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Abstract: For real-time target classification, a study was conducted to improve the AI-based target
classification performance using RCS measurements that are vulnerable to noise, but can be obtained
quickly. To compensate for the shortcomings of the RCS, a 1D CNN–GRU network with strengths in
feature extraction and time-series processing was considered. The 1D CNN–GRU was experimentally
changed and designed to fit the RCS characteristics. The performance of the proposed 1D CNN–GRU
was compared and analyzed using the 1D CNN and 1D CNN–LSTM. The designed 1D CNN–GRU
had the best classification performance with a high accuracy of 99.50% in complex situations, such
as with different missile shapes with the same trajectory and with the same missile shapes that had
the same trajectory. In addition, to confirm the general target classification performance for the RCS,
a new class was verified. The 1D CNN–GRU had the highest classification performance at 99.40%.
Finally, as a result of comparing three networks by adding noise to compensate for the shortcomings
of the RCS, the 1D CNN–GRU, which was optimized for both the data set used in this paper and the
newly constructed data set, was the most robust to noise.

Keywords: one-dimensional convolutional neural network; gated recurrent unit; dynamic radar
cross section; missile classification

1. Introduction

Countries that are adversaries continue to develop and test missiles, threatening the
security of their neighboring countries. Accordingly, the importance of research related
to the establishment of a missile defense system is increasing. In the defense system,
quick and accurate judgment is important because making a wrong decision can lead to
political and diplomatic problems. However, missiles are difficult to detect, classify, and
intercept because their flight speed is fast and their shape and angle information varies
depending on the flight stage. Therefore, in several countries, defense research is being
carried out to ensure the stability and speed of operations by applying artificial intelligence
(AI) technology to increase classification performance [1,2].

The quantity and quality of data are important for the application of AI technology,
and it is important to collect and modify data sets that are suitable for using AI. For the
above reasons, in the previous paper, radar measurements for target classification were
analyzed initially [3]. The radar measurement used for surface-to-air radar-based target
classification is the radar cross section (RCS) [4]. The reason that the RCS measurement is
mainly used for classification is that it is time-series data, and the calculation speed is fast
enough to be implemented in real-time. However, the RCS has the disadvantage of being
vulnerable to noise [5]. In addition, micro-Doppler appears in the RCS of a moving target,
and the target’s feature vector extracted from the micro-Doppler signature is utilized in
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ballistic missile classification [6–9]. Micro-Doppler is the relative speed of the target to the
radar and uses the Doppler frequency in which the radar signal is reflected.

Other types of radar data include the high-resolution range profile (HRRP) [10,11]
and the inverse synthetic aperture radar (ISAR) [12,13] images. They can represent target
shape information to improve classification performance and are also RCS-based data. The
HRRP expresses the target’s scattering points as power according to the range through a
two-dimensional graph, and the ISAR image expresses the target’s scattering points in the
cross-range and range directions through a two-dimensional image. Unlike the RCS, HRRP
and ISAR images contain the target’s size information, so classification performance can be
improved. However, these are not suitable for AI data in a situation requiring real-time
since they require a significant computation time due to a separate signal processing activity.

In previous research [14], target classification was performed using the motion charac-
teristics of the target rather than radar data such as the RCS. With the rapid development
of computer performance, deep learning networks suitable for solving complex problems
have been applied, and classification performance is continuously being improved through
comparison and analysis [4,15]. Researchers in the defense field are making efforts to apply
various AI techniques, which can improve RCS-based target classification performance for
rapid and accurate target classification. In previous studies using RCS data, time-series
networks were mainly used. First, radar data-based studies were conducted using a 1D
convolutional neural network (CNN) with strengths in feature extraction. Chen, J., Xu, S.,
and Chen, Z. [16] proposed the RCSnet by directly utilizing static RCS time-series data
based on the 1D CNN to classify warheads and manned targets. Yao, X., Shi, X., and
Zhou, F. [17] proposed the CV-CNN applying the CNN structure. The authors performed a
CV-CNN-based human activity classification using RCS data, showing a high classification
accuracy of 99.81%. Additionally, long short-term memory (LSTM)-based target classifi-
cation, a network used for time-series data processing, was also studied. Mansukhani,
J., Penchalaiah, D., and Bhattacharyya, A. [18] performed LSTM-based target classifica-
tion using static RCS measurements of various targets extracted from simulations. Fu, R.,
Al-Absi, M. A., Kim, K. H., Lee, Y. S., Al-Absi, A. A., and Lee, H. J. [19] showed a high
detection accuracy of 99.88% through target classification of LSTM-based drones using
millimeter-wave (mmWave) radars. In addition, an AI-based target classification study
using HRRP—the radar data are not considered in this paper—was also conducted. Jithesh,
V., Sagayaraj, M. J., and Srinivasa, K. G. [20] used simulation-based HRRP of three different
targets. They confirmed that classification without ambiguity is possible in the absence
of noise through the LSTM–RNN-based target classification. A target identification study
using a gated recurrent unit (GRU), which is known to have a higher learning efficiency
due to having fewer parameters than the LSTM and has performance similar to that of the
LSTM, has been conducted. Lu, W., Zhang, Y., Xu, C., Lin, C., and Huo, Y. [21] proposed a
new GRU-based satellite target recognition method using the HRRP.

