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Abstract: Road geometric information and a digital model based on light detection and ranging
(LiDAR) can perform accurate geometric inventories and three-dimensional (3D) descriptions for
as-built roads and infrastructures. However, unorganized point clouds and complex road scenarios
would reduce the accuracy of geometric information extraction and digital modeling. There is a
standardization need for information extraction and 3D model construction that integrates point
cloud processing and digital modeling. This paper develops a framework from semantic segmen-
tation to geometric information extraction and digital modeling based on LiDAR data. A semantic
segmentation network is improved for the purpose of dividing the road surface and infrastruc-
ture. The road boundary and centerline are extracted by the alpha-shape and Voronoi diagram
methods based on the semantic segmentation results. The road geometric information is obtained
by a coordinate transformation matrix and the least square method. Subsequently, adaptive road
components are constructed using Revit software. Thereafter, the road route, road entity model, and
various infrastructure components are generated by the extracted geometric information through
Dynamo and Revit software. Finally, a detailed digital model of the road scenario is developed.
The Toronto-3D and Semantic3D datasets are utilized for analysis through training and testing. The
overall accuracy (OA) of the proposed net for the two datasets is 95.3 and 95.0%, whereas the IoU of
segmented road surfaces is 95.7 and 97.9%. This indicates that the proposed net could accomplish
superior performance for semantic segmentation of point clouds. The mean absolute errors between
the extracted and manually measured geometric information are marginal. This demonstrates the
effectiveness and accuracy of the proposed extraction methods. Thus, the proposed framework could
provide a reference for accurate extraction and modeling from LiDAR data.

Keywords: LiDAR data; road engineering; point cloud processing; semantic segmentation; digital
modeling

1. Introduction

As-built roads have received much more attention from road administration agen-
cies after years of operation, which requires extensive field measurements to update the
corresponding information based on a data model or technology, such as Building Infor-
mation Modeling (BIM) [1]. Geometric and semantic information on as-built roads and
infrastructures is essential to cover a wide range of topics, including asset management
and road safety inspection [2,3]. Advanced information and sensing technologies have
been increasingly applied in road maintenance and management with the increase in the
number of as-built roads and higher requirements of construction management [4]. Light
detection and ranging (LiDAR) is a reliable and efficient technology widely used in road
geometry measurements, obstacle detection, and landscape modeling [5,6]. This technol-
ogy could provide high quality point clouds [7]. However, these point cloud data do not
contain semantic and geomatic information. Moreover, road scenarios are complex and
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contain multiple types of objects. This decreases the precision of semantic segmentation
and geometric information extraction. In particular, the data gathered through LiDAR
technology is a collection of unorganized, irregularly sampled, and unstructured point
clouds [8], which increases the difficulty of converting the point clouds into semantic-rich
models of as-built roads and different categories of infrastructures. Thus, it is important
to establish an accurate and effective framework that takes, as input, point clouds from
LiDAR systems and outputs a digital model to interlink 3D point clouds regarding the
geometric and semantic information of as-built roads and surrounding infrastructures.

Within this context, the road surface is an important road design structure, representing
the geometric information of the road. Roadside infrastructure is essential for traffic-related
applications and safe operation. Hence, segmentation of road surfaces and infrastructures
is the first step for generating detailed geometric elements. The studies related to road
surface segmentation from point clouds have focused on three categories: structure-driven,
feature–driven, and model-driven methods [9–11]. Structure-driven methods rely on the
detection of curbs to define the road boundary and the subsequent extraction of the road
surface [12]. These methods have been developed for curb detection using different data
sources, including the scan lines, density and elevation of 3D point clouds [13,14], and
two-dimensional geo-referenced feature (2D GRF) images generated by the projection of
the 3D point clouds [15,16]. Although good results were attained from these works, the
segmentation of the road surface is not robust when it is not delimited by curbs, which
is the case for most non-urban roads. Feature–driven methods are performed based on
previous knowledge of geometric and contextual features, such as roughness and the height
of road surfaces [17,18]. However, these approaches require a substantial number of fixed
thresholds, which need to be defined or tested by the user. Model-driven methods primarily
refer to the semantic segmentation of road surfaces by deep neural networks. These can be
largely divided into three categories [19]: projection-based [20], discretization-based [21–23],
and point-based methods [24]. The first two methods convert the point clouds into other
regular representations, such as 2D images and 3D grids. This causes information loss and
incurs computation expense for the projection back to the original dimension [25]. Unlike
the above methods, point-based methods (e.g., PointNet and PointNet++) directly work on
the point clouds. For large-scale point clouds containing hundreds of objects, the widely
employed farthest point sampling cannot efficiently and rapidly process a large number
of points. Thus, the pioneering RandLA-Net [26] was proposed as a potential approach
developed on the principles of random sampling (RS). However, it fails to capture wider
context information for different and similar features owing to the removal of key features
caused by the RS method [27].

