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Abstract: As an important indicator of urban development capacity, vitality can be affected by
the human perception of street views, which is a dynamic sensory process that can differ greatly
according to different transportation modes, due to their different travel speeds, distances, and routes.
However, few studies have evaluated how the dynamic spatial perceptions differ between different
travel modes and how these differences can affect vitality differently, due to the limitation of city-scale
quantitative data on the dynamic perception of urban scenes. To fill the gap, we propose a “dynamic
through-movement perception” (DTMP) measure which integrates a streetscape quality evaluation
model with a network-based movement potential model. We measure the streetscape qualities from
Baidu street-view images (SVI) and compare the spatial perceptions of drivers and pedestrians in
central Guangzhou, China. First, more than twenty visual elements were classified from SVIs to
predict human perceptions collected from visual surveys. Second, the through-movement probability
of driving and walking were calculated based on classic natural movement theory in space syntax and
measured as the angular betweenness for the two travel modes. Third, we accumulate the multipliers
of visual perception and through-movement probability of driving and walking as the DTMP for both
modes. Lastly, the DTMPs of both modes were fitted into linear regression models to explain street
vitality, which is measured using Baidu mobile phone check-in data, when other control variables
such as functional density, functional diversity and amenity clustering reachability are accounted
for. The results show that the dynamic perception of driving overall shows a stronger correlation
with street vitality, while perceived richness is significantly positive in both travel modes. This
study provides the first quantitative evidence to reveal how the movement probability of different
travel modes can significantly influence people’s sense of place, while in turn increasing street
vitality. Our results can explain how different types of street commerce (i.e., pedestrian-oriented, and
auto-oriented) aggregate spontaneously due to the dynamic movement potential, which provides
an important reference for urban planners and decision makers for improving street vitality when
making urban revitalization policies.

Keywords: street vitality; dynamic perception; travel modes; network betweenness; street view image

1. Introduction
1.1. Context

Human perception is very important for the aggregation of urban street vitality.
However, how human perception can differ according to different travel modes has been
discussed very little. In this paper, (1) we hypothesize that the perception of a place is
a dynamic process influenced by different modes of transportation; (2) we innovatively
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propose a network-based model to test which of the dynamic perceptions, driving or
walking, can better depict the street vitality of Guangzhou.

Vitality includes both spatial vitality and socio-economic vitality. As one of the most
used spatial indicators, street vitality often refers to the frequency of activities taking place
in the street. It is one of the most important factors for evaluating the comprehensive
quality of a region, while greater vitality can promote the value of surrounding residential
units and industrial clusters [1,2]. Prior studies revealed that street vitality is related to its
physical environment in many ways.

On the one hand, the formation of vitality is a bottom-up process regarding how
people decide where to go, work and live, decisions that follow their perceived sense of
place [3–6]. For example, people prefer to gather and stay in places they perceive better [7,8],
which in return induces higher travel flow volumes [9]. Consequently, more shops and
business would be attracted these areas spontaneously [10]. That said, better street vitality
would attract more people to conduct social activities, thus fostering even more population
flows [9], and improving the perceived safety [11]. At the same time, the attractiveness of
a place also generates more human dynamics, which in return induces more commercial
demands, which results in improved street vitality in both quantity and quality, as business
and shops often follow the population flows [12–17]. On the other hand, it is also a top-
down process. Local governments and real-estate developers will also see opportunities
and implement urban renewal projects in regions that have a better sense of place [18,19],
which makes the streets more attractive, inducing more population flows [1,20].

Therefore, street vitality is interwoven with sense of place. They can both promote the
growth of regional value (Figure 1). Understanding the connection between sense of place
and street vitality can better predict the human dynamics and the evolving of a city, to
assist local governments, property investors and street vendors to identify potential areas
for growth.
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1.2. Research Gap

The recent prevalence of geolocation activities data [21] and street view images (SVI) [22]
has enabled the measurement of urban scale street scene appearance at a fine-grained res-
olution [18], encouraging researchers probing into urban vitality from a more human-scale
perspective. Emerging studies tried to link urban vitality to spatial perception from a human
visual perspective through the segmentation of SVI [23,24]. For example, Qiu et al. [6] evalu-
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ated the large-scale urban perceptions subjectively and objectively. Kang et al. [5] used SVI
to enrich the explanatory power of housing prices. Salazar Miranda et al. [25] captured how
built environment influences the walking routes.

However, how human perception can differ according to different travel modes,
which may ultimately affect urban vitality in different ways, has been discussed very
little. Specifically, human perception is a dynamic process [26] rather than a static or fixed
result [11,27]. First, sense of place is a continuous, dynamic, and comprehensive process
largely affected by the ways how a street user accesses and experiences the destination
place. During the process, when the travel speed, distance, and route vary, the street
environment associated with and accumulated along the process are essentially different,
which ultimately causes differences in the perceived quality of that place. That said,
perception can differ according to an observer’s individual differences as well as according
to different modes. For example, people driving or taking public transportation may have
a different sense of place compared to those who choose to walk or cycle. However, the
difference of perception under the different movement modes, and how they relate to street
vitality, have never been discussed. Second, which perception, driving or walking, is more
effective in explaining street vitality in the global and local scale is still unknown. We
hypothesize that for walkable urban areas, the walking perception would exhibit stronger
powers of prediction for vitality, and vice versa. Third, few studies have examined the
dynamic change of vitality in time and space at urban scale, while the empirical evidence
linking the dynamic spatiotemporal change of vitality with dynamic human perception
(due to the change of built environment) is missing.

