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Abstract: Solar cadasters are excellent tools for determining the most suitable rooftops and areas for
PV deployment in urban environments. There are several open models that are available to compute
the solar potential in cities. The Solar Energy on Building Envelopes (SEBE) is a powerful model
incorporated in a geographic information system (QGIS). The main input for these tools is the digital
surface model (DSM). The accuracy of the DSM can contribute significantly to the uncertainty of
the solar potential, since it is the basis of the shading and sky view factor computation. This work
explores the impact of two different methodologies for creating a DSM to the solar potential. Solar
potential is estimated for a small area in a university campus in Madrid using photogrammetry from
google imagery and LiDAR data to compute different DSM. Large differences could be observed
in the building edges and in the areas with a more complex and diverse topology that resulted in
significant differences in the solar potential. The RSMD at a measuring point in the building rooftop
can range from 10% to 50% in the evaluation of results. However, the flat and clear areas are much
less affected by these differences. A combination of both techniques is suggested as future work to
create an accurate DSM.

Keywords: solar cadaster; solar potential in rooftops; digital surface model; geographic
information system

1. Introduction

Worldwide, solar photovoltaic (PV) technology is growing very quickly nowadays,
faster than other renewable technologies. Indeed, the first Tera Watt milestone was reached
by the PV industry in the spring of 2022 [1]. An important part of this increase is going to
take place in the urban context through self-consumption PV systems in rooftops; building-
integrated photovoltaics (BIPV) are also expected to gain relevance in the near future in
cities. In this context, solar cadasters and solar potential studies in large urban areas or
cities are increasing, notably parallel to the penetration of PV systems. These studies are
aimed at mapping the annual irradiation distribution according to the urban topology
in order to easily determine the most suitable rooftop surfaces for the deployment of PV
systems [2].

In the last years, several models and tools have been developed to estimate solar
potential on building rooftops and urban topologies, and they have been implemented
in geographic information systems (GIS) in order to incorporate the influence of urban
elements and topology to the incident solar radiation [3–8]. Open-source tools have evolved
a lot, and today, high-quality GIS are open and accessible, with a very large number of
users that contribute to their growth and further improvement. This is the case of Quantum
GIS (QGIS, https://www.qgis.org/, accessed on 11 December 2022), which incorporates
the functionalities of GRASS, WMS/WMTS client, the GDAL algorithms and many other
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libraries in a powerful open-source geographic information system. In particular, the
UMEP (Urban Multi-scale Environmental Predictor) model can be incorporated as a plugin
in QGIS. This is an integrated tool for urban climatology and climate-sensitive planning
applications [9,10]. The SEBE (Solar Energy on Building Envelopes) model is a part of the
UMEP toolbox, aimed at estimating solar radiation on the ground, rooftops and buildings
by computing the sky view factor and the shadows from a digital surface model (DSM)
and from the solar radiation components as meteorological input [11,12].

Photogrammetry has historically and widely been regarded as one of the most effective
techniques for the 3D modeling of well-textured objects. Photogrammetry allows one
to accurately and reliably recover the 3D shape of the object compared to photometric
stereo [13]. It identifies the spatial positions of all the features (shapes and colors) of the
considered object by detecting a series of local motion signals: arbitrary blocks of pixels
used as motion vectors. Local motion signals are determined through a technique called
Structure-from-Motion (SfM), in which the camera is fixed and the target rotates or the
camera moves around the fixed target [14]. Local motion signals are therefore used to
determine and calibrate the object points’ spatial position, which will shape the model.
Today, photogrammetric 3D models are widely used in several fields, such as life and earth
sciences, medicine, architecture, topography, archaeology and engineering [15–17].