In addition, numerous studies have examined the geometric information extraction
methods based on point clouds and other data sources, such as the Geographic Information
Systems (GIS) database [28,29], optical images [30], or vehicle trajectory obtained by Global
Positioning System (GPS) [31] or Inertial Measurement Units (IMU) [32]. According to
the above analysis, the accuracy of geometric element extraction is severely affected by
the captured data sources. However, the accurate extraction of geometric information
using optical images is challenging because of low illumination and inclement weather.
Furthermore, certain extraction methods based on trajectory data may not satisfy the
requirements of a stationary system. In addition, the integrity and accuracy of the obtained
trajectory are limited in complex road scenarios owing to the movement of vehicles with
larger fluctuations and away from the centerline of the road.

Finally, and in the context of digital modeling using 3D point clouds, Justo et al.
proposed a semi-automatic modeling approach for traffic signs, guardrails, and other road
elements via BIM [33]. In addition, they modeled the alignment and centerline of each
road lane on a highway through BIM and GIS [34]. Tang et al. developed a framework for
integrating road design and pavement analysis relying on the capabilities of Dynamo [35].
However, these approaches only focused on separate objects, rather than considering the
integration of the road and other infrastructures in a real-world space or their relationship.
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The objective of this paper is to present a framework that accepts raw point clouds from
various LiDAR systems as input, and outputs an integrated digital model that represents
the geometric and semantic information of the road and other infrastructure. The main
contributions of this study are as follows:

(1) An improved semantic segmentation network that accurately and efficiently divides
the road surface and other infrastructure.

(2) A series of geometric information extraction methods that can be used to obtain the
road boundary and centerline, and to calculate the geometric elements of roads. These
can be applied to the segmented point clouds that contain 3D coordinates and RGB
information. Note that the extraction methods do not aim to be the contribution. How-
ever, these are essential for the entire workflow and would be validated if the mean
absolute errors between the extracted and manually measured geometric information
were marginal.

(3) A digital modeling process that constructs a road entity model and various infrastruc-
ture components to realize a geometric representation.

2. Materials and Methods

This section is divided into four subsections. The first analyzes the point clouds
obtained by different LiDAR systems. After a brief overview of the methods, a detailed
description of the main processing steps is provided. In particular, point cloud semantic
segmentation and the extraction of road geometric information are described. The digital
modeling of road scenarios is described in detail.

2.1. Point Clouds Obtained by Different LiDAR Systems

Considering the platform type employed to install the system, there are three types of
arrangements of laser scanner systems: terrestrial laser scanner (TLS), aerial laser scanner
(ALS), and mobile laser scanner (MLS) [36]. A TLS is a stationary system consisting of
a LiDAR device mounted on a tripod or other type of stand. It is capable of obtaining
high-resolution scans of complex scenarios. The point clouds captured by TLS contain 3D
coordinates, RGB information, and intensity [37]. With regard to ALS, the laser scanner is
installed on an aircraft (typically an airplane) based on GNSS receivers and IMU. The ALS
can record the 3D coordinates and intensity of each echo, and colorize point clouds through
digital photographs captured by a calibrated camera [38]. Finally, the MLS is integrated
with multiple on-board sensors comprising a GNSS system, an IMU, and a DMI. However,
in certain cases, the data processing methods used in TLS or ALS cannot be directly applied
to MLS. This is owing to differences in the manner of data acquisition, mainly the geometry
of the scanning and point density [39]. Therefore, our study is implemented based on
per-point features (e.g., 3D coordinates and RGB information). It focuses on the content
of acquired data rather than the LiDAR systems, thereby ensuring the universality of the
proposed methods.

2.2. Methods Overview

The methodology proposed in this paper is divided into three steps (see Figure 1):
(1) semantic segmentation, (2) geometric information extraction, and (3) BIM technology for
digital modeling. The raw point cloud data do not possess semantic and geomatic informa-
tion, and road scenarios are complex and contain multiple types of objects. Therefore, we
first segment the road surfaces and infrastructures in the process of semantic segmentation.
More specifically, the improved semantic segmentation network is proposed in Step 1.
Based on a fundamental foundation of SCF-Net, the aggregated attention pooling module
is improved to describe the difference and similarity of local features. Then, 3D coordinates
and radial distributions are gathered to enrich global contextual features and preserve the
complex geometric structure of point clouds. The road surfaces and other categories of
infrastructure are segmented by this procedure. In Step 2, the road boundary and centerline
are extracted by the alpha-shape method and Voronoi diagram (or Thiessen-Polygons)
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method based on the segmented road surfaces. Subsequently, the geometric information is
obtained from the 3D coordinates of the road boundary and centerline. Finally, the road
centerline and geometric information is imported to generate a road route through Dynamo.
Adaptive road components are developed and placed to form a complete road entity model
based on the generated road route. Given the segmented infrastructures in Step 1, the
locations of infrastructures are determined and fitted. The road entity model and various
infrastructure components, such as guardrails and buildings, are constructed and arranged
using Revit software. Thereby, the details of vegetation and other elements are manually
adjusted based on the imported point clouds, and the digital road scenario is established.
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Figure 1. Workflow of the methods.

