was proposed to resist deception jamming. In [12], the
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authors proposed a moving target detection algorithm under the background of deception
jamming based on FA radar.

The key to FA radar anti-jamming is the frequency-hopping strategy. For the purposes
of the electronic counter-countermeasures (ECCM) considered in this paper, the radar needs
to take different frequency-agile strategies to deal with different jamming strategies. How
to design frequency-agile strategies according to the jammer’s actions is of vital importance.
For an effective anti-jamming system, the information about the environment and the
jammer must be known; otherwise, the judgment of the radar is not credible [13]. Therefore,
some researchers have introduced reinforcement learning (RL) algorithms to design anti-
jamming strategies for FA radar. In [14], the authors designed a novel frequency-hopping
strategy for cognitive radar against the jammer, and the radar does not need to know
the operating mode of the jammer. The signal-to-interference-pulse-noise ratio (SINR)
as a reward function was used in [14], and the interaction between the radar and the
jammer was achieved by two methods, Q-learning and the deep Q-network (DQN), to
learn the attack strategy of the jammer to avoid the radar being jammed. In [15], the
authors designed an anti-jamming strategy for FA radar against spot jamming based on
the DQN approach. Unlike the SINR reward function adopted in [14], Reference [15]
used the detection probability as a reward for the radar to learn the optimal anti-jamming
strategy. In [16], a radar anti-jamming scheme with the joint agility of the carrier frequency
and pulse width was proposed. Different from the anti-jamming strategy design for the
pulse-level FA radar in [14,15], Reference [17] studied the anti-jamming strategy for the
subpulse-level FA radar, where the carrier frequency of the transmit signal can be changed
both within and between pulses. In addition, a policy-gradient-based RL algorithm known
as proximal policy optimization (PPO) was adopted in [17] to further improve the anti-
jamming performance of the radar.

Currently, most of the research assumes that the jamming strategy is static, which
means that the jammer is a dumb jammer who adopts a fixed jamming strategy. How-
ever, the jammer can also adaptively learn jamming strategies according to the radar’s
actions [18,19]. How to model and study intelligent games between the radar and the
jammer is of great significance to modern electronic warfare.

The game analysis framework can generally be used to model and deal with multi-
agent RL problems [20]. It is feasible to apply game theory to model the relationship
between the radar and the jammer. In [21], the competition between the radar with constant
false alarm processing and the self-protection jammer was considered based on the static
game, and the Nash equilibrium (NE) was studied for different jamming types. In [22], the
competition was also modeled by the static game, and the NE strategies could be obtained.
In [23,24], a co-located multiple-input multiple-output (MIMO) radar and a smart jammer
were considered, and the competition was modeled based on the dynamic game. From the
perspective of mutual information, the NE of the radar and the jammer were solved.

Although the jammer is considered as a player, which has the same intelligence
level as the radar, the established model is too ideal in the above-mentioned work. For
example, the work based on static games cannot characterize the sequence decision-making
between the radar and the jammer, and the work based on dynamic games only considers a
single-round interaction. In real electronic warfare, the competition between the radar and
the jammer is a multiple-round interaction with imperfect information [25]. In addition,
with the advancement of jamming technology, the jammer can transmit spot jamming,
which aims at multiple frequencies simultaneously [26]. How to establish a more realistic
electronic warfare model becomes a preliminary step for designing anti-jamming strategies
for the radar.

Therefore, this paper considered a signal model of the jammer as transmitting spot
jamming with its central frequency aiming at different frequencies simultaneously, and the
jamming power of each frequency can be arbitrarily allocated under the constraint condition.
Extensive-form games [27] are proposed to model the relationship of the multiple-round
sequence decision-making between the radar and the jammer. Imperfect information was
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also considered through the characteristics of the partial observation of two-player games.
Under this model, the NE strategies of the competition between the radar and the jammer
with jamming power dynamic allocation can be investigated. The main contributions of
this work are summarized as follows:

• A mathematical model of jamming power discrete allocation is established. Different
action spaces of the jammer can be obtained for different quantization steps of power.
The smaller the quantization step, the larger the action space of the jammer. When
the number of available actions is more, the jammer could find the optimal jamming
strategy, and the conclusion is proven by simulation.

• A detection probability calculation method based on the SINR accumulation gain
criterion (SAGC) is proposed. After the radar receives a target echo, it judges whether
each subpulse is retained or discarded through the SAGC. The specific calculation
procedure is that the radar uses the subpulse and the subpulse with the same carrier
frequency retained in the past to calculate the coherent integration. If the SINR is
improved, the subpulse is retained; otherwise, the subpulse is discarded. At the end
of one coherent processing interval (CPI), the coherent integration results obtained
from the retained subpulses are used to calculate the detection probability based on
the SINR-weighting-based detection (SWD) [17,28] algorithm.

• Extensive simulations were carried out to demonstrate the competition results. Specif-
ically, the training curves of the detection probability of the radar and whether the
game between the radar and the jammer can converge to an NE under different
quantization steps of power were investigated. The simulation results showed that:
(1) the proposed SAGC outperformed another criterion; (2) the game can achieve an
approximate NE; if the jammer action space is larger, the game can achieve an NE
because the jammer can explore the best action; (3) the approximate NE strategies are
better than elementary strategies from the perspective of detection performance.

The remainder of this paper is organized as follows. In Section 2, the signal model
of the radar and the jammer is introduced and the jamming power allocation model is
proposed. In Section 3, the game elements for the radar and the jammer are designed
in detail. In Section 4, the deep reinforcement learning (DRL) and NFSP algorithms are
described and the overall confrontation process between the radar and the jammer is given.
Section 5 shows the results of the competition between the radar and the jammer under the
system model, and Section 6 summarizes the work of this paper.

2. System Model

Consider a game between a subpulse-level FA radar [29] and a jammer. Compared
with the pulse-level FA radar, the subpulse-level FA radar can further improve the anti-
jamming performance of the radar [17].