The DSM is the fundamental initial data in GIS methodologies for solar potential analysis.
A DSM is a raster image of heights that combines the ground height of a digital elevation
model (DTM) with the height of all elements on the ground (trees, buildings, canopies and other
structures). DSM can be determined from LiDAR (Light Detection and Ranging) images or from
orthoimagery to generate 3D models of a specified urban area. Solar potential studies based on
LiDAR raster images are relatively numerous in the literature [18–20]. Despite many studies hav-
ing used LiDAR images in solar cadasters [2,4,7,21–23], recent studies have shown that DSMs
generated from orthoimagery offer significant advantages in modeling solar resources at
large scales [24]. Nowadays, there is specific software, such as Agisoft, that allows for the
generation of DSM from orthoimagery such as google satellite images [25]. However, the
preference for any of these methodologies must be conditioned by the final resolution and
accuracy of the resulting DSM. Thus, some authors have used OpenStreetMap to obtain 2D
building footprints and make use of data on the height of buildings to build 3D data, but
this approach is not very reliable, since data are based on volunteered geoinformation [26].
The sensitivity of several DSMs with different resolutions was recently explored for a small
neighborhood in Nantes (France), where differences in annual solar resources of up to 25%
were reported [27].

In this work, a study of DSM elaborated with two different methodologies on the
effect on solar radiation estimates is presented. The aim is to explore the impact that the
uncertainty associated to DSM generation has on the solar potential evaluated for building
rooftops and in solar cadasters in general. Despite the fact that the literature presents
many works on solar cadasters and potential in urban areas, very few studies include an
evaluation with experimental measurements [28,29]. Thus, in addition to the study on the
differences caused by different DSMs, the results are compared to measurements taken at
three different points of the rooftop of the building under study.

2. Materials and Methods

The study area selected for this work is the Ciemat campus in Madrid, where the
geographic coordinates are 40.45◦N, −3.73◦E and the altitude is 695 m. Ciemat campus
is a rather heterogeneous area of small buildings housing Ciemat laboratories and offices
surrounded by a forest small area, isolated trees and roads placed in the largest university
campus of Madrid. The area is also of interest because one of the buildings, hereafter
referred to as Building 42, is the headquarter lab of the Renewable Energy Division in
Ciemat, and it includes small BIPV arrays in the south, west and east façades, which
have been the subject of several recent studies [30,31]. The building footprint is basically
a parallelogram of 36 m × 45 m. In addition, there are several PV testing systems and
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structures installed in the rooftop of the building. Figure 1 shows a picture of the area
under study with the building 42 in the center. The figure also shows the position of three
measuring points, two of them with thermopile pyranometers (Point 1 and 2) and the third
one with a calibrated cell (Point 3).
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Figure 1. Image of the area under study with the building 42 in the center, including the measuring
points placed on the rooftop.

2.1. Digital Surface Model

Digital Surface Models (DSM) are raster grids of the elevation of the terrain, including
vegetation, buildings and other elements. They are thus a representation of the Earth’s
surface that includes all the objects on it. Photogrammetry techniques are commonly used
to generate DSM [24]. In this work, two techniques were used to generate 3-D urban data
(i.e., two different DSMs of the area under study): LiDAR data and photogrammetry.

LiDAR data with a density of 0.5 points/m2 of Madrid are supplied by the Spanish
Geographic Institute [32]. The LiDAR images of the study area were taken around 2015
and 2016. The LAStools library is a powerful package for reading and extracting informa-
tion from compressed LiDAR files (https://rapidlasso.de/, accessed on 17 January 2023).
LAStools open-source functions were used in QGIS to generate the LiDAR DSM denotation
of the area.

The procedure to perform the DSM through photogrammetry is obtained from Google
Earth photos around the area of interest, specifically 55 photos in 360◦ over the Ciemat
campus Madrid. PhotoScan Professional (version 1.6.2) was used, a commercial product
for photogrammetry developed by AgiSoft®. This software is commonly employed for
photogrammetry in urban environments [33,34]. At the end of the process, a 3D model
(shown in Figure 2), an DSM and an orthophotography are exported in GeoTiff format,
without any additional post-processing (optimization, point filtering, among others).

https://rapidlasso.de/
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and times, 21st December at 12:00 UTC and 21st June at 12:00 UTC, in order to compare 
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Figure 2. 3D model of the urban environment in Ciemat campus Madrid from photogrammetry process.