2.3. Semantic Segmentation of Point Clouds

The large scale of point clouds incurs high computational and memory costs owing
to the wide space of road scenarios, including the road surface, vegetation, infrastructure,
buildings, and other categories of objects. Consequently, an efficient and lightweight deep
neural network needs to be applied to directly infer per-point semantics for large-scale
point clouds, and thereby realize multi-object recognition and segmentation. Large-scale
point cloud semantic segmentation networks have been proposed, such as RandLA-Net and
SCF-Net. SCF-Net can achieve high efficiency using the RS method and generate point-wise
representations of spatial information. However, the RS method would unintentionally
discard key features [40]. It is worth mentioning that the collected point clouds may include
noise and unclear objects at a distance from the sensor. These affect the accuracy of semantic
segmentation. It is difficult to reflect the different and similar features of local point clouds
because the point clouds would be inadequate and sparse during the sampling process.
To address these subproblems, we propose an improved SCF-Net for raw point clouds to
aggregate the different and similar local contextual features, and optimize global contextual
features. This would enhance the capability to learn effective spatial contextual features
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from large-scale point clouds. We introduce the proposed module in detail in this section
and describe the architecture of the improved SCF-Net in the following subsection.

2.3.1. Improved SCF Module

We improved the SCF module to extract local and global contextual features of point
clouds. It consists of three blocks: local polar representation (LPR), aggregated attentive
pooling (AAP), and global contextual feature representation (GCFR). We introduce the
architecture of the improved SCF-Net. It has an encoder-decoder with the SCF module.

It is observed that the improved SCF module is applied to aggregate the local maxi-
mum and mean features of neighboring points to extract more local contextual features
and reduce the redundant information in an AAP neural unit. In a GCFR neural unit, 3D
coordinates and radial distributions are utilized as global contextual features to represent
the distribution of point clouds in 3D space (see Figure 2).

1. Local Polar Representation

It is notable that, in certain real scenarios, segmentation performance is hindered by
different orientations of the same category of objects. For example, vehicles parked in
different orientations on the roadside may be misconstrued as roadside infrastructures [41].
We apply the method proposed by Fan [27] to reduce the influence of object orientation
on the geometric features. Evidently, the LPR unit is established in the polar coordinate
system that is invariant along the z-axis. Furthermore, the local context of point clouds is
converted from Cartesian coordinates to polar coordinates.

First, a point and its k-nearest neighboring points are obtained in the polar coordinate
system. Thereafter, the geometric distance and original relative angles are calculated.
Then, the center-of-mass of the neighboring points is determined, and the local direction
is defined from a point to its center-of-mass. In addition, the updated relative angles are
obtained by the original relative angles and relative angles. Finally, the updated relative
angles and geometric distance are combined as the geometric patterns.

2. Aggregated Attentive Pooling

The AAP unit is developed by integrating the local and neighboring point features
to measure geometric details among large-scale point clouds and learn local contextual
features. In an AAP unit, the geometric distance, point features, and geometric patterns are
obtained as inputs. This proposed unit entails the following steps:

Computing the feature distance: The L1 norm and mean function are used to calcu-
late the feature distance between the input feature vectors of the i-th point and its k-th
neighboring point [27]. This can be expressed as

disk
if = mean(|v(i)| − |v(k)|) (1)

where disk
if denotes the feature distance, | | is the L1 norm, and mean (·) is the mean

function. v(i) and v(k) denote feature vectors of the i-th point and its k-th neighboring
point, respectively.

Determining the attentive pooling weights: The geometric distance and feature dis-
tance can measure the correlation among points in the world and feature space. The smaller
the distance, the higher their relevance. Meanwhile, the weights lie in [0,1]. Hence, the
geometric distance and feature distance are transformed through a negative exponential,
and combined to define the aggregated distance disk

i :

disk
i = concat(exp

(
−disk

ig

)
, exp

(
−disk

if

)
) (2)

where disk
ig and disk

if are the geometric distance and feature distance, respectively.

Given the aggregated distance disk
i , we combine point features fκ

ι to obtain the set of
local features disl

i through a concatenation operator. Then, we use a shared MLP followed
by Softmax to learn the attentive pooling weight wk

i for disl
i.
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Calculating local contextual features: First, the maximum features max
k

(
disl

i
)

from the

neighboring point features are directly collected to show the local distinctness. Then, the
neighboring point mean features mean

k,wk
i

(
disl

i
)

are defined by re-weighting the neighboring

point features with wk
i to closely gather similar local context. Finally, we combine the two

types of features to precisely capture and learn local contextual features fiL by utilizing the
neighboring point features.

fiL = concat

(
max

k

(
disl

i

)
, mean

k,wk
i

(
disl

i

))
(3)
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3. Global Contextual Feature Representation

Given the local contextual features, the context among the neighboring points is not
sufficiently discriminative for semantic segmentation. The global contextual features can
be used to learn complex geometric structures and enrich the global context from 3D points.
These two contextual features can be concatenated to obtain spatial contextual features.