1.3. Research Question & Hypothesis

To bridge this gap, we hypothesize that spatial perception is a dynamic process affected
by different transportation modes, resulting in different powers of prediction for vitality.
To test this, we propose a dynamic perception model which integrates the visual-based
streetscape quality measurement with the network-based through-movement probability
measurement (TMPM), which is a scientific modelling method that analyzes pedestrian,
cycle and vehicle movement networks and has been widely studied in planning and design
research. We expect that the perception received from different travel modes would have
different positive and negative effects on people’s preferences for a place [2], such that street
vitality in some regions is largely affected by perception through walking while vitality
in other areas is dominated by driving. The results of our research design will provide
empirical evidence to examine the efficiency of the space use based on pedestrian-oriented
or auto-oriented development strategy. For example, it will verify whether a pre-planned
auto-oriented commercial business district has a better driving perception and a more
positive contribution to urban vitality.

2. Literature Review
2.1. Lack of Dynamic Measure of Perception

Although prior studies on place-based perception have indicated that people’s percep-
tion of place can be influenced by time and experience [28–30], or can fluctuate according
to the route of one’s connection to a place [31–35], most prior studies were still based on
the static frameworks. That is, the measurement of perception is stationary and lacks inner
relation (i.e., there is a missing overall relationship that connects each individual visual
perception measured from each SVI frame). For example, Ewing and Handy (2009) [36]
quantified five static perceptions, namely, imageability, enclosure, human scale, trans-
parency, complexity from manually measuring built environment attributes such as the
proportion of sky view, greenery and building using video clips of streetscapes. More
recently, emerging studies in urban-scale street scene understanding started to use open
source image data (e.g., Google Street View) and computer vision techniques (e.g., image
semantic segmentation) to boost the pipeline [6,19,22].
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However, the above methods are highly limited when it only evaluates the static per-
ception where the street view image itself is located [37]. This paper argues that static and
node-based scene evaluations are not capable of capturing the real-life sensory experience.
They simply assume that each street scene has equal probably in being perceived, and
largely neglect the deviation of the dynamic impact of spatial continuity and the subtle
change on people’s sense of place through the different linkage of street scenes. A previous
study has proved that the appearance of the built environment (e.g., density, diversity and
design) [18] affects the route and travel mode that people choose to take [38]. Therefore,
each street scene was not able to be equally perceived.

That said, the dynamic participation of moving through a space should also be con-
sidered [26]. What scenes people see along the route when getting to the destination
matters to how they perceive the quality of the destination [39]. For example, the dynamic
green exposure when traveling can neutralize people’s perception of actual greenness in a
community with low green coverage [40].

As the relative spatial continuity and the contrast of the “route to a place” will affect
people’s perception of the place, the actual sense people perceive can vary according to
different means of transport. For instance, people who drive a car and who choose slow-
moving methods of transport such as walking/cycling may have a completely different
sense of place in the same space. Moreover, it is well known that the aggregate flows [41],
route choice [38] and other spatial phenomena are affected by the street network such as
the way how a space being connected in the network system will deepen the perceived
impression of that space [41–43]. For example, due to their different travel distances
and speeds, pedestrians and drivers can have different route preferences for the same
origin-destination decision [17,44–47], which can lead to different perceptions of the same
destination, as the user would see different scenes along the routes.

2.2. Lack of Comparison between Dynamic Perceptions by Modes

The relationship between streetscape and sense of place can be moderated by dynamic
traffic modes. Research in this regard has been limited to theories, lacking quantitative
and empirical evidence due to the difficulties in measuring the dynamic perceptions
according to different modes. Conventionally, it requires long-term observations using
surveys and interviews, which is costly in time and money. Some studies started to take
advantage of open-source data, crowd sourcing and artificial intelligence. For example,
Ye et al. [48] measured the daily accessible street-view greenery by integrating people’s
accumulated senses on the daily accessible path. However, this study only investigated the
non-parametric through-movement accessible green with two levels (as low and high) and
ignored how different traffic modes would affect accumulated human perceptions. Only
recently, Wang et al. [40] modeled dynamic and static greenness exposure for multi-traffic
modes including walking, biking, e-biking and driving. However, their method used less-
available GPS tracking data and costly questionnaires, which can hardly be generalized to
the urban scale for other regions. This study noted that one alternative is using space syntax,
which has been a popular measurement for street connectivity in the case of daily accessible
green [48,49]. Space syntax can models not only the possible route choice of different travel
modes, but also a comparison of the probability of space visited (i.e., through-movement)
by different travel distances due to mode choice deviations. Both features play important
roles in affecting people’s realistic and overall perception of a destination. Hence, this study
hypothesizes that by integrating human perception with through-movement models, a
dynamic and network-based perspective that considers how multiple traffic modes can
explain street vitality more comprehensively and effectively.

2.3. Vitality Can Be under the Influence of Dynamic Perception as Well

Many studies have proved that consumption places and point of interests (POI) such
as cafes can explain most of the urban vitality distributions [50–54]. As a subset of urban
vitality, “street vitality” often exhibits multi-dimensional characteristics due to the dynamic



Remote Sens. 2023, 15, 568 5 of 23

nature of commercial activities [55] in time and space [3]. Therefore, street vitality can
manifest its space-time dynamics according to the different through-movement probability
of travel modes.

In light of the difficulty of measuring vitality and urban form, most research in-
vestigated the spatial features of the built environment such as the density of street
geometries [12,18,56–58]. Although they found significant correlations between vitality
and urban form, they were rather result-oriented or backward-thinking models [59],
lacking theoretical foundation of human behaviors. The fundamentals of urban vitality
is constantly related to social interaction [54] and human behaviors, though its defini-
tion has evolved. As Jacobs [60] claimed, the source of a vibrant street depends on its
interaction with human perception [54].