Furthermore, different types of networks are combined to maximize each advantage.
In the previous study, to improve the performance of time-series data classification, the
CNN, which automatically extracts data features, and the LSTM and GRU, which extract
temporal features between the extracted features, were combined and used. Zeng, K.,
Zhuang, X., Xie, Y., and Xi, Z. [22] performed a 1D CNN–LSTM-based hypersonic vehicle
trajectory classification using flight trajectories generated using aerodynamic characteristics
as data. Liu, H., Ma, R., Li, D., Yan, L., and Ma, Z. [23] conducted a 1D CNN–GRU-based
rolling bearing failure diagnosis. As mentioned earlier, the 1D CNN–LSTM and the 1D
CNN–GRU are mainly used in fields such as fault diagnosis and biosignals, but are rarely
used in target classification using an RCS.

In this paper, we conduct a study to improve the AI-based target classification per-
formance in a real-time situation using RCS data with noise. Previously, we performed
the AI classification of missiles based on a 2D CNN using a static RCS and compared the
classification with machine learning techniques such as the support vector machine (SVM)
and k-nearest neighborhood (KNN). However, considering real-time target classification
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and actual situations of becoming variously noisy, we changed the data from the static
RCS to the dynamic RCS and considered the network suitable for the dynamic RCS-like
time-series data. Here, the 1D CNN–GRU network is selected to compensate for the dis-
advantage of the RCS, which is vulnerable to noise. In addition, extracting the dynamic
RCS (DRCS) data of targets moving along the trajectory, simulating reality, is used as the
AI data. Considering that the data have different characteristics, network optimization
is required. Therefore, the 1D CNN–GRU network is optimized to be suitable for the
generated dynamic RCS data. In this case, hyperparameters use the results analyzed in a
previous study [24]. Finally, the identification performance of the 1D CNN–GRU, according
to the noise, is analyzed by comparing it with the 1D CNN and the 1D CNN–LSTM, which
have been previously optimized.

An outline of this paper is as follows. Section 2 introduces the background theory
of the RCS and the networks for the time-series data processing. Section 3 describes the
data generation and configuration. In Section 4, the optimization of the 1D CNN-based
networks is performed, and the performance of the networks is compared and analyzed in
Section 5. Section 6 summarizes the classification results and concludes with suggestions
for future studies on improving the target classification performance.

2. Background
2.1. The Radar Cross Section

The RCS means the ratio of the power density incident on the target from the transmit-
ter to the power density scattered from the target and entered in the direction of the radar
line-of-sight to the receiver. The RCS recognizes the target by receiving the measurements
in a series sequence through the process described previously. Therefore, the RCS is con-
sidered as time-series data. The RCS is calculated by Equation (1) and its unit is dBsm or
m2 [25,26]:

σ = lim
R→∞

4πR2
∣∣∣∣E2

E1

∣∣∣∣2 (1)

where σ is the RCS of the target, R is the distance between the target and radar, E1
2 is the

power density incident on the target, E2
2 is the power density reflected from the target and

returned to the receiver.

2.2. Network
2.2.1. The CNN

The CNN proposed in 1989 [27] was classified based on the features extracted through
the convolutional operation. The CNN model means anything combined with the convolu-
tional layer and pooling layer. For the classification of targets, a fully connected layer is
placed behind the CNN model. The CNN is largely divided into the feature-extraction part
and the classification part. The feature extraction is generally composed of a convolutional
layer and a pooling layer and the extracted features of the input data. The classification
part is composed of a fully connected (FC) layer.