It is noted that different objects of the same category may have certain differences
in global spatial features owing to different locations and scenarios. Furthermore, their
geometric architectures are generally similar. The radial distribution is utilized as the
supplement of global contextual features. It reflects the distribution of point clouds in the
world space [42], which is defined as follows:

ri =
ρi

l
ρi

g
=

Ni
k

Ni
g
·
(

Ri
l

Ri
g

)3

(4)

where ri is the radial distribution; ρi
l and ρi

g are the densities of the neighboring points and
global point clouds, respectively; Ni

k and Ni
g are the numbers of neighboring points and

global points, respectively.Ri
l and Ri

g are the local and global radii, respectively.
The radial distribution could combine the local and global information distribution and

is irrelevant to the per-point distribution. Evidently, the radial distribution is insensitive to
marginal geometric deformations, thereby reserving the global information and geometric
structures. In addition, the 3D coordinates of a point pi are used to represent the location of
local neighboring points. Therefore, 3D coordinates are combined with radial distribution
as global contextual features. This is defined as follows:

fig = concat(MLP(xi, yi, zi), ri) (5)

2.3.2. Architecture of Improved SCF-Net

In this subsection, the improved SCF module is embedded in a standard encoder-
decoder architecture to yield the improved SCF-Net. It consists of fully connected layers,
and encoder and decoder layers (see Figure 3). A fully connected layer is first used to
extract the per-point features. In addition, five encoders are used to reduce the point cloud
size and increase the feature dimension. More specially, the number of point clouds is
downsampled through the RS method. The improved module can learn effective spatial
contextual features to prevent loss of valid information caused by the RS method. Then,
decoder layers are used after the above encoder layers. The encoded feature dimension
is then upsampled through a nearest-neighbor interpolation. The upsampled features are
concatenated with the intermediate features produced by the encoder layers through skip
connections. Thereafter, a shared MLP is used to concatenate the features before and after
sampling. Finally, three fully connected layers and a dropout layer are applied to predict
the semantic labels. Furthermore, the cross-entropy loss is used for training.

2.4. Process of Road Geometric Information Extraction

The geometric information, including the horizontal alignment, vertical alignment,
and cross-section of the road (particularly the elevation of intersections), needs to be
obtained for the as-built survey or traffic safety analysis. Evidently, the digital elevation
model (DEM) of the intersection is established to provide the basis for calculating the sight
distance, analyzing traffic conflicts, and reconstructing intersections. Therefore, we propose
a series of geometric information extraction methods for segmented point clouds from
various LiDAR systems. To guarantee the reliability and versatility of the methods, we
use 3D coordinates and RGB information as per-point features, lacking timestamps and
echo times. Accordingly, certain methods based on scan lines are unsuitable for geometric
information and track extraction [43,44].
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Given the segmented road surface, the alpha-shape method is first used to preserve
polygonal details of the finite points for boundary reconstruction [45]. The parameter α
identifies the radius of the rolling circles around the road, which controls the precision of
the boundary [46]. Thereafter, the centerline can be extracted by the Voronoi diagram (or
Thiessen-Polygons) method depending on the calculated road boundary points. Moreover,
extraneous lines are removed by several iterations and a minimum threshold [47,48]. Finally,
the geometric information calculations based on the road boundary and centerline entail
the following steps:

DEM of the intersection: Owing to the different densities of the captured road surface
points, a uniformly distributed point set is first generated to calculate the elevation of the
intersection. In particular, the range of the uniformly distributed point set is generated
from xmin to xmax and from ymin to ymax. This forms a series of points with ε intervals.
Thus, the number of the point set is

⌊
ymax−ymin

ε

⌋
×
⌊

xmax−xmin
ε

⌋
(‘b c’ implies floor function).

Moreover, the inShape function in MATLAB is used to assess and reserve the road surface
points within the extracted boundary of the intersection. The elevation of each point in the
point set is determined by the interpolation method based on the elevation and distance of
two adjacent road surface points. This can be expressed as

Zi =
db

i

da
i + db

i
·za

i +
da

i

da
i + db

i
·zb

i (6)

where Zi denotes the elevation of the i-th point in the point set; za
i , zb

i are the elevations of
the two adjacent road surface points nearest to the i-th point; and da

i , db
i are the distances

between the two adjacent road surface points and the i-th point.
Thus, the DEM of the intersection is established by integrating the elevation of the

point set and the existing road surface points. Similarly, the DEM of the road can be
constructed on the surface points within the road boundary.

Horizontal information: To decrease the difficulty of geometric information calcu-
lations, the curved road is transformed into a straight line by applying the coordinate
transformation matrix of Equation (7). The original surface points are converted into
transformed points based on the coordinates of the road centerline. Thus, the vertical and
forward directions of the road are determined as the OX and OY directions, respectively.
The horizontal alignment is generated by the transformed centerline.X

Y
Z

 =

cos(θ)
sin(θ)

0

− sin(θ)
cos(θ)

0

0
0
1

x
y
z

−
x0

y0
zo

+

x0
y0
zo

, θ =
(π

2
− φ

)
(7)

where X, Y, Z denote the 3D coordinates of the transformed point; θ is the transformation
angle; φ is the grade of the road centerline; x, y, z are the 3D coordinates of the original
surface points; and x0, y0, z0 are the origin coordinates of the road centerline.