2.1. The Signal Model of the Radar

Assume that the radar transmits N pulses in one CPI, which contains K subpulses.
The mathematical expression of the nth pulse is

sTX(t, n) =
K−1

∑
k=0

u(t− nTr − kTc) exp[j2π( f0 + an,k∆ f )t]

=
K−1

∑
k=0

rect(t− nTr − kTc) exp
[

jπγ(t− nTr − kTc)
2
]

exp[j2π( f0 + an,k∆ f )t],

(1)

where u(t) = rect(t) exp
[
jπγt2] is the complex envelope of the signal, Tr and Tc are

the pulse repetition interval (PRI) and the subpulse width, respectively, f0 denotes the
initial carrier frequency, and ∆ f is the step size between two subcarriers. As for an,k, it
represents the frequency hopping code; assume that the number of available frequencies
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for the radar is M, then an,k ∈ {0, 1, · · · , M− 1}. Here, rect(t) is a rectangular function and
is described by

rect(t) =
{

1, 0 < t < Tc
0, otherwise

. (2)

Take K = 4 and M = 5 as an example. The time–frequency diagram of the radar
transmit waveform is illustrated in Figure 1.

¦0 

¦1 

¦2 

¦3 

¦4 

Tc  

Tr  

time

frequency

Pulse 1

Pulse 2

Figure 1. Time–frequency diagram of the subpulse FA radar waveform.

Assume that there is only one target. The nth target echo can be expressed as follows:

sRX(t, n) =
K−1

∑
k=0

σku(t− nTr − kTc − τ0) exp[j2π( f0 + an,k∆ f )(t− τ0)], (3)

where σk is the subpulse echo amplitude corresponding to the carrier frequency of that
subpulse and τ0 = 2R/c denotes the time delay of the target echo.

2.2. The Signal Model of the Jammer

The jammer considered in this paper is a self-protection jammer that works in a
transmit/receive time-sharing mode. Therefore, the jammer cannot receive and transmit
signals at the same time. The jamming type is spot jamming. To accurately implement spot
jamming, the jammer needs to intercept a portion of the radar waveform and measure its
carrier frequency, which is called look-through [30]. After that, the jammer transmits a
jamming signal based on the carrier frequency of the intercepted radar waveform. Therefore,
the signal model of the jammer consists of two parts: interception and transmission.

For the convenience of analysis, it is assumed that the interception duration Tl of the
jammer is an integer multiple of the radar subpulse duration Tc:

Tl = ZTc (0 ≤ Z ≤ K). (4)

Suppose that the delay of the nth pulse transmitted by the radar reaching the jammer
is τ′; the interception action of the jammer with respect to this pulse can be expressed as

JRX(t, n) = rect
[

Tc(t− nTr − τ′)

Tl

]
sTX
(
t− τ′, n

)
. (5)



Remote Sens. 2023, 15, 581 5 of 26

If the jammer transmits spot jamming that aims at G frequencies simultaneously, the
expression of the jamming signal is

JTX(t) =
G−1

∑
j=0

ξ jrect
(

t− nTr − τ′ − Tl
KTc − Tl

Tc

)
exp

(
j2π f jt

)
, (6)

where f j is the jth central frequency of the spot jamming and ξ j is the Gaussian process
with variable variance representing the jamming power allocated to the jth frequency.

The time–frequency diagram of the signal transmitted by the jammer is shown in
Figure 2. The dashed box indicates that the period is an interception. Different colors mean
that the jammer transmits the spot jamming with its central frequency aiming at different
frequencies simultaneously in the remaining subpulses.

¦0 

¦1 

¦2 

¦3 

¦4 

Tc  
time

frequency

3Tc  t

Figure 2. Time–frequency diagram of jammer’s transmitted signal.

2.3. The Discrete Allocation Model of Jamming Power

As described in Section 2.2, the jammer transmits the jamming signal, which aims
at multiple frequencies simultaneously and allocates the total power reasonably to these
frequencies. To simplify the analysis, it was assumed that the total power of the jammer
is normalized to 1. Besides, assume that the jammer cannot allocate its power to each
frequency arbitrarily, which is restricted by Pmin(0 < Pmin ≤ 1). In other words, Pmin is
the smallest unit of power allocation. Therefore, the power allocated by the jammer for
each frequency is an integer multiple of Pmin. The smallest unit Pmin is defined as the
“quantization step”. According to the total power and “quantization step”, the number of
samples of jamming power is

N =
1

Pmin
. (7)

The number of frequencies available for the radar is M; denote the number of power
samples distributed by the jammer to these frequencies as N0, N1, · · · , NM−1, then the
percentage of power allocated to each frequency is

Pi = Ni × Pmin, i ∈ {0, 1, · · · , M− 1}. (8)

The allocation model should satisfy the following constraints:

s.t.


0 ≤ Ni ≤ N
M−1
∑

i=0
Ni = N

. (9)
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The competition between the radar and the jammer is dynamic, which means they
both optimize their strategies to maximize their performance. As for the jammer, its central
frequency selection and power allocation strategy is not fixed and can be optimized by
interacting with the radar.

3. Game Elements Design for Radar and Jammer

In a complex electronic warfare environment, the confrontation between the radar
and the jammer is often multi-round and can be regarded as a sequential decision-making
process. The interaction process between the radar and the jammer can be described
as follows. The radar transmits the signal, and the jammer makes a decision based on
the intercepted partial information of the radar. The radar analyses the behavior of the
jammer or the possible jamming strategy based on the interfered echoes and improves the
transmitting waveform in the next pulse to achieve the anti-jamming objective.

Each pulse transmitted by the radar corresponds to one competition between the
radar and the jammer. At the end of one CPI, the radar will evaluate the anti-jamming
performance of the entire process based on the information of all previous pulses. Extensive-
form games are a model involving the sequential interaction of multiple agents [31], which
can conveniently describe the relationship between the radar and the jammer. The essential
elements of the game include actions, information states, and payoff functions.

Generally, the interaction process between the radar and the jammer can be modeled
by game theory, in which the radar and the jammer are players in a game.

3.1. Radar Actions

The target of the subpulse-level FA radar is to adopt an appropriate frequency-hopping
strategy to deal with interference, and each transmitted pulse is one competition, so the
action of the radar is defined as the carrier frequency combination of subpulses. Given the
number of subpulses K in one pulse and the number of available carrier frequencies M,
the action of the radar can be expressed as ar

t =
[

ar
t,1, · · · , ar

t,K

]
, which is a vector with size

1× K. Each element ar
t,i ∈ {0, · · · , M− 1} represents the subcarrier of the ith subpulse of

the tth pulse. For example, ar
t,i = 2 indicates that the subcarrier is f2. Based on the number

of subpulses and the available frequencies, it can be known that the total number of actions
of the radar is AR = MK.