In the convolutional layer, the kernel moves with a constant stride and derives output
features through the convolutional operation. Output features are called feature maps,
and the number of extracted feature maps is equal to the number of kernels. The pooling
layer reduces the number of parameters and feature maps, which is increased after the
convolutional layer. The application of the pooling layer has the effect of suppressing
overfitting, reducing computation time, and increasing generalization performance. In
addition, since the pooling layer is insensitive to changes in input data (such as shift), it is
also used for feature enhancement purposes [28]. Pooling includes max pooling, average
pooling, and stochastic pooling [29]. Among them, max pooling, which extracts only the
maximum value from the feature map, and average pooling, which extracts the average
value, are widely used. After the pooling layer, the extracted values are concatenated into
vectors. Following this, the values are connected to the output layer through the FC layer,
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which is called the dense layer. FC layers are often placed at the end of neural networks to
increase computational power [30].

As a network proposed for image classification, the CNN is expressed as a 1D CNN or
a 2D CNN according to the input dimension. More particularly, the 2D CNN is still used
with high accuracy in image classification [31]. The 2D CNN is also used for signals that
are one-dimensional data. In a previous paper [32], a 2D CNN-based fault diagnosis was
performed by receiving the image of the vibration signal as input, and a high performance
of more than 95% was confirmed. The 2D CNN has high accuracy, but a separate image
transformation process is required to use it. On the other hand, the 1D CNN receives a
one-dimensional signal directly and has good real-time performance. Therefore, it is used
in biosignals [33], sentence classification [34], and defect diagnosis [35,36].

Figure 1 shows the classification with the 3-channel time-series data as inputs using
a 1D CNN. It is assumed that there is one CNN layer, and in this case, the number of
input dimensions and the width of the kernel should be the same. The meaning of each
parameter is as follows: w and h are the width and height of the kernel, k is the number of
the kernel, and n and m are the length and channel of input data, respectively.
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2.2.2. The GRU

The RNN is one of the artificial neural networks with a cyclic structure and is suitable
for processing data in order. However, when the time interval is large, the gradient is
lost and the learning ability is greatly reduced. Hochreiter and Schmidhuber solved this
problem and proposed the LSTM [37]. The LSTM [38,39] is still widely used in time-series
data, and its core idea is that the cell state is connected like a conveyor belt. By applying
this, the gradient propagates even if the distance between the states increases. In an LSTM
cell, the cell state is controlled through three gates, which are the forget gate, the input gate,
and the output gate. In 2014, the GRU [40] was proposed as a network that improved the
learning efficiency of the LSTM by modifying the LSTM structure. Unlike the LSTM, the
GRU is composed of two gates and has a fast learning speed. In addition, the number of
parameters is smaller than that of the LSTM because the cell state and hidden state are
integrated into one hidden state. Based on the above, the GRU shows excellent performance
for long-term dependencies in time-series data processing and takes less computation time
than the LSTM. The structure of the GRU is shown in Figure 2. The GRU is composed of an
update gate, that acts as an input gate and the forget gate of the LSTM, and a reset gate
that determines the reflection degree of the previous hidden state [41]. GRU equations for
determining the hidden state are as follows:

rt = σ(Wrxt + Urht−1 + br) (2)

zt = σ(Wzxt + Uzht−1 + bz) (3)
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ht = (1− zt)� ht−1 + zt � tanh(Whxt + Uh(rt � ht−1) + bh) (4)

where rt is the reset gate and zt is the update gate at time t. xt is the input value at time t, W
and U refer to weights, and b is bias. ht is the hidden state at time t. � is the element-wise
(Hadamard) multiplication.
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3. Experimental Setup

Considering that a real missile flies at a very high speed and hits a target point
within a short time, it is necessary to classify the target by using data with a good real-
time performance. Therefore, the RCS measurement that ensures that a good real-time
performance is selected as the radar data for target classification. In this section, we discuss
data generation scenarios and AI data construction. Following this, the parameters to be
used when optimizing the 1D CNN–GRU, a network considered for RCS-based target
identification, are described.

3.1. Detection Scenario

There are a total of six classification classes, referring to North Korean missiles, and
the shape information is shown in Table 1. Flight distances for each class are set as follows:
600 km for Class 1, 300 km for Class 2, 500 km for Class 3, 800 km for Class 4, 500 km for
Class 5, and 600 km for Class 6. As shown in Table 1, Class 1 and Class 4, and Class 2 and
Class 3 have the same shape but different trajectories. Class 3 and Class 5 have the same
trajectory, but different shapes. The reasons for choosing the models in the classes shown
in Table 1 are as follows:

1. Confirmation for the classification of missiles with the same shape, but different trajectories;
2. Confirmation for the classification of missiles with the same trajectory, but different shapes;
3. Confirmation for the classification of different types of missiles.