Vertical information: The elevation of the centerline is utilized to calculate the lon-
gitudinal slope of the road. Moreover, the relative elevation difference and horizontal
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distance of the centerline are obtained. The quotient of the two values is computed as the
longitudinal slope, which can be express as:

ij =
Hj+1 − Hj

Wj+1,j
=

Hj+1 − Hj√(
Xj+1 − Xj

)2
+
(
Yj+1 −Yj

)2
(8)

where Hj, Hj+1; Xj, Xj+1; and Yj, Yj+1 denote the elevations, X-coordinates, and Y-coordinates,
respectively, of the j-th and j + 1-th points of the centerline.

Cross-section information: First, the cross-sectional profile is represented in a vertical
plane. It is computed as being perpendicular to the plane defined by the forward directions
of the road. Thereafter, the identified cross-sectional profile is divided into left and right
sides based on the centerline. The road width is calculated as the difference between the
left and right sides. The least square method is then used to fit the cross-sectional profile
on both sides, reducing the errors caused by the different densities of road surface points.
Meanwhile, the errors between the fitting curves and the points of the profile are calculated.
The slope of the fitting equation when the error is minimum is the cross slope.

2.5. BIM Technology for Digital Modeling

Based on the semantic segmentation of point clouds and the extraction of road geo-
metric information, this study combines road 3D point clouds with BIM technology. In
particular, the road entity and infrastructure modeling is established based on Dynamo
and Revit. Dynamo is a visual programming software for geometric shapes, Revit diagram
elements, and data interaction. The process of completing the parametric design of the
road scenario entails the following steps.

To ensure that the work is feasible and effective in Dynamo, many nodes such as Code
Block, NurbsCurve.ByPoints, and Data.ImportExcel are connected for editing. The process of
digital modeling entails the following steps:

Setting the coordinate system: The point cloud of the road scenario is imported in
Autodesk Recap and converted into rcp format. It can be inserted in Revit software to
complement information for modeling. The point cloud and Revit file are set in the same
coordinate system to ensure consistency with the position and orientation.

Generation of road route: Given the extracted road centerline and geometric informa-
tion, the Excel database relevant to the 3D information of each stack is established. There-
after, Data.ImportExcel is used to import the coordinate and geometric information (stack
number, horizontal and vertical coordinates, elevation) from the Excel database. Finally,
the imported coordinate data is fitted to generate the road route using NurbsCurve.ByPoints.

Setting adaptive road components: Considering the flexibility of an adaptive com-
ponent in generative applications, we construct adaptive road components to adapt the
actual road alignment. This process of generating an adaptive road component used by
Revit software entails the following steps (see Figure 4).

First, a new generic model adaptive template is developed. Thereafter, the shape
handle points are set and adjusted at the origin, midpoint, and destination of the adaptive
component based on the direction of the road route, to ensure consistency with the design.

Additionally, another generic model adaptive template is created. In the template file,
a cross-section is established. Thereby, a new shape handle point is generated and adjusted
at the origin of the cross-section.

Finally, the origin of the cross-section is placed and loaded at the midpoint of the road
route, generating the adaptive road component. The established adaptive road components
associated with materials can be offered in the road entity model through Dynamo.
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Establishment of the road entity model: First, a series of discrete coordinate data
are obtained from the generated road route by equidistant interpolation. In addition, the
deviation from each interpolation point to the road route is calculated in the XOY plane.
The interpolation point is removed depending on the threshold value. Specifically, the
processed interpolation points are allocated relying on the road alignment. When the road
alignment is straight, two interpolation points are grouped as the origin and destination
at the centerline of the adaptive road component. When the road alignment is a circular
curve, three interpolation points are grouped as the origin, midpoint, and destination at
the centerline of the adaptive road component. The cross-section is then adjusted to satisfy
the requirements of widening and superelevation. For the transition curve, apart from
setting the three interpolation points, additional shape handle points should be arranged
at the origin, midpoint, and destination of the inner and outer roads. Accordingly, the
designed adaptive components are placed among the group of interpolation points to form
a complete road entity model using Dynamo.

Constructing the infrastructure components: Different categories of infrastructure
components are constructed based on the semantic segmentation results. The data of
the infrastructure boundary are imported through Data.ImportExcel first. The data is
thereafter fitted to form boundary curves by NurbsCurve.ByPoints. Subsequently, the
locations of placements are determined on the fitted boundary curves to construct different
infrastructure. Finally, the infrastructure components are manually placed and constructed
through Revit software.

Construction of 3D road scenario: Detailed designs are carried out for the road entity
model and infrastructure components through Dynamo and Revit software. Evidently, the
details of the surrounding environment are manually adjusted based on the imported point
clouds. In addition, the road infrastructure assets and model information exchange and
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sharing can be completed based on BIM technology by adding the records regarding name,
age, and maintenance.

3. Results
3.1. Datasets and Implementation Detail

In this section, we train and evaluate the improved SCF-Net on two typical large-scale
point cloud benchmarks: Toronto-3D [49] and Semantic3D [50]. The following includes
a description of the datasets and the detailed implementation. Toronto-3D is a dataset
related to urban roadways captured by the MLS system. It consists of four sections. Each
point cloud owns the attributes of 3D coordinates, RGB information, intensity, GPS time,
and scan angle rank. Semantic3D is related to urban and rural scenarios including streets,
intersections, and rural roads. The TLS system is used for recording these scenarios. The
raw 3D points are represented by 3D coordinates, RGB information, and intensity in
the experiments.