3.2. Jammer Actions

The action of the jammer consists of two parts: interception and transmission. To
simplify the analysis, assume that the total duration of these two actions is equal to the
duration of the radar pulse. According to the number of subpulses, the interception action of
the jammer takes any value in set {0, 1, · · · , K}, which denotes the number of look-through
subpulses. If the value of the interception action is K, then the jammer does not transmit any
jamming signal and only executes the look-through operation. The jammer transmits the
jamming signal referring to the number of power samples allocated to different frequencies.
Based on the number of available frequencies for the radar, [N0, · · · , NM−1] can represent
this part of the action. The value of Ni is related to the quantization step of the jamming
power Pmin and should satisfy the allocation model in Section 2.3. Combining the two
actions of interception and transmission, the complete action of the jammer is a vector with
size 1× (M + 1). It is worth noting that when the quantization step remains unchanged,
unless the jammer intercepts all subpulses, the number of the jammer action in the second
part is the same. Take K = 2, M = 2, Pmin = 0.5 as an example. According to the jamming
power allocation model, it can be known that there are three allocation schemes, which is
the number of the jammer actions in the second part, as shown in Table 1.
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Table 1. Jamming power allocation schemes.

index 1 2 3
scheme [0, 2] [2, 0] [1, 1]

The interception action can be 0, 1, and 2. Only when the interception code is 2,
the second part of the jammer action is all 0. Under other codes, the transmission action
can be any of the cases in Table 1. Therefore, the total number of jammer actions is
AJ = 2× 3 + 1 = 7. The complete actions of the jammer are shown in Table 2.

Table 2. The action set of the jammer.

action number 1 2 3 4 5 6 7
action vector [1, 0, 2] [1, 2, 0] [1, 1, 1] [2, 0, 0] [0, 0, 2] [0, 2, 0] [0, 1, 1]

3.3. Information States

In the competition between the radar and the jammer, the radar decides the action at
the next moment according to the behavior of the jammer, and so does the jammer. The
information state is defined as the player’s actions and partial observations of adversary
actions at all historical times. Partial observation makes the player unable to fully obtain the
opponent’s actions, which reflects the imperfect information of the game. When calculating
the information state of the jammer at time t, the radar has executed action ar

t . Since the
action of the jammer always lags behind the radar in timing, the current radar action ar

t is
not available to the jammer. This also reflects the existence of imperfect information. The
information states of the radar and the jammer are given as follows:

sr
t =

[
ar

0, oj
0, · · · , ar

t−1, oj
t−1

]
, (10)

sj
t =

[
or

0, aj
0, · · · , or

t−1, aj
t−1

]
, (11)

where oj
t−1 denotes the partial observation of the jammer action by the radar at time t− 1.

or
t−1 represents the partial observation of the radar action by the jammer at time t− 1.

3.4. Payoff Functions

The payoff function is used to evaluate the value of the agent’s policy. After the agent
makes an action according to the information state, it will obtain a feedback signal from
the environment. The agent judges the value of that action according to the feedback
information to guide subsequent learning. Therefore, the agent will formulate a payoff
function as the feedback. Through the payoff function, it can achieve the expected objective.
Detection probability is an important performance indicator of the radar, which can be
used as the feedback for the anti-jamming strategies’ design. However, in practical signal
processing, the radar calculates the detection probability based on the information of all
pulses after one CPI ends. The game between the radar and the jammer is based on a single
pulse, so taking the detection probability as a payoff function will bring the problem of a
sparse reward. For each echo received by the radar, the SINR of the echo can be calculated.
The existence of jamming signals will reduce the SINR. Thus, it is feasible to use the SINR
as a reward to guide anti-jamming strategies’ learning for the radar and can avoid the
sparse reward. The calculation formulas [32] for the signal power and jamming power of
the kth subpulse echo are

Prk =
PTG2

Rλ2
kσk

(4π)3R4
, (12)

Pjk =
PJGRGJλ

2
k

(4π)2R2
, (13)
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where PT and GR are the radar transmission power and antenna gain, respectively, R
represents the distance between the radar and the target, λk and σk are the wavelength
and radar cross section (RCS) corresponding to the kth subpulse carrier frequency, and PJ
and GJ are the jammer transmission power and antenna gain. Therefore, the mathematical
expression for calculating the SINR of the kth subpulse is

SINRk =
Prk

PN + Pjk · 1
(

fk = f j
) , (14)

where Prk and Pjk are the signal power and jamming power of the kth subpulse echo,
respectively; PN is the system noise power of the radar receiver, and it can be estimated by

PN = kT0Bn, (15)

where k = 1.38× 10−23 J/K is the Boltzmann constant, T0 = 290 K is the effective noise
temperature, and Bn is the bandwidth of a subpulse.

In (14), Pjk is the jamming power entering the radar receiver, but it exists only when
the central frequency f j of the jamming signal is equal to the subpulse carrier frequency fk.
Otherwise, it is 0. Therefore, 1(x) can be expressed by

1(x) =
{

1, if x is true
0, elsewhere

. (16)

Therefore, the payoff function of the radar can be expressed as follows:

Rr
t =

K−1

∑
k=0

SINRk. (17)

Due to the hostile relationship between the radar and the jammer, they can be regarded
as a two-player zero-sum (TPZS) game, so the payoff function of the jammer is given
as follows:

Rj
t = −

K−1

∑
k=0

SINRk. (18)

3.5. Detection Probability Calculation Method Based on SINR Accumulation Gain Criterion

In Section 3.4, the target echo power, jamming power, and noise power can be esti-
mated. Based on this information, the coherent integration of each carrier frequency is
obtained according to the SINR accumulation gain criterion (SAGC). Then, the detection
probability is calculated by the SWD algorithm [17,28]. The calculation step of the SAGC is
given below:

(1) Let SINRn
k denote the coherent integration of fk from n pulses. Here, we take two

carrier frequencies f1, f2, two subpulses, and one CPI containing four pulses as an example.
Therefore, the value of k is 1 and 2, and the value of n is 1 to 4. Let the initial thresholds of
the SINR of these two frequencies be T1 and T2, respectively.

(2) After the radar receives the first pulse echo, if the carrier frequencies of the two
subpulses are [ f2, f1], the signal power is [Pr2 , Pr1 ], and the noise power is [PN , PN ], the
jamming power of each subpulse is determined as

[
Pj2 , Pj1

]
based on the central frequency

and power allocation schemes of the jamming signal. According to the above information
of the first pulse echo, the coherent integration of each frequency can be calculated (since
there is only one pulse and the carrier frequency is different, the SINR is calculated directly).