Emerging studies have begun to explore the correlations between human perception
and vitality [2]. For example, using the behavioral status of people in the scene as a
measurement of commercial vitality, Li et al. [10] operationalized the correlations between
vitality, perception and the street environment. However, in measuring perception, prior
studies often ignored its multi-dimensional nature [61–63]. Few studies have investigated
how dynamic perceptions perceived by people in the process of street exploration affect
street vitality.

That said, the connection of a dynamic sense of place and street vitality under the
influence of the different traffic modes should be addressed. It will provide an important
reference to urban designers regarding how to curate a better sense of place for urban
dwellers using different travel modes. It will also illuminate design interventions that
can be instrumental in promoting better streetscape and street network topology, which
ultimately improves local and regional vitality. In addition, the comparison between vitality
and dynamic perception received by drivers versus pedestrians can generate important
knowledge for re-positioning the auto-oriented city and create better urban landscapes for
daily life [64]. In short, different traffic modes may play a significant role in determining
the dynamic sense of place and street vitality. Therefore, this study set out to test how
people’s sense of place is affected when the static streetscapes extracted from SVI data
are accumulated by the dynamic through-movement probability of different travel modes
estimated from space syntax.

3. Data and Method
3.1. Study Area

With a total area of 7434 km2, Guangzhou is situated at the heart of Guangdong
Province and is the most populous built-up metropolitan area in Mainland China [65].
Its central area (788 km2) is selected as the case study (Figure 2) because it is one of the
largest urban agglomerations serving the most vibrant street life in the Pearl River Delta
metropolitan region [66]. This “mega city” has experienced an accelerated urbanization
process in the past few decades [67], with the intensified urban space expansion, continuous
growth of inhabitants and commercial and manufacturing regions brought by the booming
economy [67]. However, this exponential urbanization growth has resulted in urban
planning challenges such as traffic problems and issues of insufficient provision of amenities
and consumption resources, which may inform the consequences of urban revitalization
policy on urban design to encourage a more balanced living environment.
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hotspot locations.

3.2. Analytical Framework and Data

The analytical framework is four-fold (Figure 3). First, we calculated subjective envi-
ronmental perceptions (i.e., accessibility, aesthetics, enclosure, environmental greenness,
environmental richness and human scale) within the study area from the Baidu Street
View API (http://api.map.baidu.com/Ibsapi/, accessed on 1 April 2022) using subjective
perception prediction methods [6,68]. Second, we calculated the TMPM for each street
segment of the two travel modes (i.e., driving and walking) using space syntax. Third, we
multiplied TMPM with the static perception data to form the new dynamic perception vari-
able with movement probability weighting, which became our variable of interest. Third,
we retained the classical urban functional indicators such as functional density, diversity,
and accessibility in urban modelling as the control variables of each model. Fourth, we
used the Baidu hotspot data as street vitality (i.e., the dependent variable), and fitted all
independent variables. Notably, we conducted OLS regressions and compared their results
to comprehensively compare how the dynamic street perception brought by walking versus
driving is related to urban vitality globally.

There are four clusters of datasets: (1) Baidu SVI to measure streetscape perceptual
index, (2) road network shapefile to measure through-movement probability route choice
of walking and driving, (3) points of interest (POI) data in 2021 from Amap (https://lbs.
amap.com/, accessed on 18 May 2022) to measure street-based functional accessibility and
(4) the Baidu activity hotspot data to measure vitality measurement. Streetscape perception
data was computed from the Baidu SVI with semantic segmentation algorithm. Through-
movement probability route choice of walking and driving were calculated through the
space syntax betweenness index with two modes of search radius, respectively. Street-
based functional accessibility measured the spatial distribution of functional attractiveness
by different types of POIs data. The activity hotspot data for measuring vitality was
accumulated using the frequency of mobile phone check-in data by Baidu.

http://api.map.baidu.com/Ibsapi/
https://lbs.amap.com/
https://lbs.amap.com/
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The first two variables are the variables of interest of this study, the third cluster of
variables are the controlled variables, while the last is the dependent variable (Figure 3).

3.2.1. Streetscape Perceptual Measurements from Street-View Images

SVIs were downloaded from Baidu Street View Static API (http://api.map.baidu.com/
Ibsapi/, accessed on 1 April 2022) with fixed camera settings (Figure 4b). What Baidu SVI
captures is a horizontal view of the physical environment in detail, which is close to the
vision of pedestrians and drivers, and which could be useful to proxy human perception in
the street [4,6].

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 26 
 

 

detail, which is close to the vision of pedestrians and drivers, and which could be useful 
to proxy human perception in the street [4,6]. 

First, we sampled SVIs every 50 m [2,6,19,68] with 120 degrees for the horizontal field 
of view (FOV) and 0 degrees for the ‘pitch’ [6,68] of the camera along the street segments. 
In total, we obtained 102,287 images with 640 × 360 pixels of each size in central Guang-
zhou (Figure 4c). 

 
(a) Sample SVI 

 
(b) Camera settings 

 
(c) 102,287 SVI data samples  

Figure 4. Sampling SVI and semantic segmentation (a) Sample SVI. (b) Camera settings diagram. (c) 
102,287 SVI training samples. 

Second, we classified the physical feature index by measuring the pixel ratio of a 
streetscape object to the total pixels of an image. To obtain the view index (e.g., building, 
sky, tree, sidewalk, grass, plant, road, signboard, etc.), we used a pre-trained semantic 
segmentation framework–Pyramid Scene Parsing Network (PSPNet) with the ADE20K 
dataset, which collected the data in 50 cities in different seasons and can predict 150 object 
classes of physical features in streetscape. 