Owing to the different acquired platform type, the attributes of each captured point
cloud are dissimilar. Meanwhile, the manner of data acquisition affects the geometry of the
scanning and point density. Therefore, our study uses two datasets from different LiDAR
systems and focuses on the common attributes of acquired data to ensure the application
of the proposed net. Because the intensity is significantly affected by the environment and
illumination, we use 3D coordinates and RGB information of points for training and testing.

The experiments are implemented in Tensorflow on a server with NVDIA GTX-1080 TI
GPU and CUDA 11.5. We use the Adam optimizer with default parameters. For example, the
initial learning rate and batch size are set as 0.01 and 5, respectively. The network is trained
for 100 epochs with a dropout ratio of 0.5. The number of neighbors is set to 16 (k = 16).

3.2. Semantic Segmentation on Benchmarks

We compare the proposed net with other state-of-the-art methods. We use the mean
IoU (mIoU) and overall accuracy (OA) as standard metrics to evaluate the semantic seg-
mentation of the proposed net on the Toronto-3D and Semantic3D datasets.

3.2.1. Evaluation on Toronto-3D

We select L002 as a test set for its smaller size and balanced number of points of each
label. The mIoU and OA of the total eight categories are compared in Table 1. The visual
comparison between point clouds and semantic segmentations is shown in Figure 5.
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Table 1. Semantic segmentation (L002) results of Toronto-3D dataset %.

Method mIoU
(%)

OA
(%)

IoU (%)

Road Surface Road Mrk. Natural. Building Util. Line Pole Car Fence

Pointnet++ 65.0 93.0 93.9 19.4 90.5 81.7 68.5 62.9 58.9 44.4

RandLA-Net 74.3 88.4 87.4 22.0 96.4 92.7 85.9 75.5 86.6 47.6

SCF-Net 71.5 93.5 91.4 19.6 90.9 87.3 78.5 72.6 84.6 47.4

Ours 73.9 95.3 95.7 25.9 94.0 86.3 81.5 71.8 78.1 58.1

As Table 1 indicates, our method outperforms the other methods in three of the eight
categories; i.e., road surface, road marking, and fence. In particular, the IoU of the road
surface in dense scans is higher than 95%. The proposed net is marginally inferior to
RandLA-Net in terms of mIoU, but better in terms of OA. This is mainly owing to the
suboptimal segmentation in the category of vertical objects (such as buildings, utility lines,
and poles), which marginally reduces the mIoU. Figure 5 presents certain qualitative results
at the intersection of L002. However, road markings could not be identified. These can be
accurately extracted by the additional intensity and other information.

3.2.2. Evaluation on Semantic3D

In this work, we submit the results to the server and infer the dense scenes of the
semantic-8 test set. The quantitative results are reported in Table 2. We consider an irregular
road as an example because the ground truth of the test set is not publicly available. Its
RGB colored point clouds and predicted segmentation results are presented in Figure 6,
which shows the visualization results.

Table 2. Semantic segmentation (semantic-8) results of Semantic3D Dataset %.

Method mIoU
(%)

OA
(%)

IoU (%)

Road
Surface Natural. High Veg. Low Veg. Building Infrastructure Scanning

Art. Cars

Pointnet++ 63.1 85.7 81.9 78.1 64.3 51.7 75.9 36.4 43.7 72.6

RandLA-Net 71.8 94.2 96 88.6 65.3 62.0 95.9 49.8 27.8 89.3

Ours 74.7 95.0 97.9 94.1 70.8 64.3 94.0 48.5 38.8 89.2
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As shown in this table, our method has the best mIoU and OA among all of the
methods. Furthermore, the segmentation of the road surface exhibits better performance (an
IoU of 97.9%) than the other categories. The categories of natural terrain, building, cars, and
trucks have an IoU of over 89%. Figure 6 indicates that the low vegetation category, with low
height and discrete distribution, is straightforwardly classified as infrastructure. Most errors
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are caused by the low vegetation, infrastructure, and scanning artifact categories with few
points and indistinct geometric structures, which renders the aggregated attentive pooling
unit incapable of effectively obtaining the difference and similarity of its local features.

Meanwhile, we compared the improved SCF-Net with the SCF-Net based on the
benchmark to validate the effectiveness of the improved SCF module. The results show
that the proposed module could enrich the feature expression of input points’ spatial
information. Thereby, it achieves a higher application value for semantic segmentation.
Overall, the improved net could be applied in the semantic segmentation of large-scale
point clouds, particularly for road surfaces. This could ensure the accuracy and efficiency
of road geometric information extraction in the subsequent steps.

3.3. Results of Road Geometric Information Extraction

Considering the road scenarios L002 in Toronto-3D and sg27_1 in Semantic3D as
examples, the alpha-shape method is first applied to extract the road boundary when α is
defined as 1 m (see Figure 7).
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Figure 7. Extraction of the road boundary. (a) Intersection; (b) road.