In this paper, we heck the target classification performance after setting the difficult-
to-detect environment as above. The detection scenario is shown in Figure 3. We assumed
that North Korea is launching a missile and three radars are deployed for detection and
classification as shown in this figure. Additionally, the type of radar system was set in
mono-static and the yellow line represents the radar line of sight (RLOS). The radar on
the right is deployed near the territorial waters of Ulleungdo and its frequency band is
3 GHz— used by the Aegis ship. The radar on the left is deployed in the city of Chungbuk
and its frequency band is 1 GHz— used by the ground radar. The radar in the front is at
the strike point and its frequency band is 10 GHz. In a low RCS situation, the lower the
frequency, the higher the target detection and classification performance. Therefore, the
low-frequency band was considered first [42]. The flight trajectory is expressed by each
color and line as follows: the solid red line for Class 2, the dashed orange line for Class 3
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and 5, the dashed single-dotted blue line for Class 1, the dashed double-dotted light gray
line for Class 6, and the dotted purple line of Class 4. The double-headed arrow indicated
by the pink line indicates the detection section, which is the mid-phase of the missile flight
section. When determining the detection section, after calculating the mid-phase for each
of the six missiles, a common mid-phase section was selected. The mid-phase section is
mainly used for the detection and identification of missiles because it is possible to detect
the target for a long time and be less affected by obstacles in the air.

Table 1. Information on the shape, size, and trajectory of missiles.

Number of Class Shape Size (L × D) Trajectory

1
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3.2. DRCS Generation

To obtain the RCS measurements of the moving missiles, we generate the dynamic
RCS by using the extracted static RCS in advance. The static RCS is a value obtained when
the target is not moving and is affected by the shape and material of the target. The dynamic
RCS is a value obtained when a target moves along a trajectory and can be extracted by
using three types of information such as the static RCS of the target, the trajectory, and
the position of the observation radar. Accordingly, even if a missile with the same static
RCS value comes in, we obtain different dynamic RCS values depending on the trajectory.
The parameters required for static RCS generation have been published previously [43].
A high-frequency structure simulator (HFSS) from Ansys is used to extract static RCS
measurements, and a matrix laboratory (MATLAB) is used as a tool to extract dynamic RCS
measurements. Before proceeding with classification based on AI, the extracted dynamic
RCS measurement is converted as a graph and then quantitatively evaluated to check
whether the data can be classified as a target. Figure 4 presents the dynamic RCS graphs,
showing the RCS measurement according to the detection period explained in Figure 3. As
shown in Figure 4a–c, all missiles extract dynamic RCS measurements of different shapes
depending on the frequency band. For Class 2 and Class 3, we confirmed that the dynamic
RCS for each is obtained differently at the same frequency, due to their different trajectories,
even if the static RCS is the same for each (due to having the same shape and material). We
can also expect high classification performance by effectively extracting feature points at
all frequencies. As expected, like Figure 4a,d,g,j,m,p, there is a section where all missiles
show a similar shape within the same frequency band. However, other shapes are drawn
except for sections where similar shapes are visible. This means that even if there is a
similar section, it is possible to extract features from other sections, so that classification
can be performed. Based on the above results, we predict target classification in complex
situations before target classification is possible.

3.3. The Configuration of the Dataset

Having extracted the dynamic RCS measurement through the simulator, as above,
the number of data for learning and verification is one and is insufficient for the AI data.
Therefore, we need data augmentation for training and testing. First, data preprocessing
is performed through normalization. Subsequently, referring to existing papers, the noise
level is assumed to be Gaussian noise and data augmentation is performed by Gaussian
noise with zero mean and a standard deviation of 0.5 [24]. To set the ratio of the training
and the test set to 6:1, respectively, as in the MNIST [44], a total of 36,000 training data sets
with 6000 data sets per class, and a total of 6000 test data sets builds 1000 data sets per class.
Following this, the Gaussian noise with a zero mean and a standard deviation of 0.9 are
added to the test data generated through data augmentation. The reason why the standard
deviation of 0.9 was added to the test data is to treat it differently from the learned data.