In order to allow the comparison between the two DSMs elaborated, an interpolation
process was applied to the LiDAR DSM data, which was initially a raster of 243 × 295 points, to
derive a raster of 1078 × 1290 points like the Photo DSM. Thus, the two DSM rasters have
the same extent and pixel resolution. Figure 3 shows a comparison of the LiDAR DSM and
Photo DSM of the area under study and the relative difference between both. The largest
relative differences are below 7%, and they are mostly concentrated in the trees and the
building edges. The building contour of the Photo DSM is displaced by around 10 pixels
with respect to the LiDAR DSM. However, in the building rooftops, the relative differences
between both DSMs are below 2%.
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2.2. Urban Geometry

Sky view factor and shadow patterns were computed for each different DSM using
the UMEP plugin with QGIS [9,10]. The shadows were computed for two specific dates
and times, 21st December at 12:00 UTC and 21st June at 12:00 UTC, in order to compare the
minimum and maximum shadowing conditions. Figure 4 shows the comparison of the sky
view factor computed from each DSM, and Figure 5 shows the comparison of the shadow
patterns resulting from each DSM.
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Figure 5. Shadow patterns for 21st June at 12:00 UTC and 21st December at 12:00 UTC.

The sky view factors computed for each DSM show relative differences below 20% in
the building rooftops. As a consequence of the differences observed in the DSM, the largest
differences in the sky view factor computation take place in the trees and forest areas and
in the building edges. The latter is a direct consequence of the small spatial displacement
between both DSMs. The shadow patterns are better defined in the Photo DSM case than
in the LiDAR DSM case. However, most of the rooftops are not so strongly affected by
the different shadows, with the exception of the building 42, where the complexity of
the rooftop produces larger variations between both cases. Indeed, several structures
with different heights are installed on the rooftop, and, consequently, the less detailed
information of the LiDAR DSM generates a more diffuse and fuzzier pattern of shadows.

2.3. Solar Radiation

The solar energy potential is estimated for each DSM using the SEBE (Solar Energy on
Building Envelopes) model in QGIS [9,11,12]. The total irradiance for a pixel (H) on a DSM
is estimated by summing up the direct, diffuse and reflected radiations:

H =
p

∑
i=0

(I(cos AOI) S + DS + G(1 − S)ρ) (1)

where p is the number of patches on the hemisphere, I is the direct normal irradiance, D is
the diffuse irradiance, G is the global irradiance, ρ is the albedo, S is the shadow calculated
for each pixel, and cos AOI is the cosine of the incidence angle. The three components of
the solar radiation (direct normal, diffuse and global) are estimated for this work using the
PVGIS-SARAH2 solar radiation database of the PVGIS tool for the years 2017–2019. The
data is delivered at an hourly basis. The PVGIS-SARAH2 database is a satellite-derived
product covering the years 2005–2020 for Europe, Africa and the most western part of Asia
with a spatial resolution of around 5 × 5 km (https://joint-research-centre.ec.europa.eu/
pvgis-photovoltaic-geographical-information-system_en, accessed on 17 January 2023).
The methodology behind this database is the CM SAF method [35–37].

3. Results

Solar radiation computation in the study area has been performed at an hourly basis
for three years (2017 to 2019) using the SEBE model with QGIS. The three components

https://joint-research-centre.ec.europa.eu/pvgis-photovoltaic-geographical-information-system_en
https://joint-research-centre.ec.europa.eu/pvgis-photovoltaic-geographical-information-system_en
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of solar radiation supplied by the PVGIS SARAH2 database were used as meteorological
input to the solar radiation model. Figure 6 shows the distribution of the annual irradiation
in the study area for each year and DSM. The spatial distribution of solar radiation in the
area is better defined in the case of Photo DSM than for LiDAR DSM. The latter shows the
building footprints as being more diffused as a consequence of the less detailed DSM. The
relative difference in annual irradiation shows a large variability, ranging from over 50% in
the forest area to practically no difference in the flat rooftops and ground surfaces. In fact,
the largest differences in the forest area of the study are due to both the DSM generation
methodology and real physical differences in the area. Several actuations were performed
in the land after 2016, which resulted in the removal of a few trees and bushes, so that the
Photo DSM was constructed over a slightly modified land compared to LiDAR DSM, which
corresponded to the 2015 and 2016 periods. Therefore, uncertainty sources are diverse and
include: the land modification occurring between LiDAR and Photo imagery, the DSM
generation methodology itself and the uncertainty of the solar radiation input to the model.
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Figure 7 illustrates with more detail the annual irradiation in 2019 in the building 42.
The topology of the multiple structures placed in the rooftop of the building are much
better defined in the case of Photo DSM, while in the case of LiDAR DSM, the topology of
the rooftop is somehow fuzzy. This lack of detail results in very large relative differences
between both maps when one compares them point by point. However, the differences are
notably lower when the comparison is made on the flat and free available surfaces (just those
that can be exploited to install solar systems). In order to analyze the impact of the different
DSM methodologies on the solar radiation estimation and the associated uncertainty, the
monthly irradiation estimated with SEBE during the three years under study is compared
with the experimental measurements collected in the building rooftop. Two pyranometers
were installed in the north part of the building, and a calibrated cell was placed in the
south-east quarter (Figure 1). Despite the uncertainty of all these measurements, which
is difficult to evaluate properly [38], they can be used to evaluate, at least partially, the
monthly irradiation estimated by SEBE on those three rooftop points. Figure 8 shows the
monthly irradiation estimated with each DSM and the experimental values.
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4. Discussion