Third, we followed the method proposed by Tian [68] and Qiu [6], using 300 subjec-
tive SVIs survey to predict perception for all other unranked SVIs [6,68]. The accuracy of 
the model reached over 0.65 and the reliability of the prediction was proved in the case of 
Shanghai and Berlin. We then used 300 SVIs with labelled scores for predicting 7 percep-
tions of the urban environment that were referred to Ewing and Handy [36], namely: sense 
of order, accessibility, aesthetics, enclosure, environmental greenness, environmental 
richness and human scale. 

Lastly, we achieved 102,287 perception scores with geolocation in total to describe 
the sense in central Guangzhou (Figures 5–7) (Table 1).  

  

Figure 4. Sampling SVI and semantic segmentation (a) Sample SVI. (b) Camera settings diagram.
(c) 102,287 SVI training samples.

http://api.map.baidu.com/Ibsapi/
http://api.map.baidu.com/Ibsapi/


Remote Sens. 2023, 15, 568 8 of 23

First, we sampled SVIs every 50 m [2,6,19,68] with 120 degrees for the horizontal field
of view (FOV) and 0 degrees for the ‘pitch’ [6,68] of the camera along the street segments. In
total, we obtained 102,287 images with 640 × 360 pixels of each size in central Guangzhou
(Figure 4c).

Second, we classified the physical feature index by measuring the pixel ratio of a
streetscape object to the total pixels of an image. To obtain the view index (e.g., building,
sky, tree, sidewalk, grass, plant, road, signboard, etc.), we used a pre-trained semantic
segmentation framework–Pyramid Scene Parsing Network (PSPNet) with the ADE20K
dataset, which collected the data in 50 cities in different seasons and can predict 150 object
classes of physical features in streetscape.

Third, we followed the method proposed by Tian [68] and Qiu [6], using 300 subjective
SVIs survey to predict perception for all other unranked SVIs [6,68]. The accuracy of the model
reached over 0.65 and the reliability of the prediction was proved in the case of Shanghai and
Berlin. We then used 300 SVIs with labelled scores for predicting 7 perceptions of the urban
environment that were referred to Ewing and Handy [36], namely: sense of order, accessibility,
aesthetics, enclosure, environmental greenness, environmental richness and human scale.

Lastly, we achieved 102,287 perception scores with geolocation in total to describe the
sense in central Guangzhou (Figures 5–7) (Table 1).
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Table 1. Descriptive statistics of all variables.

Variable Syncopate Description Count Mean Std.Dev. Min Max Data Source and Access Time

Spatiotemporal Vitality attributes

Vitality overal AllHeat The overall active population in all time periods

101,035

720.978 556.843 0 3319.38

Scraping from Baidu API and calculated in QGIS (2022)Vitality morning Mor_Heat The morning active population 220.042 158.938 0 1194.273
Vitality noon Noo_Heat The noon active population 275.355 199.553 0 1351.23

Vitality evening Eve_Heat The evening active population 225.582 180.555 0 917.633

Functional-based attributes

Shannon_Wiener_Diversity FDI POI Functional Diversity
39,375

1.12 1.224 0.017 2.242
Scraping from Amap API and calculated in QGIS (2021)Functional Density FDE POI Functional Density 26.82 12 1 414

Amenities reachability ACR Reachability from each segment to POIs 0.031 0.027 0.004 1.923

Static Streetscape attributes

Aesth_Score AESHT Perceived Aesthetic

102,287

0.394 0.39 0.228 0.697
Predicted by ML models with view indices extracted

from SVIs (2022)
Enclo_Score ENCLO Perceived Enclosure 0.341 0.353 0.041 0.805

Richness_Score RICHN Perceived Richness 0.469 0.486 0.142 0.778
Scale_Score SCALE Perceived Human scale 0.383 0.376 0.175 0.794

Through-movement probability attributes

Choice/Betweenness 1 km BET1k Logarithm of Betweenness/Choice 1 km
101,035

3.211 3.415 0 5.205 Guangzhou Road Network Shapefile (2019)
and calculated in DepthmapChoice/Betweenness 5 km BET5k Logarithm of Betweenness/Choice 5 km 5.063 5.308 0 7.332

Attributes interaction in dynamic models

Aesth_Score * choice1k AESTH_BET1k Perceived Aesthetic through walking

39,375

Predicted by ML models with view indices extracted
from SVIs and multiply by Choice1km and Choice5km

respectively, and normalized in the same
sampled data points

Enclo_Score * choice1k ENCLO_BET1k Perceived Enclosure through walking
Richness_Score * choice1k RICHN_BET1k Perceived Richness through walking

Scale_Score * choice1k SCALE_BET1k Perceived Human scale through walking
Aesth_Score * choice5k AESHT_BET5k Perceived Aesthetic through driving
Enclo_Score * choice5k ENCLO_BET5k Perceived Enclosure through driving

Richness_Score * choice5k RICHN_BET5k Perceived Richness through driving
Scale_Score * choice5k SCALE_BET5k Perceived Human scale through driving

3.2.2. Through-Movement Probability Route Choice of Walking and Driving

Conventional studies used people’s actual movement data from sensors or travel
surveys to determine the variable according to different travel modes [16,17,40]. In this
specific research, we argue that people’s movement will be affected by the street view
appearance, that is, the trajectories and GPS traces data was affected by the perception
of the street scene, which means such trace data may have a certain collinearity when
interacting with the street perception variables.