3.4. The Preparation of Training and Testing Methods for Network Optimization

As time-series prediction models, the LSTM and GRU show good performance when
demanding precision from time-series data by maintaining the data trend. However, it has
been shown that accuracy deteriorates in data with large fluctuations. Therefore, in this
paper, we design a network that can compensate for the weakness of the RCS, which is
weak to noise, by combining the GRU, which has strength in time-series data processing,
with the 1D CNN, which has strength in feature extraction. The above networks have been,
theoretically, analyzed well in the past. Thus, we referred to the mathematical modeling
of the 1D CNN [33,34], GRU [38], and LSTM [40]. Following this, we proceeded with the
optimization of the 1D CNN–GRU to obtain a model suitable for the RCS because it needs
to be tuned according to the data characteristics. Optimization proceeds by experimentally
changing the network structure, the hidden unit, and the optimizer, in that order.
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3.4.1. The Initial Value for Optimization Network

In the existing study [24], hyperparameters and optimization techniques suitable for
networks were analyzed for the AI-based target classification using the RCS measurements.
Therefore, in this paper, based on the analysis results of previous studies, the hyperpa-
rameters, such as epoch, iteration, and batch size, are set to 30, 50, and 720, respectively.
When verifying by experimentally changing the layers of the CNN and GRU in the process
of optimizing the network structure, the number of the CNN layers is set to 5 and the
number of the GRU layers is set to 3 as initial values. The hidden unit of the GRU layer
initially consists of 140-90-30. Additionally, as the number of the GRU layers is changed,
the hidden unit consists of 140-90, 140-90-30, and 140-90-60-30. For reference, the initial
value of the hidden unit of the GRU layer is set so that the number of nodes can be reduced
as it approaches the output layer. Finally, when comparing the classification performance
according to the network structure and the hidden unit, the optimization method is set to
Adam (adaptive moment), which is commonly used, and the learning rate is selected as
0.001 as suggested in the previous paper [45].

3.4.2. Training and Testing

The network is trained using the previously generated training data. At this time, to
increase the reliability of the study, 10 networks are extracted for each case. Following this,
the classification performance of the network is checked by extracting three classification
results of the learned network based on the verification data. To quantitatively check the
classification performance, the accuracy of the confusion matrix is used as an evaluation
index [46]. The confusion matrix indicates the degree to which the predicted value agrees
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with the actual value and is a widely used indicator when evaluating the performance of
a network. At this point, the accuracy is a value located on the diagonal of the confusion
matrix and indicates how accurately the predicted value matches the actual value. For
network performance comparison and analysis, we repeatedly extract the accuracy for each
case 30 times and then use the average value as the network accuracy. In addition, the
standard deviation is extracted to check the stability of the network performance. In this
case, the small standard deviation means that the performance fluctuation range is small.

4. Experiments
4.1. Network Optimization
4.1.1. Structure

The deeper the layer, the more robustly it extracts features, but the amount of compu-
tation is also greatly increased, resulting in a longer learning time. On the other hand, if the
depth of the layer is too shallow, features cannot be extracted properly and the accuracy is
greatly reduced. Therefore, considering the learning efficiency, we experimentally change
the number of layers and check the performance. First, by changing the convolutional layer,
two structures with high accuracy and low standard deviation are identified and selected.
Then, the classification performance is checked by decreasing and increasing the number
of the GRU layers in the two selected structures. Through this, the number of layers with
high accuracy compared to the amount of computation is determined.

At this point, the number and size of kernels should be set as parameters of the
convolutional layer. The kernel size is usually set to an odd number such as 3, 5, or 7. The
number of kernels is a parameter that determines the size of the output feature map as
the number of nodes in the convolutional layer. As the number of kernels increases, the
accuracy improves, but the amount of computation also increases. Therefore, in this paper,
the number of kernels is set to increase as the neural network deepens, such as 32, 64, 128,
192, and 256, and the size of the kernel is set to 3, the same as the value set published
previously [47].

Table 2 shows the classification accuracy and standard deviation according to the
change in the number of convolutional layers of the 1D CNN–GRU set as the initial
value. As shown in Table 2, convolutional layer 4—GRU layer 3 (C4G3)—has the highest
classification accuracy of 99.31% and the lowest standard deviation of 0.4905. Convolutional
layer 5—GRU layer 3 (C5G3)—shows 98.40% accuracy and a low standard deviation of
1.089. With the above two structures, the classification performance according to the change
in the number of GRU layers is checked. Table 3 shows the classification results of the 1D
CNN–GRU according to the change in the number of GRU layers. As shown in Table 3, the
C4G3, which had the best performance in Table 2, has the highest accuracy of 99.31% and
the lowest standard deviation of 0.4905. Convolutional layer 5—GRU layer 4 (C5G4)—has
the second-best performance as it has an accuracy of 99.12% and a standard deviation
of 0.5934.