SINR1
1 =

Pr1

PN + Pj1
, (19)

SINR1
2 =

Pr2

PN + Pj2
. (20)
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Judgment: if SINR1
1 > T1, retain the subpulse whose carrier frequency is f1 and update

the value of T1 with SINR1
1. Otherwise, discard the subpulse whose carrier frequency is

f1, and still use the initial T1 as the threshold. In the same way, it is determined whether
the subpulse whose carrier frequency is f2 is reserved or discarded. Assume that both
subpulses are retained here, then T1 = SINR1

1, T2 = SINR1
2.

(3) After the radar receives the second echo, if the frequency is [ f1, f2], the signal
power is [Pr1 , Pr2 ], and the noise power is [PN , PN ], the jamming power of each subpulse
is determined as

[
Pj1 , Pj2

]
according to the jamming signal. Each subpulse is coherently

integrated with the same carrier frequency as the subpulse reserved in the first pulse.
Firstly, add the first subpulse to calculate the coherent integration of f1:

SINR2
1 =

(√
Pr1 +

√
Pr1

)2

PN + Pj1 + PN + Pj1
, (21)

and if SINR2
1 > T1, reserve the subpulse with carrier frequency f1 in the second echo and

update the value of T1 with SINR2
1. Otherwise, discard the subpulse, and do not update

the value of T1.
Next, append the second subpulse to compute the coherent integration of f2:

SINR2
2 =

(√
Pr2 +

√
Pr2

)2

PN + Pj2 + PN + Pj2
, (22)

and if SINR2
2 > T2, retain the subpulse with carrier frequency f2 in the second echo and

update the value of T2 with SINR2
2. Otherwise, discard the subpulse, and the value of T2 is

not updated.
(4) After receiving the third echo, the radar takes the same operation: adding sub-

pulses in turn to calculate the coherent integration of each frequency and comparing with
the thresholds to determine whether to retain the subpulses and update the thresholds.
Until the end of one CPI, the obtained SINR is used as the final coherent integration of
each frequency.

It is important to note that, although the symbols of the jamming powers of different
echoes are the same, their values are different and depend on the specific jamming situation.

SAGC focuses on the impact of a single subpulse on the overall effect, rather than
just the subpulse itself. Another advantage of SAGC is that the coherent integration of all
frequencies is immediately available as the last pulse is judged.

4. Approximate Nash Equilibrium Solution Based on Neural Fictitious Self-Play
4.1. Deep Reinforcement Learning

RL problems can be described by a Markov decision process (MDP) [33]. At time t,
the agent observes the environment state st and selects action at according to the strategy
π(at|st ). After acting, the agent will obtain a reward signal rt+1 indicating the quality of
the action and make the environment enter a new state st+1. The objective of the agent is to
maximize the cumulative reward through continuous interaction with the environment,
which is given in (23):

π∗ = argmax
π

E[Rt|π], (23)

where Rt =
∞
∑

k=0
γkrt+1+k is a discounted long-term reward with γ ∈ [0, 1) denoting the

discount factor.
Value-based and policy-gradient-based methods are two commonly used methods

for solving RL problems. The value-based methods need to estimate the state–action
value function and then obtain the optimal strategy through the value function. The
policy-gradient-based methods calculate the gradient of the objective function on the policy
parameters to solve the optimal strategy. The policy-gradient-based methods are usually



Remote Sens. 2023, 15, 581 10 of 26

used to deal with high-dimensional and continuous action space problems. Since the action
space of the radar and jammer considered in this paper is discrete and not so large, the
value-based method was used to solve the optimal strategy.

The long-term expected reward when starting in a specific state s following the policy
π is called the state value function, which is defined as

Vπ(s) = Eπ

[
∞

∑
k=0

γkrt+1+k|st = s

]
. (24)

The state–action value function denotes the long-term expected return after executing
action a in state s according to policy π, which is defined as

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkrt+1+k|st = s, at = a

]
. (25)

The relationship between the state value function and the state–action value function is

Vπ(s) = Ea∼π(a|s )[Qπ(s, a)]. (26)

Qπ(s, a) can guide the agent’s decision. If the agent adopts the greedy strategy, it
chooses the action that maximizes Q(s, a) at each moment. If the agent executes the
ε− greedy(Q) strategy, it selects the action that maximizes Q(s, a) with probability 1− ε
and randomly chooses an action from the action space with probability ε. The agent follows
the ε− greedy(Q) policy to balance exploration and exploitation when it acts [33].

ε− greedy(Q)←
{

arg max
a′

Q(s, a′), with probability 1− ε

random(A), with probability ε
(27)

Estimates for the optimal action values can be learned using Q-learning [34]. In
standard Q-learning, the estimation accuracy is increased by visiting states during the
exploration phase and replacing the value of each state–action pair using the Bellman
optimality equation:

Q(s, a)← Q(s, a) + α

[
r + γ max

a′
Q
(
s′, a′

)
−Q(s, a)

]
, (28)

where α ∈ [0, 1) is the learning rate.
Deep reinforcement learning (DRL) combines deep neural networks and RL, intro-

duces an approximate representation of the value function, and solves the problem of
instability in the learning process based on two key technologies of experience replay and
target network [20]. DQN [35] is a typical value-based DRL algorithm, which means it
needs to estimate the state–action value function from the samples. The loss function to
update the parameters of the neural network of the DQN is given in (29):

L
(

θQ
)
= E{s,a,r,s′}∈DRL

{[
r + max

a′
Q
(

s′, a′
∣∣∣θQ′

)
−Q

(
s, a
∣∣∣θQ

)]2
}

. (29)

4.2. Neural Fictitious Self-Play

The confrontation between the radar and the jammer has the characteristics of multiple-
round sequential decision-making, which allows us to model their interactions with
extensive-form games. Moreover, due to the transmit/receive time-sharing working mode
of the jammer, the game has imperfect information. NFSP is an end-to-end DRL algorithm
for solving the approximate NE of extensive-form games with imperfect information and
does not need any prior knowledge [36]. NFSP includes DRL and supervised learning
(SL) when solving strategies, and both of them can only be applied to problems with a
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discrete action space. Combined with the model established in this paper, NFSP is feasible
to solve NE.