Arguably, in the network-based measurement method, space syntax, angular be-
tweenness serves as an important indicator of movement potential measurement [41,62].
It has been proved that there is empirical scientific support (e.g., the capability of
the street layout itself to predict pedestrian movement is presented in natural move-
ment in the theory of spatial syntax. The angular segment analysis has a high corre-
lation with the observed vehicular flow [42,45,70] of the high correlation between the
choice/betweenness measurement and movement flow in different travel distances,
representing the movement patterns of vehicles and pedestrians [71]. In this study, space
syntax angular betweenness is used to compare the different potential factors between
two types of transportation, walking and driving.

In the meantime, the road segment data is more accessible and less time consuming
when compared to mining the trajectories data, which means this method has the potential
to be extended to cross-scale urban regions.

It was also believed that urban forms and street patterns are generated by social
forces [72] and the so-called “place” has different hierarchies in the network structure. In
other words, the non-spatial stationary of opportunities of perceiving the surrounding
environment through movement is the embodiment of regional economic emphasis [73].
For commercial places arranged on street sections with high movement potential of a
certain traffic mode, its suitable street interface is more likely to be perceived by people in
the corresponding traffic mode, thus enhancing people’s positive perception of the region
during the travel process.

Follow these lines, we chose 1 km as the walking probability distribution radius,
from which it is about a 15-min walk [74], 5 km as the driving probability distribution
radius, based on the average driving distance in a Guangzhou taxi report (4.7 km average
distance), Guangzhou Robo-Taxi trial report (4.9 km average distance) and Guangzhou
online-ride-hailing platform report (6.1 km average distance).
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The measurement can be formulated by the Equation (1), as follows:

Betweenness(Si) = ∑n
j=1 ∑n

k=1

Pjik

Pjk
(1)

where Pjk indicates the shortest paths from j to k, and Pjik denotes the shortest paths from j
to k passing through street segment Si [41,71]. The calculation of the walking and driving
probability were computed at 1000 m and 5000 m metric radii in the DepthmapX software,
Version 0.50 [75] and visualized with QGIS (ver. 2.18) software (Figure 8) (Table 1).
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In terms of the distribution of data following a heavy head-tailed distribution, several
normalization methods such as log normal distributions and head-tail breaks-classifier or
Jenks clustering for standardization can be particularly effective [76,77].

3.2.3. Control Variables

From the previous study [48,69,78], by definition, urban functional condition require-
ments indicate that three principal aspects of urban function attraction variables—density,
diversity and distance to the reachable complimentary amenities—are essential. Therefore,
the function-based data (i.e., point of interests) were used to calculate the urban functional
attraction variables, including the functional density, functional diversity and amenity
clustering reachability (Table 1). The POIs data in the year of 2021 (717,740 records in total)
was downloaded from Amap and spatial analysis in GIS. 125,703 records of POIs data
in the central area of Guangzhou were collected and separated into 12 living commercial
and amenities clusters: cafes, restaurants, street retail, shopping malls, culture facilities,
sport facilities, recreation facilities, tourist attractions, hotels, hi-tech centers, offices and
medical institutions.

Functional density (Figure 9a) was measured through the total quantities of the POIs
within the given radius buffer of each hexagon grid centroid [48]. In this study, we selected
300 m radii for density calculation based on the 5 min’ walk life circle proposal in China.
Functional diversity (Figure 9b) can be measured in several popular ways, such as the
dissimilarity index method [38] and the Shannon entropy method [69,78,79]. In this study,
Shannon diversity index is applied to measure the diversity of 12 categories of urban
points of interest from street segments within the hexagon grid i with radius r = 300. The
computation can be calculated formally as follows (2):

Functional Diversity(i,r) = −∑k
k=1 p(i,r) × ln p(i,r), {dist(ij) < r} (2)

The amenities reachability (Figure 9c,d) measures the closest distance to all the reach-
able urban activities from each street segment within a given radius. This variable reveals
the accessible efficiency of the urban amenities from all the places within the street. Based
on the delivery efficiency model [69,78], the method distance to nearest hub in QGIS was
used to calculate the distance from each point j with 50 m spacing, divided on the street
segments to all its closest facilities within the metric radius r = 300. N(i,r) is the number of
reachable links from road segments to POIs at the same radius. The result was accumulated
in each grid i. The index can be represented as the following Equation (3):

Amenities Reachability(i,r) = N(i,r)/ ∑j
j=1 Hub Distancej, {dist(ij) < r} (3)
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3.2.4. Dependent Variable

There are several ways for measuring street vitality. The most representative methods,
for example, can be to set up a live-stream camera to capture the pedestrians’ activities [10],
using the walk-by observation method to record social activities and pedestrian counts [11]
and using urban perception scoring compared on the basis of different street images for the
relative vitality relationship in the city [3]. These methods are either inapplicable at large
urban scales or unable to represent the vitality without street view data.

Considering the importance of time diversity (i.e., attracting people at different times
of the day) and space diversity (i.e., attracting people from different urban districts) [3,37,60]
being presented in the urban scale, in this study, street vitality (Table 1) was measured by
using the active hotspot of the flow on the street at different times in a day. The heatmap
in Guangzhou was collected from Baidu (http://api.map.baidu.com/lbsapi/creatmap/,
accessed on 16 June 2022)-the largest navigation service and travel behavior data platform
in China with a specific API and Python script for mapping the distribution of the mobile
phone check-in location (https://developer.baidu.com/map/, accessed on 16 June 2022).