Table 2. The classification results according to changes in the number of convolutional layers of the
1D CNN–GRU.

Layer Structure * Average Accuracy (%) Standard Deviation

C3G3 97.5090 2.9906
C4G3 99.3090 0.4905
C5G3 98.4040 1.0890
C6G3 96.0930 3.2094

* C represents the convolutional layer and G represents the GRU layer.
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Table 3. The classification results according to changes in the number of GRU layers of the
1D CNN–GRU.

Layer Structure * Average Accuracy (%) Standard Deviation

C4G2 99.1090 0.7500
C4G3 99.3090 0.4905
C4G4 98.6700 0.7674
C5G2 97.8710 1.8970
C5G3 98.4040 1.0890
C5G4 99.1150 0.5934

* C represents the convolutional layer and G represents the GRU layer.

4.1.2. The Hidden Unit

When the size of the hidden unit is large, the performance is poor and the amount
of computation is increased. Therefore, the performance is checked by experimentally
changing the configuration of the hidden unit of the GRU layer suitable for the network
structure. The network structure uses the two structures with the highest performance in
Section 4.1.1.

Tables 4 and 5 show the classification accuracy and standard deviation according to the
change of the hidden unit. As shown in these Tables, the C4G3 and C5G3 have the highest
accuracy and lowest standard deviation in the initially set hidden unit configuration despite
changing the hidden unit. In addition, the classification accuracy of the C4G3 is 0.19%
higher than that of the C5G3 and the standard deviation of the C4G3 is 0.1029 lower than
that of the C5G3. As a result, it can be confirmed that the C4G3 network is the most stable
and has the highest classification accuracy when its hidden unit is composed of 140-90-30.

Table 4. The classification results according to changes in hidden units of the 1D CNN–GRU with the
C4G3 * structure.

Configuration of Hidden
Unit Average Accuracy (%) Standard Deviation

100-90-30 98.3870 0.9573
100-90-60 98.5540 0.9548
140-90-30 99.3090 0.4905
140-90-60 97.9800 1.7712

* C represents the convolutional layer and G represents the GRU layer.

Table 5. The classification results according to changes in hidden units of the 1D CNN–GRU with the
C5G4 * structure.

Configuration of Hidden
Unit Average Accuracy (%) Standard Deviation

100-90-60-30 98.6760 1.0824
100-90-60-60 98.2300 1.4758
140-90-60-30 99.1150 0.5934
140-90-60-60 98.6930 0.6826

* C represents the convolutional layer and G represents the GRU layer.

4.1.3. Optimization

The optimization algorithm is a technique to find weights and biases to minimize the
loss function. The classification performance of networks is compared by changing the
optimizer of the network selected in Section 4.1.2. The optimizer considers stochastic gradi-
ent descent with momentum (SGDM) [48], root mean square propagation (RMSprop) [49],
and Adam by referring to the existing papers [50]. The optimizer selects based on the
classification accuracy for accurate target classification.
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Table 6 shows the classification results according to the optimizer change of the 1D
CNN–GRU. As shown in this table, both Adam and RMSprop have a classification perfor-
mance of 99.30% or more, and a standard deviation of 0.5532 or less. As described above,
the optimizer selects the RMSprop with the highest accuracy based on the classification
accuracy. The classification accuracy of the final design of the 1D CNN–GRU is 99.50%
and has a standard deviation of 0.5532. The performance of the final design of the 1D
CNN–GRU has very high classification accuracy and a low standard deviation.

Table 6. The classification results according to changes in the optimizer of the 1D CNN–GRU with
the C4G3 * structure and 140-90-30 hidden units.

Optimizer Average Accuracy (%) Standard Deviation

Adam 99.3090 0.4905
RMSprop 99.5030 0.5532

SGDM 98.8010 1.1380
* C represents the convolutional layer and G represents the GRU layer.

4.2. The Optimized 1D CNN–GRU

Figure 5 shows the structure and overall flow chart of the final optimization of the
1D CNN–GRU network. The feature extraction is performed by receiving a 3D RCS
measurement with a size of 3 × 141 from the CNN as an input. The stride, which is the
movement interval of the kernel, is 1, and the causal padding is used to set the output
length and input length of the time-series data to be the same in the CNN layer. In
addition, to solve the gradient vanishing problem in the CNN layers, the rectified linear
unit (ReLU) [51] is used as an activation function and a normalization layer [52] is added.
At his point, normalization proceeds with layer normalization. Layer normalization is one
of the techniques that came out to solve the problem of batch normalization dependence
on batch size. Batch normalization is difficult to use in a time-series data processing model.
The reason is that it is difficult to express the entire data when the batch size is small due
to the nature of the sequence data. Therefore, in this paper, layer normalization is used to
perform normalization in units of layers.

