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Abstract: Prefabricated steel box girders (SBGs) are widely adopted in bridge engineering due to
their light weight and low lifecycle cost. To smoothly assemble SBG components on a construction
site, it is necessary to inspect their geometric quality and ensure that all the as-is SBG components
have the correct dimensions. However, the traditional inspection method is time-consuming and
error-prone. This study developed a non-contact geometric quality assessment technique based on
3D laser scanning to accurately assess the locations and dimensions of SBG components. First, a
robust normal-based region-growing algorithm was developed to divide the SBG components into
segments with different labels. The scanned data related to the T ribs were then extracted through the
proposed subtraction algorithm after the identification of the steel cabin. Lastly, the required items
for geometric quality inspection were calculated based on the extracted as-is SBG components. The
feasibility of the proposed geometric quality assessment method was validated through a real SBG
project. Field test results showed that the developed inspection technique could assess the geometric
quality of prefabricated SBG components in a more accurate and efficient manner compared to
traditional measurement approaches.

Keywords: geometric quality assessment; point cloud; prefabricated steel box girder components;
building information modeling (BIM)

1. Introduction

Steel box girders (SBGs) are widely used in the urban overpasses and other large civil
infrastructures. Compared with cast-in-place reinforced concrete bridges, SBG bridges have
the advantages of a fast construction speed, a light weight, excellent seismic performance,
and less building pollution [1]. The structural integrity of SBGs depends on the correctness
of the components’ orientation and dimensions, especially the relative location between
adjacent components. As for the cantilever beam of an SBG, T ribs play an important
role in bearing the vertical load and ensuring stability. If the location and orientation
of the T ribs after welding and installation do not conform to the design requirements,
the welds between the T ribs and the steel cabin are prone to cracks and may necessitate
reworking [2]. Therefore, the location and orientation of the T ribs of the cantilever beam
must be consistent with the blueprints during the welding and installation. Once the SBG
components are transported to the construction site and the concrete pouring is completed,
incorrect SBG component dimensions and locations can result in incalculable economic
losses and even fatalities.
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Currently, the geometric quality evaluation of SBG components heavily relies on
manual detection with traditional measuring tools such as leaning rulers and steel tapes.
However, it is time-consuming, labor-intensive, and tedious to assess large-scale SBG
components manually at the prefabrication site, leading to error-prone evaluation results.
Although electronic measuring instruments such as total stations and laser rangefinders
are extensively applied in the geometric quality inspection of as-is buildings and other
large components, these approaches are unable to provide accurate and rapid inspection
for large and complex SBG components under unfavorable weather conditions [3].

In recent years, 3D laser scanning technology has become popular in civil infrastructure
for the fast establishment of 3D image models of objects. Three-dimensional laser scanning
adopts time-of-flight (TOF) technology, which calculates the distance from the scanner
to the target object by transmitting a laser beam and detecting the reflected signal of the
target. Since 3D visualization models of complex and irregular schemes can be constructed
quickly and accurately, 3D laser scanning has been extensively used in various fields, such
as reverse engineering [4,5], surveying and mapping engineering [6,7], and structural
health monitoring [8,9]. Meanwhile, the scanned data acquired from terrestrial laser
scanners (TLSs) represent the as-is status of objects, while the corresponding as-designed
information is usually stored in building information modeling (BIM) models, which are
digital representations of the physical and functional characteristics of a facility. Several
studies have already compared scanned data with BIM models for geometric quality
inspections and progress control at the construction stage [10,11].

Since 3D models reverse-constructed based on laser scanning are not as-built BIM
models with semantic information, the geometric information of the as-built model cannot
be directly obtained. The conversion and extraction of semantic information from 3D
point-cloud models of prefabricated SBG components with complex shapes and the assess-
ment of the geometric quality of complex structures are far from being achieved. Previous
attempts have focused on identifying and extracting geometrically simple components,
such as prefabricated mechanical, electrical, and plumbing (MEP) modules; rebars of rein-
forced precast concrete elements; and shear keys of prefabricated slabs in a simple prefab
scheme [12–14]. Components with complex precast schemes, such as large-scale precast
concrete components and spatial structural components, have also been studied [11,15].
However, there is a lack of research on extracting the geometric information of large-scale
prefabricated components in complex prefab schemes from 3D point-cloud models, and
few studies have focused on the geometric quality detection of large-scale prefabricated
SBG components.