We first recorded the active hotspot every 2 h from 8:00 to 22:00 on a workday.
Second, a parameter transfer method was used to calculate the active population from

the heatmap. The measurement can be formally represented as the following Equation (4) [80]:

Pi =



10−0
151−60 × (SAi − 60), 60 ≤ SAi ≤ 151

10 + 20−10
163−151 × (SAi − 151), 151 < SAi ≤ 163

20 + 40−20
170−163 × (SAi − 163), 163 < SAi ≤ 170

40 + 60−40
179−170 × (SAi − 170), 170 < SAi ≤ 179

60, 179 < SAi ≤ 194

; Zj = ∑j,i(SzPj,i) (4)

http://api.map.baidu.com/lbsapi/creatmap/
https://developer.baidu.com/map/
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Pi is the population density per ha of the grid i (50 m by 50 m). SAi is the Alpha
channel value of the grid measured by the Baidu Heatmap based on the mobile phone
check-in data. The number of population activities on each pixel can be obtained by the
pixel size Sz and the grid population aggregation density Pi, and then the number of
population activities in the grid Zj can be obtained by summing the population number
of each pixel in the grid. By using the equation above, we can transfer the Baidu Heatmap
color channel into actual population density in different time periods, which proved to
be reliable in previous research [80–83]. Third, these 8-h vitality data were accumulated
and divided into three groups, namely morning (8 a.m., 10 a.m., 12 a.m.), noon (0 p.m.,
2 p.m., 4 p.m.) and evening (6 p.m., 8 p.m., 10 p.m.) vitality (Figure 10a). This is shown in
the equation below, where VT (i.e., vitality time diversity) represents the dynamic vitality
change in different hours in grid i (5) and VS (i.e., vitality space diversity) represents the
different distribution of instant vitality at each time in grid i (6). n is the time in three
periods, in which n = 10 a.m. in the morning, n = 2 p.m. in the noon and n = 8 p.m. in
the evening.

VT(i,n) =
∣∣∣population(n,i) − population(n−2,i)|+ |population(n+2,i) − population(n,i)

∣∣∣ (5)

VS(i,n) = population(n−2,i) + population(n,i) + population(n+2,i) (6)

We argued that both vitality time diversity and space diversity should be considered.
Vitality morning, vitality noon and vitality evening, were calculated using the equation in (7):

Vitality(i,n) = VT(i,n) + VS(i,n); {morning (n = 10 am); noon (n = 2 pm); evening (n = 8 pm)} (7)

We accumulated the overall vitality by summing the VT and VS in the three time
steps (8) (Figure 10b).

Vitality overall = Vitality morning + Vitality noon + Vitality evening = VT(i,10am) + VS(i,10am) + VT(i,2pm)

+VS(i,2pm) + VT(i,8pm) + VS(i,8pm)
(8)

We took Vitality overall as the dependent variable (Y) in baseline model, Model1, 2 and 3;
Vitality morning, Vitality noon and Vitality evening as the dependent variables in Model3M,
3N and 3E, respectively (Tables 1 and A1).
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3.3. Model Architecture

To investigate how different movement modes affects perceptions and how such
interaction affects vitality, we considered the comparison of classic static perception-vitality
model and the interaction model, in which the two major variables streetscape perception
and through-movement probability for walking and driving interact. There are, however,
several different approaches for incorporating the travel probability into the model (e.g., the
relative high-low hierarchy of accessibility) [48,49]. For this specific task, we used the
movement probability index as a weight on all types of perception within the streets [84].
Therefore, the through-movement perceptions were introduced as the new variables in the
dynamic models. The dynamic perception can be measured through the assumption (9):

Dynamic perception(Pi, r,k) :
n

∑
j=1

Betweennessjr ×
n

∑
j=1

Perceptionjk (9)

where j was the equally divided nodes on the network segments in 200 m sampling grid i.
Perception k was the 7 types of perception. Radius r was the assumed movement distance
of 1 km and 5 km, which represent two different travel modes.

We employed the OLS regression to set up four stepwise models. First, we added each
set of attributes into the separated OLS models to be aware of their explanatory power.
The standard baseline model—the initial one without any perception attributes—was
constructed by only using control variables (10):

Yv = β0 + β1FDI + β2FDE + β3 ACR + ε (10)

where Yv is the predicted value of the dependent variable, FDI, FDE, ACR are the con-
trol variables: Functional Density i, Functional Diversity(i,r) and Amenities Reachability I,
respectively, and β0, β1, β2 and β3 are the coefficients to be estimated through our models.

Second, based on the baseline model, we added static perception-Model 1 (11):

Yv = β0 + β1FDI + β2FDE + β3 ACR + β4Static Percep + ε (11)

and dynamic perception (i.e., through-movement walking and driving perceivable perception)-
Model 2 (12):

Yv = β0 + β1FDI + β2FDE + β3 ACR + β4Dynamic Percep + ε (12)

where Static Percep was the Static Perceptions(Pi,r,k) including AESTH, ENCLO, RICHN and
SCALE, and Dynamic Percep was Dynamic Perceptions(Pi,r,k) including AESTH, ENCLO,
RICHN and SCALE with both BET1k and BET5K weighted, respectively, to compare their
different strengths.

Third, the fourth model was the interaction model, considering both static and dy-
namic perception contributing to urban vitality-Model 3 (13) (Table 2):

Yv = β0 + β1FDI + β2FDE + β3 ACR + β4Static Percep + β5Dynamic Percep + ε (13)

Table 2. Model comparison.