NFSP agents learn directly from the experience of interacting with other agents in
the game based on DRL. Each NFSP agent contains a memory buffer DRL that stores
the transition experience {st, at, rt+1, st+1} and a memory buffer DSL that stores the best
response {st, at}. NFSP treats these buffers as two separate datasets suitable for deep
reinforcement learning and supervised classification, respectively. The agent trains the
value network parameters θQ from the data in DRL using an off-policy RL algorithm
based on experience replay. The value network defines the agent’s best response policy
ε− greedy(Q). The agent trains a separate neural network to imitate its own past best
response behavior using supervised classification data in DSL. This network achieves the
mapping of states to action probabilities. Define the action probability distribution of
the network output as the agent’s historical average policy Π. Based on the above two
strategies, the NFSP agent chooses action at in state st from a mixture of its two policies,
and it can be expressed as follows:

σ←
{

ε− greedy(Q), with probability η
Π, with probability 1− η

, (30)

where η is anticipatory parameter. Store {st, at} in DSL if and only if the agent chooses an
action based on ε− greedy(Q).

NFSP also utilizes two innovations to ensure that the resulting algorithm is stable
and can be simultaneously self-play learning [36]. First, it uses reservoir sampling [37] to
avoid the window effect caused by sampling in a finite memory buffer. Second, it uses
anticipatory dynamics [38] to enable each agent to sample its own best response behavior
and more effectively track changes in the opponent’s behavior.

NFSP uses the value-based DQN algorithm to solve the best response strategy. The
double-DQN method solves the overestimation problem by separating the selection of the
target action and the calculation of the target Q value, and it can find better strategies [39].
The DRL algorithm combined with the dueling network architecture has a dramatic per-
formance improvement [40]. Therefore, this paper adopted the double-DQN method
combined with the dueling architecture to solve the best response. The loss functions for
updating the parameters of the value network and the supervised network are given in (31)
and (32), respectively [36,39].

L
(

θQ
)
= E{s,a,r,s′}∈DRL


[

r + Q

(
s′, arg max

a′
Q
(

s′, a′
∣∣∣θQ

)∣∣∣θQ′
)
−Q

(
s, a
∣∣∣θQ

)]2
 (31)

L
(

θΠ
)
= E{s,a}∈DSL

[
− log Π

(
s, a
∣∣∣θΠ

)]
(32)

4.3. The Complete Game Process between the Radar and Jammer

In the previous section, the confrontation relationship between the radar and the
jammer was modeled through extensive-form games, and the NFSP method was given to
solve the NE of the game. This subsection presents the complete competition process of the
multiple-round interaction between the radar and the jammer, as shown in Algorithm 1.
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Algorithm 1 The complete game process between the radar and jammer.

1: Determine the radar action space according to the number of carrier frequencies and
the number of subpulses

2: Determine the jammer action space based on the quantization step of jamming power
3: for each CPI do
4: Set the policy represented by (30) according to η
5: The radar observes the initial information state
6: for each pulse do
7: The radar chooses the transmission waveform as an NFSP agent
8: The jammer determines the number of look-through subpulses and the power

allocation scheme as an NFSP agent
9: The radar receives an echo containing jamming signals

10: Calculate the SINR payoff according to (14)
11: The radar and jammer update their respective information states based on

observed adversary behavior
12: Store transition experience {st, at, rt+1, st+1} in their respective DRL
13: if radar or jammer action at is obtained by ε− greedy(Q) then
14: Store {st, at} in their respective DSL
15: end if
16: for each subpulse do
17: Judge whether to retain subpulses and update thresholds based on SAGC
18: end for
19: end for
20: Calculate detection probability based on SWD
21: Update network parameters θQ by (31)
22: Update network parameters θΠ by (32)
23: Update target network parameters θQ′ after a fixed number of iterations θQ′ ← θQ

24: end for

5. Experiments

This section shows the competition results between the radar and the jammer under
the jamming power dynamic allocation. The simulation experiments included detection
probability training curves, a performance comparison between different quantization steps
of jamming power, the verification of the approximate NE, the visualization of approximate
NE strategies, etc. The basic simulation parameters are shown in Table 3.

Table 3. Basic simulation parameters.

Parameters Value

radar transmission power: PT 30 kW
radar antenna gain: GR 32 dB

radar initial carrier frequency: f0 3 GHz
the number of pulses in one CPI: N 8

the number of subpulses in one pulse: K 3
the number of frequencies for the radar: M 3

bandwidth of each subpulse: Bn 5 MHz
time width of each subpulse: Tc 10 µs

range between the radar and the jammer: R 100 km
false alarm rate 10−4

jammer transmission power: PJ 1 W
jammer antenna gain: GJ 0 dB

quantization step of jamming power: Pmin 0.2
initial thresholds of SAGC 0.5

According to Table 3, M = 3, K = 3, so the total number of actions of the radar
is AR = 27. To decorrelate the subpulse echoes of different carrier frequencies, let the
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frequency step size ∆ f = 100 MHz [17]. It was assumed that the RCS of the target does not
fluctuate at the same frequency, but the RCS may be different at different frequencies [26].
Without loss of generality, the RCS corresponding to the three carrier frequencies was set to
[15, 3, 1] m2. The number of samples of jamming power is five when Pmin = 0.2. Based on
Pmin and M, it can be known that there are 21 allocation schemes. Combining with K, then
the total number of jammer actions is AJ = 64. The radar actions and jammer actions are
given in Figure 3.

Action number Action vector

1 [1, 0, 0, 5]

······ ······

15 [1,  2,  3,  0]

······ ······

30 [2,  1,  2,  2]

······ ······

51 [0,  1,  1,  3]

······ ······

57 [0,  2,  2,  1]

······ ······

64 [0,  5,  0,  0]

Action number Action vector

1 [0, 0, 0]

······ ······

7 [0,  2,  0]

······ ······

14 [1,  1,  1]

······ ······

20 [2,  0,  1]

······ ······

25 [2,  2,  0]

······ ······

27 [2,  2,  2]

(a) radar actions (b) jammer actions

Figure 3. The relationship between action number and action vector for the radar and the jammer.

As described in Section 4.2, this paper used the NFSP algorithm to train the radar
and jammer. The NFSP algorithm contains a value network and a supervised network.
Multilayer perceptron (MLP) [41] was used to parameterize these two networks in the
experiments. The network information for DRL with the dueling architecture and SL is
shown in Table 4 and Table 5, respectively.

Table 4. DRL network architecture.

Layer Input Output Activation Function

MLP1 state size 256 LeakyReLU
MLP2 256 256 LeakyReLU

MLP3 of Branch 1 256 128 LeakyReLU
MLP4 of Branch 1 128 1 /
MLP3 of Branch 2 256 128 LeakyReLU
MLP4 of Branch 2 128 action number /

Table 5. SL network architecture.