Following this, by extracting the feature map as one value through global average
pooling, the number of features is greatly reduced and the features are made into a one-
dimensional vector. Subsequently, learning is performed in three GRU layers using a
one-dimensional vector. The activation function of the GRU uses the sigmoid and the tanh
function. The sigmoid function is used for gate calculation, and the tanh function is used to
update the hidden state.

Finally, classification proceeds through the fully connected layer and the softmax
layer [53] in the output layer, and the related contents are as follows. The fully connected
layer is used to combine features learned from the GRU layer for final classification. At this
time, the output size is set to 5, which is equal to the number of missile classes. In addition,
since the output form of the GRU layer is in the form of a one-dimensional array, there is no
need for a separate flattening operation unlike that used in the 2D CNN. Subsequently, the
softmax function is used as an activation function for multi-class classification. The softmax
layer performs the softmax function and calculates the probability of the input and outputs
the predicted value. At this point, the number of softmax nodes is set as the number of
classes to be classified like a fully connected layer, and in this paper, it is set to 5. Finally,
the classification layer calculates the difference between the predicted value and the actual
value through a loss function and updates the parameters (weight and bias) of the network.
The loss function is generally set to cross-entropy, which is used in classification problems.
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5. Experimental Results
5.1. The Comparison of Classification Results of Optimized Networks

To compare and analyze network performance, the 1D CNN and 1D CNN–LSTM are
selected as comparison groups, and the classification accuracy, standard deviation, total
number of parameters, and algorithm operation time of the three networks are checked.
In addition, five classes are selected to check if a good performance is seen in the other
RCS measurements. The DRCS generation and data composition method for the additional
five classes is the same as mentioned in Section 3, and thus, the learning and verification
data are established. Using the three trained networks, the classification accuracy, standard
deviation, and algorithm operation time are checked, and the comparison and analysis are
performed with the network designed in Section 4.

Tables 7 and 8 are the results of comparing the classification performance of three
networks trained with the DRCS dataset generated in Section 3 and the additionally
selected DRCS dataset. Here, Table 7 shows the classification results for six classes using
the data from the network optimization in Section 4, and Table 8 shows the classification
results for the five newly added classes. As shown in these Tables, a high classification
accuracy of 98.93% or more can be confirmed in all networks, and the 1D CNN–GRU has
the highest accuracy. The running time of the algorithms is shown in Tables 7 and 8. This
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running time represents the time taken to process one sequence of data. The simulation
computer specifications used in this paper are as follows: AMD Ryzen 7 5800X, 32 GB
RAM, and NVIDIA GeForce RTX 3090. Although the network structure of the proposed
method is complex, it was confirmed that the operating time was not significantly different
from that of the conventional methods. However, the difference in performance could
be confirmed. Through this result, it is expected that real-time classification is possible
for all three networks. In addition, as shown in the respective Tables, the performance of
the 1D CNN–GRU has an accuracy difference of 0.1%, so the difference is not large and
is within the standard deviation. This means that if the network designed in this paper is
used for target classification using the RCS measurements, it could generally have a high
classification performance as shown in the table below.

In the table below, the 1D CNN has a lower accuracy than the 1D CNN–GRU, but it
has a small standard deviation, so it may be difficult to select a network. Therefore, in the
next section, we plan to check the network that could be used by compensating for the
weakness in noise, which is a disadvantage of the RCS, by comparing and analyzing the
performance of the networks by increasing the noise level.

Table 7. The classification results of the optimized 1D CNN-based networks using this paper’s dataset.

1D CNN 1D CNN–LSTM 1D CNN–GRU

Total Parameters (kilo) 255.7 480.4 319.2
Average Accuracy (%) 99.4310 99.1240 99.5030

Standard Deviation 0.4660 0.7374 0.5532
Running Time (s) 0.0002072 0.0002594 0.0002608

Table 8. The classification results of the optimized 1D CNN-based networks using the new dataset.