To address the above research gap, this study proposed a geometric quality inspection
method for large-scale prefabricated SBG components with complex connections based
on laser scanning and BIM models, including T ribs and the steel cabin of cantilevers,
during the manufacturing stage. For large-scale and complex prefabricated components in
complex prefab schemes, different point-cloud data processing algorithms were developed
to extract the geometry information for the prefabricated components. After extracting the
geometry information, the point-cloud model of the regular as-built prefabricated compo-
nent segment was compared with the as-designed BIM model. Then, the geometric quality
of the SBG segment was evaluated by calculating indicators such as the deviation, degree
of completeness, and degree of matching compared to a geometrically standardized precast
SBG segment. For large-scale precast component segments with complex geometries and
interlacing components, a geometric quality evaluation method considering the location
and orientation was proposed based on the component geometric feature information
obtained by the improved point-cloud data-processing algorithm. The highlights of this
study include: (1) the development of a quality assessment method for inspecting the
geometric quality of complex SBG components; (2) the design of a robust normal-based
region-growing algorithm for detecting the segments of an SBG and the proposal of a
subtraction algorithm to extract the scanned data relating to the T ribs; and (3) the improve-
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ment of the mean shift algorithm for recognizing the boundaries of T ribs in order to extract
the intersection points.

The rest of this paper is organized as follows. Section 2 presents a review of the
existing methods for the point-cloud-based segmentation of precast components, object
recognition, location recognition, and quality assurance and control. The proposed geomet-
ric quality assessment technique is illustrated in detail in Sections 3 and 4. In Section 5, a
validation experiment is presented, and the results are assessed to determine the accuracy
and feasibility of the proposed geometric quality assessment technique. Lastly, Section 6
concludes this study and presents future research directions.

2. Literature Review
2.1. Point-Cloud Data Segmentation

In order to extract the geometric information of large-scale prefabricated SBG members
with complex geometries, the first step in the reverse-construction of the laser scanning
data is point-cloud segmentation. The complete point-cloud model of SBG members is
divided into segments according to attribute label information. Subsequently, the feature
planes and geometric key feature points are identified and extracted based on the segments.
Several geometric information extraction algorithms have been developed for prefabricated
components with different geometric complexities and scales. For geometrically simple
components, Castillo et al. [16] proposed a point-cloud segmentation algorithm based on
surface normal estimation and local point connectivity, which can operate on unstructured
point-cloud data and robustly detect corners and edges from point-cloud data. Pu and
Vosselman [17] employed a planar surface growing methodology for point-cloud data
segmentation to divide and recognize potential building features. Li et al. [18] presented a
segmentation algorithm integrating region growing with a multi-size super-voxel segmen-
tation method that was robust to varying point densities and noise, which could extract
effective local shape descriptors. For large-scale prefabricated components, Li et al. [11]
combined the region-growing algorithm and the random sampling consensus (RANSAC)
algorithm to extract the feature plane of prefabricated components, using the RANSAC al-
gorithm to remove the noise outside the plane. Nevertheless, this method is more sensitive
to noise when searching along edges and cannot handle small structural members.

Although previous research has investigated large-scale components with simple
geometries and applied various methods to the corresponding structural components, the
experimental environments involved more idealized prefabricated schemes. Additionally,
the segmentation of as-built point-cloud models for complex precast schemes and large-
scale complex structural components with multiple element combinations has not been
well-studied. Therefore, this study proposes methods for the segmentation of large-scale
SBG precast members in complex precast schemes.

2.2. Point-Cloud-Based Object Recognition

SBG bridges comprise components of different sizes and shapes, some of which criss-
cross each other. In order to generate as-built point-cloud models of SBG bridges with rich
geometric information, various components need to be identified after segmentation. Exist-
ing object recognition approaches can generally be divided into bottom-up methods and
top-down methods. Bottom-up methods typically start by processing small subsets of the
laser scanning data to compute corresponding local salient features, including geometric
features and color information. Subsets of laser scanning data with similar local features
are then classified to form a single segmented object instance [19]. For example, as stated in
Date et al. [20], through the local 3D shape matching between a CAD model mesh of an ob-
ject and the laser scanning data of the scheme, the existence of the object can be recognized
and its position and direction in the scheme can be extracted. Yokoyama et al. [21] proposed
a method using principal component analysis (PCA) to recognize points on pole-like objects
from a mobile laser-scanning system based on the k-nearest neighbor graph and Laplacian
smoothing. Wang et al. [13] distinguished rebars from concrete according to the difference
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between the linear value of the scan data and the probability density function of the surface
value.

The top-down approach based on heuristics can decompose the target detection
and recognition of the measured object into easier-to-solve sub-problems, reducing the
complexity of the laser scanning data. However, when the point-cloud data are missing or
incomplete, the method might falsely identify a collection of clutter as a structural element
and fail to recognize the real element, which has the potential to affect the following
detection process, as pointed out by Yan et al. [22]. Riveiro et al. [23] proposed a heuristics-
based top-down method to accelerate the search process, which could effectively perform
segmentation and extract point-cloud data containing specific structural components from
masonry arch bridges. Compared to steel girder bridges with complex structures such as
ribs, the characteristics of masonry arch bridges are easier to distinguish. In addition, the
top-down methods are usually based on built bridges with less noise interference, while
prefabricated scenarios have more complex environments. Therefore, this study proposes
a recognition method that is more sensitive to noise for steel girder bridges in large-scale
prefab scenarios.