Layer Input Output Activation Function

MLP1 state size 256 LeakyReLU
MLP2 256 256 LeakyReLU
MLP3 256 128 LeakyReLU
MLP4 128 action number Softmax

The learning rates for DRL and SL were set to be 0.001 and 0.0001, respectively. The
capacity for DRL memory DRL and SL memory DSL was 150,000 and 500,000. The update
frequency of the target network parameters in the double-DQN was 4000. The anticipatory
parameter η of the mixed strategy was 0.1. The exploration rate of ε− greedy(Q) was 0.06
at the beginning and gradually decayed to 0 with the increase of the number of episodes.
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5.1. The Training Curve of Detection Probability

Let the game between the radar and the jammer go on for 400,000 episodes. Perform
1000 Monte Carlo adversarial experiments on the resulting policy every 2000 episodes to
estimate the detection probability of the radar. The training curve is shown in Figure 4.

Figure 4. The detection probability curve.

It can be seen from Figure 4 that, as the number of training episodes increases, the
detection probability gradually becomes stable and converges to 0.57.

In target detection theory, the detection probability is determined by the threshold and
test statistic. If the statistical properties of the noise are known, the value of the threshold
can be derived from the false alarm rate in constant false alarm rate (CFAR) detection.
Then, the detection probability is determined by the test statistic. It can be known from
the SWD algorithm that the SINR after coherent integration of each channel will affect the
expression of the test statistic. Therefore, the results of the coherent integration directly
affect the detection performance of the radar. Section 3.5 proposes to calculate the coherent
integration of each frequency based on SAGC. It is clear from the calculation procedure
of SAGC that the key to this criterion is the setting of the initial thresholds of the SINR.
To illustrate the influence of the initial thresholds on the detection probability, five initial
thresholds were set, as shown in Table 6. The radar and jammer strategies trained when
Pmin = 0.2 were used to perform 1000 Monte Carlo experiments under different thresholds
to obtain the variation of the detection probability with the thresholds. Figure 5 presents
the result of this experiment.

0.53

0.57

0.53
0.5
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case 1 case 2 case 3 case 4 case 5
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Figure 5. Detection probability of SAGC at different initial thresholds.
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Table 6. Different initial thresholds.

Thresholds T0 T1 T2

Case 1 0 0 0
Case 2 0.5 0.5 0.5
Case 3 1 1 1
Case 4 1 0.5 0
Case 5 0 0.5 1

A coherent integration calculation method based on a fixed threshold criterion (FTC)
was also adopted as a comparison. This method also needs to set thresholds. The calculation
procedure is to retain the subpulse as long as the SINR is greater than the threshold. At
the end of one CPI, the coherent integration for each frequency is calculated using the
retained subpulses. Different from SAGC, the thresholds of FTC are unchanged in the
whole training process, and the judgment of the current subpulse is only related to its
SINR, not to the past retained subpulses. In contrast, the thresholds of SAGC are dynamic,
and the judgment of the current subpulse needs to be combined with the past retained
subpulses. Figure 6 shows the effect of different fixed thresholds (same as Table 6) on the
detection probability under FTC. The experimental approach is to perform 1000 Monte
Carlo with the radar and jammer strategies trained when Pmin = 0.2.

0.49

0.55

0.41

0.32

0.56

case 1 case 2 case 3 case 4 case 5
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Figure 6. Detection probability of FTC in different fixed thresholds.

Conclusion: According to Figures 5 and 6, SAGC outperformed FTC. The reason for
this result is whether to eliminate each subpulse depends not only on its SINR, but also
on its contribution to coherent integration in SAGC. However, FTC only considers the
subpulses themselves and does not care about the results of the coherent integration of
all pulses.

5.2. Performance Comparison between Different Quantization Steps of Jamming Power

This subsection studies the performance comparison between different quantization
steps of jamming power. Four quantization steps were set in the experiment: Pmin = 1,
Pmin = 0.5, Pmin = 0.2, and Pmin = 0.1. The number of power samples in these four cases
was 1, 2, 5, and 10, respectively. Therefore, the number of jammer action spaces correspond-
ing to these situations was A1

J = 10, A0.5
J = 19, A0.2

J = 64, and A0.1
J = 199. Figure 7 shows

the jammer actions under different quantization steps.



Remote Sens. 2023, 15, 581 16 of 26

Action number Action vector

1 [1, 0, 0, 2]

······ ······

4 [1,  1,  0,  1]

······ ······

9 [2,  0,  2,  0]

······ ······

14 [0,  0,  0,  2]

······ ······

17 [0,  1,  0,  1]

18 [0,  1,  1,  0]

19 [0,  2,  0,  0]

Action number Action vector

1 [1,  0, 0, 1]

2 [1,  0,  1,  0]

3 [1,  1,  0,  0]

4 [2,  0,  0,  1]

5 [2,  0,  1,  0]

6 [2,  1,  0,  0]

7 [3,  0,  0,  0]

8 [0,  0,  0,  1]

9 [0,  0,  1,  0]

10 [0,  1,  0,  0]

(a) quantization step is 1 (b) quantization step is 0.5

Action number Action vector

1 [1, 0, 0, 10]

······ ······

60 [1,  7,  3,  0]

······ ······

130 [2,  9,  0,  1]

······ ······

165 [0,  3,  6,  1]

······ ······

192 [0,  7,  2,  1]

······ ······

199 [0,  10,  0,  0]

(c) quantization step is 0.1

Figure 7. The relationship between action number and action vector for the jammer under different
quantization steps.

The detection probability curves under different quantization steps are shown in
Figure 8. From Figure 8, if the quantization step of jamming power is smaller, the detection
performance of the radar is worse. However, the total number of jammer actions will
increase accordingly, and the convergence speed will become slower. It can also be seen
from Figure 8 that, when the quantization step is 0.1 and 0.2, the convergence results of the
detection probability are consistent. This shows that the jamming effect of the jammer has
performance boundaries.

Figure 8. Detection probability curves of different quantization steps.