According to the results of Figure 8, there are significant differences in the agreement
of the solar irradiation estimation and experimental data at each point. Solar irradiation
shows important underestimations at point 3, particularly during autumn and winter,
where shadowing has a more remarkable impact. The standard metrics for assessing the
estimations show mean bias deviation (MBD) values of −11.6% and −8.4% for LiDAR
DSM and Photo DSM, respectively. The root mean square deviation (RMSD) for these
monthly irradiation values is placed at 35% and 39% for LiDAR DSM and Photo DSM,
respectively. In the case of annual irradiation, the RMSD is 29% and 35% for LiDAR DSM
and Photo DSM, respectively. The deviations are quite different depending on the point
for validation. The RMSD for each experimental point is shown in Table 1, where the
uncertainty values can vary from around 10% to nearly 50%. Recent studies reported
25% of RMSD for annual irradiation estimated by different DSMs [27]. Despite the less
detailed topology of the LiDAR DSM, its height data are more accurate than those of Photo
DSM, which uses google imagery, and the annual irradiation estimations are closer to the
experimental observations. However, this evaluation should be handled with precaution,
since there are several uncertainty sources that cannot be easily characterized. On the one
hand, there is an inherent uncertainty in determining the experimental points in each DSM.
In addition, the measurements come from different types of instruments with different
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uncertainty values [38,39]. In addition, PVGIS solar radiation data originally used as input
has a global uncertainty in terms of RMSD for yearly estimations of approximately 3% and
6% for global horizontal and direct normal irradiation, respectively. Moreover, at an hourly
basis, the uncertainty of PVGIS SARAH is around 17.61% of RMSD for global irradiance
evaluated at stations in Europe [40]; therefore, the contribution of the uncertainty in the
meteorological input might also be significant. In addition, the uncertainty of DSM is
also extremely difficult to evaluate and has an impact on both the sky view factor and the
shadow estimates, which are the most sensible parameters in solar radiation computation
in urban topologies. All these uncertainties are interconnected within the methodology, so
that separating them into individual contributions is not a straightforward task.

Table 1. RMSD values at the different measuring points in percentages.

DSM Point 1 (%) Point 2 (%) Point 3 (%)

LiDAR DSM 23 13 38
Photo DSM 25 9 49

5. Conclusions

In this work, the impact of different methodologies for constructing DSM on the solar
potential estimation is explored in an urban environment. Photogrammetry from google
earth imagery and LiDAR-based methodology have been used to create two different DSMs,
Photo DSM and LiDAR DSM, respectively. The main differences are found in the building
footprints, which are much better and regularly defined in the case of Photo DSM, while
LiDAR DSM has the poorest resolution but a more accurate height. The determination of the
uncertainty of a DSM is complex and not straightforward. The impact on the solar cadaster
can be important when specific buildings with a complex topology are considered, and a
much lower impact is observed in flat rooftops and flat areas. Thus, the identification of
suitable rooftops in large areas for solar PV applications can be done with both techniques,
but the analysis of a detailed building would require a much more accurate DSM. Further
work will explore the combination of both techniques by correcting the heights of Photo
DSM with LiDAR information and keeping the Photo DSM footprint.
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