1D CNN 1D CNN–LSTM 1D CNN–GRU

Average Accuracy (%) 99.3267 98.9311 99.3978
Standard Deviation 0.2820 1.3356 0.8490
Running Time (s) 0.0002062 0.0002342 0.0002368

5.2. The Classification Results According to the Noise Level

To check the classification performance according to the noise influence of the net-
works, the classification performance of two different datasets is checked by increasing the
noise level. The noise type is assumed to be Gaussian noise and its standard deviation is
increased by 0.3 based on the zero mean and the standard deviation of 0.9. Figure 6 shows
the change in the dynamic RCS graph according to the standard deviation of Gaussian
noise using the class 1 training data generated in Section 3. Figure 6a indicates a dynamic
RCS graph of class 1 used for learning, and Figure 6b–e show dynamic RCS graphs when
the standard deviation is augmented by 0.3. As shown in Figure 6, the deformation of the
graph increases as the noise level increases.

In Figure 7, the average accuracy according to the noise level change for three networks
is compared. Figure 7a shows the change in the classification performance of networks
according to the noise level of the data used for optimization with six classes. Figure 7b
shows the change in the classification performance of networks according to the noise
level of the new data with the five newly added classes. In Figure 7, the 1D CNN, 1D
CNN–LSTM, and 1D CNN–GRU are represented by red dashed lines, blue solid lines,
and black dash-dotted lines, respectively. At a standard deviation of 0.9, all networks
show excellent performance, and the 1D CNN and 1D CNN–GRU have a slightly higher
performance than the 1D CNN–LSTM. However, the 1D CNN–LSTM and 1D CNN–GRU
show a higher classification performance than the 1D CNN with a standard deviation of 1.5
in Figure 7a and 1.0 in Figure 7b. Consequently, the 1D CNN–LSTM and 1D CNN–GRU,
which are combined networks, are stronger in noise than the 1D CNN. In addition, it
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is confirmed that the 1D CNN–GRU designed in this paper is the most robust to noise
among the networks in both datasets. Therefore, it is desirable to use the 1D CNN–GRU
for the RCS-based target classification because the 1D CNN–GRU designed in this paper
can compensate for the weakness of noise, which is the disadvantage of the RCS.
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6. Conclusions

After selecting radar data and networks to improve real-time target classification
performance using surface-to-air radar, we designed the network and confirmed the clas-
sification performance. In addition, we considered the 1D CNN and 1D CNN–LSTM as
comparison groups to confirm the designed network classification performance.

For real-time multiclass classification, the RCS, a radar measurement, was selected as
input data. Although the RCS is capable of real-time acquisition, it has the disadvantage of
being vulnerable to noise. To compensate for the shortcomings of the RCS, the 1D CNN–
GRU, a combined network, was considered by adding a GRU layer for the more effective
processing of time-series data to the 1D CNN with strong feature extraction strength. We
designed a 1D CNN–GRU that has four convolutional layers and three GRU layers to fit
the DRCS data characteristics. In the present study, the GRU hidden units consisted of
140, 90, and 30, and RMSprop as the optimizer was used. The designed network had the
highest accuracy of 99.50%, confirming the best classification performance. In addition,
with the network designed in this paper, the performance was checked as to whether
target classification is possible for other RCS measurements. As a result of checking the
classification performance based on the newly generated data set, the 1D CNN–GRU had
the highest accuracy of 99.40%.

To select a network that could compensate for the weakness of the RCS, the noise was
increased to check the classification performance according to the noise of the networks.
We tested the existing data set and the new data set. At a low level of noise, the 1D CNN
and the 1D CNN–GRU had slightly higher accuracies than the 1D CNN–LSTM, but the
performance of all networks was high at a 98.93% accuracy. However, as the high level
of noise was added, the accuracy of the combined networks of the 1D CNN–LSTM and
1D CNN–GRU was higher than that of the 1D CNN, with a standard deviation of 1.5
when using the existing data set and 1.0 when using the new data set. In addition, it was
confirmed that the 1D CNN–GRU had the highest accuracy value at all noise levels in the
two data sets. Based on the above results, it can be seen that the combined network is
stronger in noise than the general network. Therefore, it was confirmed that the 1D CNN–
GRU designed in this paper is suitable for RCS-based target classification by supplementing
the shortcomings of the RCS.

By optimizing and designing, we proposed a 1D CNN–GRU that is less affected by
noise and has high classification performance and learning efficiency. Furthermore, when
the test was conducted by changing the type of missile, we confirmed a higher performance
than other networks. As a result, we expect to enable an accurate and rapid preemptive
response in the missile defense system by using the proposed network. In the future,
our researchers will conduct a study to improve target classification performance after
constructing various scenarios, including situations such as a low RCS and various different
trajectories, such as pull-up maneuvers.
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