To verify whether the competition between the radar and the jammer can converge
to an NE at the end of the training, the exploitability of the strategy profile needs to be
evaluated. Exploitability is a metric that describes how close a strategy profile is to an
NE [42–44]. A perfect NE is a strategy profile (σ1, σ2) that satisfies the following conditions:{

u1(σ1, σ2) ≥ max u1(σ1
′, σ2)

u2(σ1, σ2) ≥ max u2(σ1, σ2
′)

. (33)

An approximate NE or ε-NE is a strategy profile that satisfies the following conditions:{
u1(σ1, σ2) + ε ≥ max u1(σ1

′, σ2)
u2(σ1, σ2) + ε ≥ max u2(σ1, σ2

′)
. (34)
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For a perfect NE, its exploitability is 0. The exploitability of ε-NE is ε. The closer the
exploitability is to 0, the closer the strategy profile is to the NE. The exploitability curves
under different quantization steps are shown in Figure 9.

Figure 9. Exploitability curves of different quantization steps.

It can be seen from Figure 9 that, under different quantization steps, the exploitability
curves gradually decrease and are close to 0. The exploitability when the quantization step
is 0.1 and 0.2 can converge to 0. When the quantization step is 0.5 and 1, the exploitability
converges to 0.05 and 0.07, respectively. This shows that the strategy profile of the radar
and jammer can achieve an approximate NE under different quantization steps.

Conclusion: If the quantization step of jamming power is smaller, the total number of
jammer actions will increase accordingly. Therefore, the jammer could explore the optimal
jamming strategy so that the game between the radar and the jammer can achieve a real NE.

5.3. Visualization of Approximate Nash Equilibrium Strategies

Section 5.2 shows that the game between the radar and the jammer can converge
to an approximate NE under different quantization steps of jamming power. Therefore,
this subsection visualizes the approximate NE strategies. Through Figures 3 and 7, the
corresponding relationship between the action number and action vector can be understood.
The radar action vector is transformed into frequency, and the jammer action vector is
transformed into power percentage for strategy research.

The strategies of the radar and jammer can be expressed in a three-dimensional
coordinate system, in which the x-axis represents the action index, the y-axis represents
the pulse index, and the z-axis represents the probability. Therefore, the meaning of the
coordinates (x, y, z) of any point is that the probability of choosing action x at the yth pulse
is z.

In Figures 10–13, (a) and (b) are the X-Y views of their strategies. The X-Y view shows
the probability distribution of the radar or jammer’s selection action on each pulse. (c) and
(d) are the Y-Z views of their strategies. From the Y-Z view, it can be seen that the radar or
jammer selects the action with the highest probability on each pulse.

In Figure 10, the radar prefers to select Actions 1 and 14, indicating that the carrier
frequency combination of the transmitted signal is [ f0, f0, f0] and [ f1, f1, f1], respectively.
The jammer tends to choose actions 165 and 192, representing that the power ratio allocated
to f0, f1, and f2 is [0.3, 0.6, 0.1] and [0.7, 0.2, 0.1]. RCS( f0) > RCS( f1) > RCS( f2). The larger
the RCS, the stronger the target echo power, so the jammer will allocate more power to
reduce the SINR of the radar receiver. Jammer Action 192 allocates the most jamming
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power to f0, while there is little difference in jamming power between f1 and f2. Thus,
the radar should choose f1 with a larger RCS, corresponding to Radar Action 14. Jammer
Action 165 allocates the most jamming power to f1, so the radar selects f0 with the largest
RCS, corresponding to Radar Action 1.

(a) X-Y view of radar strategy (b) X-Y view of jammer strategy

(c) Y-Z view of radar strategy (d) Y-Z view of jammer strategy

Figure 10. Approximate NE strategies with a quantization step of 0.1.

In Figure 11, the radar selects Action 1 with the highest probability. The jammer
tends to select Action 57, indicating that the power allocated to the three frequencies is
[0.4, 0.4, 0.2]. Although the power allocated by Jammer Action 57 to f2 is the smallest, the
RCS corresponding to f2 is also the smallest, and the echo power is correspondingly the
smallest. The jamming power of f0 and f1 is the same, but the RCS of f0 is the largest.
Therefore, the radar selects [ f0, f0, f0], that is Action 1, which can ensure the maximum
output SINR.
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(a) X-Y view of radar strategy (b) X-Y view of jammer strategy

(c) Y-Z view of radar strategy (d) Y-Z view of jammer strategy

Figure 11. Approximate NE strategies with a quantization step of 0.2.

In Figure 12, the radar selects Action 27, meaning that the combination of the carrier
frequency of the transmitted signal is [ f2, f2, f2]. The jammer selects Action 18, representing
the power allocation scheme as [0.5, 0.5, 0]. The strategy of the jammer is to evenly distribute
the power to the two frequencies with the first- and second-largest RCS. At this time, the
radar selection Action 27 can ensure that all subpulses will not be jammed and the radar
can obtain a larger SNR.

In Figure 13, the radar selects Action 14, which means the carrier frequency combi-
nation of the transmitted signal is [ f1, f1, f1]. The jammer selects Action 10, representing
that the power allocation scheme is [1, 0, 0], that is all the power is allocated to f0 with the
largest RCS. In this case, the quantization step of power is 1, so the jammer can only use all
the jamming power to jam one frequency. At this time, the subcarrier of the subpulse of the
radar is all f1, which is the frequency of the second-largest RCS. In this way, it can not only
avoid being jammed, but also ensure a large output SNR.
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(a) X-Y view of radar strategy (b) X-Y view of jammer strategy

(c) Y-Z view of radar strategy (d) Y-Z view of jammer strategy

Figure 12. Approximate NE strategies with a quantization step of 0.5.

In these four different scenarios, when the game converges to the NE, the strategy
of the jammer is that it does not perform the look-through operation. This shows that,
when the jammer is regarded as an agent, it can learn the carrier frequency information of
the radar through the interaction with the radar, so it only needs to optimize the power
allocation strategy. In real electronic warfare, due to the limited confrontation time, the
jammer cannot fully know the available frequencies of the radar, that is the jammer needs
to intercept the subpulse of the radar most of the time, which indicates that the strategy of
the jammer must deviate from the NE. Therefore, the radar can achieve better performance.

It can also be seen from Figures 10–13 that, no matter what the quantization step of
jamming power is, the NE strategies of the radar and the jammer are mixed strategies. The
radar and the jammer select actions from their respective action sets with a probability. This
is the characteristic of imperfect information games.

Conclusion: Imperfect information games require stochastic strategies to achieve
optimal performance [36].
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(a) X-Y view of radar strategy (b) X-Y view of jammer strategy

(c) Y-Z view of radar strategy (d) Y-Z view of jammer strategy

Figure 13. Approximate NE strategies with a quantization step of 1.