Selected Model Adjusted R Square Std Error of the Estimate AIC N

Baseline All day without perception data 0.381 *** 0.003 −16,610 31,526
Model 1 All day with static perception 0.439 *** 0.005 −19,680 31,526

Model 2 All day with dynamic perception walking 0.442 *** 0.003 −19,860 31,526
driving 0.450 *** 0.003 −20,300 31,526

Model 3 All day with static and dynamic interaction model walking 0.453 *** 0.005 −20,500 31,526
driving 0.470 *** 0.005 −21,480 31,526

Notes: *** stand for significance level (p value) < 0.01. The travel modes with higher R Square value are bolded.
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Lastly, since many variables tend to be closely correlated, multicollinearity might
exist among variables of human movement patterns and multiple indices of human
perception [4]. The variance inflation factor (VIF) test was used to check for variables
with correlation problems (Pearson pair plot value > 0.8 and VIF > 10) [6]. Before
running the OLS model, we removed the variables which were unimportant and achieved
significant multicollinearity with other important factors [27,85]. Hence, 3 variables
were removed from our model, namely order score, access score and eco-score. In terms
of the new dynamic perception variables in the dynamic model that might have high
multicollinearity problems, the p-value for interaction variables was not affected by the
multicollinearity [86] (Table 3).

Table 3. Comparison of the dynamic perception model of walking and driving with the variables of
VIF < 10.

Variable VIF Model3-Walking Model3-Driving

Intercept 27.62 Coefficient Std Err Coefficient Std Err

FDI 1.64 0.35 *** 0.006 0.33 *** 0.006
FDE 1.66 0.64 *** 0.014 0.60 *** 0.014
ACR 1.60 −0.7 *** 0.092 −0.60 *** 0.091

AESTH 2.52 −0.31 *** 0.02 −0.38 *** 0.018
ENCLO 4.44 0.13 *** 0.024 0.30 *** 0.021
RICHN 2.16 0.28 *** 0.017 0.27 *** 0.015
SCALE 4.89 −0.03 0.032 −0.05 * 0.027
BET1k 1.90
BET5k 1.96

AESTH_BET1k −0.27 *** 0.057
ENCLO_BET1k 0.03 0.066
RICHN_BET1k 0.53 *** 0.037
SCALE_BET1k −0.16 ** 0.084
AESTH_BET5k −0.07 * 0.056
ENCLO_BET5k −0.26 *** 0.065
RICHN_BET5k 0.67 *** 0.036
SCALE_BET5k −0.06 0.078

Adjusted R
square 0.453 0.47

AIC −20,500 −21,480
BIC −20,400 −21,380

Notes: ***, **, * indicate p > |t| at significant levels 0.001, 0.05 and 0.1 respectively.

4. Results and Discussion
4.1. OLS Results
4.1.1. Verifying Dynamic Perception and Static Perception

As shown in Table 2, adding the static perception variables can significantly improve
the baseline model from 0.381 to 0.439 of the R square (Table 2).

More importantly, Model 2 and Model 3, where dynamic perception factors were
involved, have better explanatory power than the model only with static perception factors.
Table 2 shows the coefficients of either the dynamic perception through walking (1 km
movement potential weighted) or driving (5 km movement potential weighted) have larger
impacts on vitality than static perception, with the improvement in the R square of 0.442
and 0.450 for walking and driving, respectively, in Model 2. Since Model 3 considers the
interaction factors of both static perception and dynamic perception, the result shows even
better in the R square with 0.453 and 0.470 for walking and driving, which indicate that both
static perception and dynamic perception contribute to the street vitality simultaneously.
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4.1.2. Evaluating Walking and Driving Through-Movement Perception

First, in terms of the performance of the two modes of through-movement perception,
the walking’s R2 is 0.442 in the dynamic perception model and 0.453 in the interaction
model, while the driving perception performs better in these two models with 0.008 and
0.017 greater of R2 than walking (Table 2).

Second, according to the results of variables coefficient in (Table 3), factors 5 and 6,
which represent the “enclosure” and “richness” spatial perception under the walking
and driving modes, both have positive effects on street vitality. However, an interesting
phenomenon occurred in the interaction model (Model 3), in which the sense of enclosure
of driving had a negative impact on vitality while the walking sense of enclosure still had a
positive effect.

Third, most of the dynamic perception variables were significantly associated with
vitality, with 0.000 in p-Value in Model2, and in Model3, except for the sense of enclosure
when walking, and the sense of aesthetic and human scale when driving (Table A1).

Lastly, the overall fitness of the R square of driving perception was greater than
the walking counterpart in each dynamic model (Model 2, Model 3), which means the
driving mode of streetscape perception can better illustrate the overall and dynamic vitality
pattern of Guangzhou. In other words, from a development mode and urban governance
perspective, the existing development principle is more likely to be auto-oriented traffic
policies for Guangzhou in the city scale.

4.1.3. Overall Comparison with Three Time Periods and Detailed Variables

In terms of the time dimension, the intention of our proposed model was to test
the change of the coefficient strength in three different time periods (Table A1). The
outcomes from the morning and evening periods outperformed the noon period in both
walking and driving modes. At the same time, the three control variables performed in a
stable manner in the coefficient in three time periods, from which can be understood
that they follow the relationship we built between perception and vitality in the noon
period to a lesser extent. People tend to move and stay in a place where they can have a
more impressionable sense of place in the morning and evening rather than in noon. For
example, in the morning, the workplaces where people commute to are more likely to be
in the areas with a better sense of place. At the same time, groceries, other shops and
restaurants become more popular in the night economy and most of them are located in
the areas with strong streetscape perception.

The perception variables, especially richness and human scale, performed variously
in three models. First, the detail can be found that in each dynamic model of the different
time periods; the dynamic richness perception always made a positive contribution to the
fitness of vitality. In contrast, the dynamic human scale perception variable always played a
negative role in each model. Second, all six dynamic richness attributes were ranked among
the three most influential factors, which is in accordance with the active diversity and time
diversity in the literature [37,60]. Third, on the flip side, the impact of the human scale
variable was not positively correlated with vitality, as shown in the previous studies [27,36],
which was supposed to reveal that the small-scale streetscape appearance might often be
neglected by the urban developers in the development of Guangzhou.