To accurately obtain the elevation of the entire intersection, the DEM is constructed
by the interpolation method based on the uniformly distributed point set. The generated
point set and DEM are shown in Figures 8 and 9.
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Figure 9. Generated DEM.

Thereafter, the Voronoi diagram method is used to obtain the centerline. To ensure
the accuracy of extraction, the extraneous lines are removed based on the number of line
segments (set as 25) in side branches through several iterations (see Figure 10). The original
surface points are converted based on the centerline of the main road. The transformed
boundary and centerline are presented in Figure 11. Meanwhile, the longitudinal slope is
obtained from the elevation of the centerline expressed by Equation (8). As illustrated in
Figure 12, the mean longitudinal slope of the road is −2.3%.
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In addition, the road width is calculated as the difference between the left and right
sides (see Figure 13). As depicted in this figure, apparent road widening occurs at 20 m
and 40 m because of the crossings. The cross-sectional profiles on both sides are fitted. The
results are shown in Figure 14. As illustrated in this figure, the left and right cross slopes
are 2.2 % and 2.3 % on average, respectively.
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To verify the reliability and accuracy of the geometric information extraction, manual
measurement was employed in CloudCompare software to manually segment and measure
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the slices of cross-sections every 2 m. Certain coordinate information can be displayed by
visualization in CloudCompare software during the measurement process. The highest
point of the cross-section (painted with the darkest red) is the midpoint of the road, owing
to the form of the cross-section. For each cross-section, the left, right, and midpoint points
could be selected to be exported in a batch and to calculate the left and right cross slopes
(see Figure 15). The maximum and mean absolute errors of geometric information between
the extracted methods and manual measurements are as shown in Table 3.
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Table 3. Error Between Extraction Methods and Manual Measurement.

Indicators

Geometric Information

Road Width/m
Longitudinal
Gradient/%

Cross Slope

Left Cross Slope/% Right Cross Slope/%

Mean absolute error 0.0094 0.0091 0.0074 0.0073
Maximum absolute error 0.0530 0.0475 0.0238 0.0237

Location of Maximum absolute
error/m 36 30 20 20

Table 3 demonstrates that the mean absolute error of road width between the extracted
methods and manual measurements is less than 0.0094 m. Furthermore, the mean absolute
errors for the other geometric information are less than 0.0091%. These indicate that the
extracted methods are accurate and effective. The maximum and mean absolute errors for
road width are larger than those for longitudinal gradient and cross slope. Based on the
location of the maximum absolute error, we analyze the errors of geometric information
from 20 to 40 m on the Y-coordinate to further investigate the cause of the larger errors.
The comparison between the extracted and manually measured geometric information is
presented in Table 4.

As shown in Table 4, the errors for different geometric information are larger when
the Y-coordinates are 20 m and 30–36 m. Combined with the horizontal alignment, it can
be observed that intersections exist in this range. This affects the surface segmentation.
This directly results in the larger error of the road width, and further reduces the extraction
accuracy of the geometric information.

3.4. Digital Modeling in BIM Environment

The 3D road scenario of sg27_1 is established using the proposed digital modeling
process in Section 2.5. The road scenario consists of the road entity model, infrastructure
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components, and other detailed designs. Among these, the process of establishing the
road entity model should be given attention because of the road geometric information.
More specifically, the road route is first interpolated to generate a series of interpolation
points. Thereafter, these points are assessed and grouped to place the designed adaptive
components. This establishes a road entity model. In this case study, the road alignment is
straight, and the road width is approximately 10 m. Hence, 5% of the width is considered as
the threshold value. Two interpolation points are grouped as the origin and destination of
the adaptive road component. Subsequently, the placements of different infrastructures are
determined based on boundary curves. The infrastructure components are manually placed
and generated through Revit software. The surrounding vegetation and other elements are
manually constructed based on the imported point clouds. The road entity is applied in the
material of bituminous concrete. The established digital road scenario is compared with
the LiDAR data (see Figure 16).

Table 4. Comparison between extracted and manually measured geometric information.

Location/m

Road Width/m Longitudinal Gradient/%

Extracted
Methods

Manual
Measurement Absolute Error Extracted

Methods
Manual

Measurement Absolute Error

20 16.4723 16.4228 0.0495 −0.2728 −0.2700 0.0028
22 12.0468 12.0348 0.0121 −1.9862 −1.9663 0.0199
24 9.9901 9.9931 0.0030 −0.5564 −0.5553 0.0011
26 10.0043 9.9944 0.0100 −2.1261 −2.1304 0.0043
28 10.4480 10.4376 0.0104 −3.0431 −3.0431 0.0000
30 11.0251 11.0140 0.0110 −4.7629 −4.8104 0.0475
32 12.8570 12.8312 0.0257 −4.4626 −4.5072 0.0446
34 14.8429 14.8132 0.0297 −1.9402 −1.9594 0.0192
36 17.6331 17.5801 0.0530 −4.3765 −4.4198 0.0433
38 16.0092 15.9611 0.0481 −0.5631 −0.5687 0.0056
40 15.4505 15.4195 0.0310 −0.5698 −0.5641 0.0057