5.4. Comparison to Elementary Strategies

This subsection verifies the performance of the approximate NE strategies (ANESs) by
comparing them with the elementary strategies.

Assume that the radar can choose two elementary strategies, which are the constant
strategy (CS) and the stepped frequency strategy (SFS). The CS means that the carrier
frequency of the radar is unchanged. Since the radar has three available frequencies, the
CS includes three cases, denoted as CS0, CS1, and CS2. The SFS means that the carrier
frequency of the radar increases or decreases step by step between pulses, and these two
situations are recorded as SFS-up and SFS-down.

Two elementary strategies for the jammer were considered, which are the constant
strategy (CS) and the swept strategy (SS). The CS means that the central frequency of the
jamming signal remains unchanged. Similar to the CS of the radar, the CS of the jammer is
also denoted as CS0, CS1, and CS2. The SS is similar to the SFS of the radar, and these two
situations are recorded as SS-up and SS-down.
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We made one side of the radar and jammer adopt the ANES, and the other side adopts
the elementary strategies. In addition to the elementary strategies, the radar and the jammer
also adopt the ANES as a comparison. The results of 1000 Monte Carlo experiments are
shown in Figures 14–17.
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(a) The radar with elementary strategies and the jam-
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(b) The radar with ANES and the jammer with elemen-
tary strategies

Figure 14. The quantization step of jamming power is 0.1.
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(a) The radar with elementary strategies and the jam-
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(b) The radar with ANES and the jammer with ele-
mentary strategies

Figure 15. The quantization step of jamming power is 0.2.
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(b) The radar with ANES and the jammer with ele-
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Figure 16. The quantization step of jamming power is 0.5.

In Figure 15, the detection probability of the radar adopting CS0 and the ANES is the
same because these two strategies are similar in this jamming situation.
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Figure 17. The quantization step of jamming power is 1.

Similarly, in Figure 16, since the CS2 and ANES of the radar are the same, there is little
difference in their detection performance.

In Figure 17, the ANES of the radar is the same as CS1, and the ANES of the jammer is
the same as CS0. Therefore, the performance of one side adopting the ANES and the other
taking the elementary strategy is basically the same as that of both adopting the ANES.

From Figures 14–17, the practical implication of the NE can be known, that is, as
long as one side deviates from the NE, its performance will decrease. For the jammer,
performance degradation refers to an increase in the detection probability of the radar.

Conclusion: The approximate NE strategies obtained in this paper are better than the
elementary strategies from the perspective of detection probability.

5.5. Comparison to DQN

This subsection discusses the performance of the DQN in multi-agent imperfect
information games. Two forms of the DQN were considered: DQN greedy and DQN
average. DQN greedy chooses the action that maximizes the Q value in each state, so it
learns a deterministic policy. DQN average draws on the idea of NFSP and also trains
the historical average strategy through the supervised learning model, but the average
strategy does not affect the agent’s decision. Therefore, the agent chooses an action only
based on ε− greedy(Q) at each moment, not based on a mixed policy. DQN average can
be achieved by setting the anticipatory parameter η = 1 in the NFSP algorithm. Because
the NFSP agent in this paper solves the best response by the dueling double-DQN, DQN
greedy and DQN average also adopt this method.

In Figure 18, the detection probability and exploitability curves of DQN greedy fluctu-
ate markedly. Its exploitability cannot converge to 0, indicating that DQN greedy cannot
achieve NE. Although the training curve of the detection probability of DQN average can
be stable, its policy is highly exploitable. DQN average cannot reach an NE either.

Conclusion: DQN greedy learns a deterministic policy. Such strategies are insufficient
to behave optimally in multi-agent domains with imperfect information. DQN average
learns the best responses to the historical experience generated by other agents, but the
experiences are generated only based on ε− greedy. These experiences are both highly
correlated over time and highly focused on a narrow distribution of states [36]. Thus, the
DQN average performs worse than NFSP.



Remote Sens. 2023, 15, 581 24 of 26

(a) The detection probability curves (b) The exploitability curves

Figure 18. Comparison of three methods.

5.6. Performance Comparison with Existing Methods

To verify the effectiveness of the strategy obtained in this paper, a comparison between
the proposed method and existing resource allocation methods was designed. The work
in [17] is the strategy design problem based on RL, so the radar and the jammer interact
with one of them as the agent and the other as the environment when applying this
method to the established model of this paper. The strategy for the radar and jammer
is solved independently rather than based on game theory. The work in [24] was based
on the Stackelberg game and concluded that the jamming strategy is related to the target
characteristic when the signal power is fixed. The method proposed in [25] was applied to
the non-resource allocation scene, and the radar echo was processed by directly eliminating
the jammed pulse. In addition to the above-mentioned methods, there is a common and
without loss of generality method of allocating all power to the frequency with the second-
largest RCS. This allocation strategy was proven by [25] to be feasible. This allocation
method is denoted as a constant allocation strategy (CAS). The comparison result is given
in Table 7.

Table 7. The comparison between the proposed method and other existing methods.

This Paper Method in [17] Method in [24] Method in [25] CAS
detection probability 0.57 0.61 0.65 0.61 0.79

exploitability 0 0.2 0.08 0.07 0.22

In Table 7, in addition to the proposed method in this paper, the exploitability of the
other existing allocation methods cannot reach 0. Therefore, only the strategy obtained in
this paper is an NE.

6. Conclusions

In this paper, the intelligent game between the subpulse-level FA radar and the
self-protection jammer under the jamming power dynamic allocation was investigated.
Specifically, the discrete allocation model of jamming power was established and the
corresponding relationship between the quantization step of power and the available
actions of the jammer was obtained. Furthermore, an extensive-form game model was used
to describe the multiple-round sequence decision-making characteristics between the radar
and jammer. A detection probability calculation method based on SAGC was proposed
to evaluate the competition results. Then, due to the feature of the imperfect information
game between the radar and jammer, we utilized NFSP, an end-to-end DRL method, to
solve the NE of the game. Finally, simulations verified that the game between the radar
and the jammer can converge to the approximate NE under the established model, and the
approximate NE strategies are better than the elementary strategies from the perspective of
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detection probability. The comparison of NFSP and the DQN demonstrated the advantages
of NFSP in finding the NE of imperfect information games.

In the future, we should investigate the radar anti-jamming game with the continuous
allocation of jamming power, in which the jammer has a continuous action space, and an
algorithm to design the strategy for the radar and jammer should also be proposed.
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