4.2. Comparison of Related Studies

When compared with related studies [6,68], we build on existing analytical methods
that have been validated, while considering human perception of the street under different
modes of transportation. On the other hand, our study is more scientifically quantifiable
compared to the non-numerical variables (high and low) employed in the analysis of acces-
sible green by [48,49]. Thus, we argue through a case study that the dynamic perception
of driving in central Guangzhou is more relevant to the overall street vitality distribution.
Our study complements the lack of consideration of bias in through-movement in related
field studies.
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5. Conclusions

In this paper, we have presented a new approach to the application of through-
movement perception as a dynamic perspective to explain the street vitality and different
influences on perception through walking and driving. Thus, we argue that in central
Guangzhou, the dynamic perception of driving was more effective in explaining street
vitality. We also expect to capture the shared experiences in which better dynamic percep-
tions can engender more lively streets and regions, and thus our approach may represent a
stepping stone in bridging the relationship between a static sense of place and the dynamic
movement potential of two travel modes.

5.1. Complementary Effects between Two Modes

Static streetscape perception indexes can still be used as a supplement to dynamic
perceptions. First, it is difficult to thoroughly simulate the dynamic travel process of
humans, since perceptions are multifaced [6]. While static street perception gives all places
an equal opportunity to be perceived, it is relatively stable. Secondly, if the dynamic
perception measurement is applied to a single nuclear city, where high street perceptions
are similarly distributed to the high movement potential, it may increase the collinearity
of variables in the dynamic model, limiting the measurement credibility of this method.
Therefore, the use of both static and dynamic perception methods can increase the overall
model credibility and explanatory power to a certain extent. At the same time, the dynamic
perception of the two travel modes can be used not only as independent objects to compare
the development orientation of the regions, but also as a complementary verification means
to judge the credibility of prediction.

5.2. Implications for Urban Planning

Our study offers both insights and tangible applications in urban planning, informing
urban revitalization for commercial developers, policy makers, researchers and planners.
First, our study shows that the distribution of better dynamic perception is intermittent
in Guangzhou, and there are even some continuous areas of high vitality with a low
relationship of streetscape perception. In other words, there are some specific places
(e.g., the street space along the viaduct) whose streetscape quality is not proportional to
the high activity hotspot, which has become a blind spot in shaping better urban scape.

Second, our study helps policy makers to better plan and improve urban transportation
facilities to meet the needs of various commercial facilities and citizens, which might lead
to more responsive urban planning and regional commercial development. For example,
commercial investors get more customers from the high street vitality generated by the
surroundings for their suitable travel modes, while citizens enjoy better street quality
and increase the potential to work and to purchase property nearby, which brings more
tax revenue for the government. Third, the data-driven methods in this study can help
researchers understand human perception and travel choices, to better approximate the
interaction between humans and the environment from the perspectives of visual and
spatial movement potential.

5.3. Limitations

Firstly, although the actual observation results of traffic flow in different modes are
close to the simulation of walking and driving movement modes by using different distance
radii of choice index in space syntax, the distribution of population and fixed travel
destinations is not spatially uniform. Therefore, this method cannot completely cover the
real dynamic flow patterns.

Secondly, taking different transport means is closely related to the flow of segregation
in different income, occupation and preference, and these features also play a conclusive
impact on where they go and behave, which was the missing part in this study.
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Thirdly, there may be a mutually exclusive relationship between different modes of
transportation, for example, the high traffic flow of vehicles will block the movement of
pedestrians and shape the walking patterns to avoid such high-level major collectors.

Lastly, we should of course be aware that space syntax or any other network theory
based on computational models can be helpful in studying the likelihood of social behaviors
but cannot precisely predict the movement flow of people. Humans are creative and
their actions cannot be explained solely based on cause-effect (i.e., stimulus-response)
mechanisms. In other words, people cannot be reduced to ‘causal systems’ [87,88]. This
research is based on the view that space is a part of the development of social and economic
activities [63], that is, the source of influence of urban and street structure on social activities
in urban streets is the shaping of urban street structure and appearance through the
interaction of people’s social activities. However, if in the modern anthropocene, the
material space no longer guides human activities, information flow and capital flow and
the logistics in the operation of the city are no more dependent on the city and street
structure itself, the correlation between the material space and human social activities will
be reduced.
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Appendix A

Table A1. Model comparison.

OLS Regression Analyses

Selected Model Adjusted R Square Std Error of the
Estimate p > |t|(Sig.) AIC N

Baseline All day without perception data 0.381 0.003 0.000 *** −16,610 31,526
Model 1 All day with static perception 0.439 0.005 0.000 *** −19,680 31,526

Model 2 All day with dynamic perception walking 0.442 0.003 0.000 *** −19,860 31,526
driving 0.450 0.003 0.000 *** −20,300 31,526

Model 3 All day with static and dynamic interaction model walking 0.453 0.005 0.000 *** −20,500 31,526
driving 0.470 0.005 0.000 *** −21,480 31,526

Model 3M Interaction model with morning vitality walking 0.447 0.005 0.000 *** −19,950 31,526
driving 0.464 0.005 0.000 *** −20,940 31,526

Model 3N Interaction model with noon vitality walking 0.425 0.005 0.000 *** −19,280 31,526
driving 0.444 0.005 0.000 *** −20,340 31,526

Model 3E Interaction model with evening vitality walking 0.440 0.005 0.000 *** −22,910 31,526
driving 0.452 0.005 0.000 *** −23,580 31,526

Notes: *** stand for significance level (p value) < 0.01. The travel modes with higher R Square value are bolded.
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