Location/m
Left cross slope/% Right cross slope/%

Extracted
methods

Manual
measurement Absolute error Extracted

methods
Manual

measurement Absolute error

20 2.0960 2.1198 0.0238 2.0904 2.1141 0.0237
22 2.1436 2.1661 0.0225 2.0253 2.0465 0.0212
24 2.1628 2.1582 0.0046 1.8497 1.8457 0.0040
26 2.2789 2.2755 0.0034 1.7042 1.7017 0.0025
28 2.4485 2.4497 0.0012 1.6568 1.6577 0.0009
30 2.4504 2.4271 0.0233 1.8162 1.7989 0.0173
32 2.5608 2.5377 0.0231 1.7056 1.6902 0.0154
34 2.3259 2.3047 0.0212 2.1679 2.1482 0.0197
36 2.1869 2.1680 0.0189 2.2000 2.1810 0.0190
38 2.2301 2.2108 0.0193 2.3062 2.2863 0.0199
40 2.0245 2.0465 0.0220 1.4223 1.4378 0.0155
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As shown in Figure 16, the road entity and infrastructure essentially achieve correspon-
dences in the digital road scenarios. However, there are differences in the vegetation models
because of the missing point clouds and different modeling approaches. Specifically, the
morphology of low vegetation is incomplete owing to the occlusion of other objects and the
larger distance from the sensor during point cloud collection. Although the surrounding
vegetation can be effectively divided by the semantic segmentation network, these fail to
be completely modeled with regard to the shapes and poses. Meanwhile, the vegetation is
in the block distribution with denser locations. This cannot be sequentially realized by the
modeling. Therefore, there is scope for improvement through multi-view images and the
spatial geometry information of point clouds. It is likely to be feasible to accurately and
completely model the surrounding vegetation.

4. Discussion

The results in Section 3 demonstrate the proposed framework can achieve the objective
and make contributions, as shown in Section 1. First, the improved SCF-Net segments
different categories of objects in road scenarios that can easily extract the geometric informa-
tion and establish semantic-rich digital models. The quantitative results and visualizations
show the improved SCF-Net is beneficial to enhance the segmentation performance in
large-scale point cloud benchmarks. However, it can be argued that road markings, low
vegetation, and infrastructure categories could not be identified because of missing points
and indistinct geometric structures. Hence, a future direction for this research will be
motivated by extracting more features and structures from point clouds or multiple data
sources, such as optical images, GIS databases, and vehicle trajectory.

Second, a series of methods that extract the geometric information from point clouds
of the segmented road surface is proposed. The mean absolute errors between the extracted
and manually measured geometric information verify the reliability and accuracy of the
extraction methods. Furthermore, Dynamo and Revit software are expected to generate
digital models of the road entities and infrastructures based on the obtained semantic and
geometric information. The nodes in Dynamo are used to import the data and establish
the model. Nevertheless, the process of digital modeling is semi-automated. Manual
modeling is required based on the imported point clouds for surrounding vegetation and
other elements. Therefore, full automation is a future objective for digital modeling from
LiDAR data of road scenarios.

5. Conclusions

In this study, an improved semantic segmentation network was used to divide the road
surface and other infrastructures. The alpha-shape and Voronoi diagram methods were
applied to extract the road boundary and centerline, and thereby obtain road geometric
information. Subsequently, the road entity model and infrastructure components were
constructed through Dynamo and Revit software. Finally, a digital road scenario was
developed. The following conclusions could be drawn:

(1) The improved networks were validated by experiments on the large-scale point
cloud benchmarks Toronto-3D and Semantic3D. The results of semantic segmentation
showed that the OA of our net on the two datasets were 95.3 and 95.0%, respectively.
Meanwhile, road surface achieved a better performance (IoU of 95.7 and 97.9%) than the
other categories. This demonstrated that the proposed net is accurate and effective.

(2) Compared with the extracted and manually measured geometric information in
CloudCompare software, the mean absolute error for road width was less than 0.0094 m,
and those for the other geometric information were less than 0.0091%. Therefore, the
extraction methods were effective for calculating the geometric information.

(3) The road entity and infrastructure modeling in BIM was established based on
Dynamo and Revit software. This achieved correspondence in the digital road scenarios
and LiDAR data.
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This proposed framework is expected to provide transportation agencies with a work-
flow for updating the semantic and geomatic information of as-built roads and surrounding
infrastructure as LiDAR technology and BIM technology become more common. It could
also provide accurate descriptions for as-built road and infrastructure features, which
extends beyond helping enhance the efficiency of inventorying to a potential reference
in asset management and road safety inspection. Meanwhile, our study focused on the
acquired data rather than the laser scanner system. It selected 3D coordinates and RGB
information to represent the point clouds. This increased the applicability and portability
of the proposed methods. In addition, the proposed methods could be combined with other
data sources to accomplish road marking extraction and object recognition.

Finally, this study only demonstrated the applicability and accuracy of the proposed
methods from the perspective of theoretical and manual measurements. Further field exper-
iments are required to conduct geometric information extraction and validate its accuracy.
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