2.3. Point-Cloud-Based Location Recognition of Structural Components

The locations of SBG bridge components usually strongly impact the structural perfor-
mance; therefore, locating these components during manufacturing is necessary. Several
studies have made breakthroughs in using laser-scanned data or images for location recog-
nition. For instance, Sommer et al. [24] proposed a method for the segmentation-free joint
estimation of orthogonal planes, their intersection lines, relationship graphs, and corners
lying at the intersection of three orthogonal planes. Wu et al. [25] used the random sam-
pling consensus (RANSAC) algorithm to segment the filtered top bar and finally obtained
the radius, position, and posture of each bar, allowing the identification of the bar parts. As
stated in Zhe et al. [26], a new deep neural network was developed to extract discriminative
and generalizable global descriptors from a raw 3D point cloud. Ren et al. [27] presented a
method for the automatic recognition and 3D pose estimation of different kinds of targets
based on object CAD models and Kinect V2 RGB-D sensors. Akizuki and Hashimoto [28]
used a 3D vector pair to detect randomly stacked industrial parts, simulating the visible
state of the vector pair from various viewpoints. However, due to the complexity of the
geometric structure of SBG prefabricated components and the limitations of the measuring
instruments, there is limited relevant research investigating the relationships among SBG
prefabricated components.

2.4. Point-Cloud-Based Quality Assurance and Control

In recent years, numerous methods have been reported for geometric quality assur-
ance and control in the construction and completion acceptance stages. For example,
Kim et al. [29] developed a geometric quality-control method to detect and calculate ge-
ometric quality deviations for large-scale prefabricated concrete components using laser
scanning data and BIM. Anil et al. [30] presented a method for assessing the quality of as-
built BIM models generated from point-cloud data by analyzing the patterns of geometric
deviations between the as-designed model and the point-cloud data. Ghahremani et al. [31]
proposed a method for using 3D point clouds obtained with the aid of a handheld 3D laser
scanner for the quality assurance of high-frequency mechanical impact (HFMI) treatment.
For the geometrical quality evaluation of components with regularized geometric shapes,
the Scan-vs-BIM method can achieve better results [32]. However, for large-scale prefabri-
cated components with complex geometric shapes, the Scan-vs-BIM method has certain
limitations due to the influence of factors such as occlusion and component intersection.
Therefore, this paper proposes a method for the co-detection of position and orientation
based on the extracted feature information for components with complex geometries.

Machine vision technologies have also been extensively applied to geometric quality
control, especially for assessing the geometric quality of large-scale components before
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installation on site. For example, Vaghefi et al. [33] developed a combined nondestructive
imaging technology on a bridge deck to yield both surface and subsurface indicators
of condition. The authors of [34] proposed an approach to supplement visual bridge
inspections by implementing gigapixel technology to promote quality assurance and control
in a state bridge management system. Vetrivel et al. [35] identified the damage in buildings
based on gaps in 3D point clouds from very-high-resolution oblique airborne images.
Park et al. [36] introduced a displacement measurement method based on machine vision
technology, which monitored the displacement of high-rise building structures by means
of the partition method. Huang et al. [37] proposed a deep-learning-based algorithm
called ABCDHIDL, which can automatically detect building changes from multi-temporal
HRRS images. However, quality detection and control methods based on machine learning
algorithms require a large number of training datasets, which are time-consuming to build.

Researchers have also presented several techniques for the geometric quality assess-
ment of bridges using 3D laser scanning. Guldur et al. [38] detected and documented quan-
titative information on the condition of bridges by collecting millions of texture-mapped
datapoints for the bridges. Cha et al. [39] managed low-volume data obtained from LiDAR
for the maintenance of the bridge shape deformation by implementing detailed nodes in an
Octree 3D space As stated in An et al. [40], a wireless ultrasonic wavefield imaging (WUWI)
technique was proposed to detect hidden damage inside an SBG bridge. Nevertheless,
there are no relevant studies on the geometric quality inspection of SBG components.

3. Methodology

This section illustrates the developed technique for assessing the geometric quality
of prefabricated SBG components using 3D laser scanning and BIM. Figure 1 shows the
overview of the proposed technique, which included four steps: (1) data preprocessing, (2) the
extraction of the steel cabin, (3) the extraction of the T ribs (Figure 2a), and (4) geometric
quality assessment (Figure 2b). These steps will be illustrated in Sections 3.1–3.3, respectively.
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3.1. Data Preprocessing

This step aimed to remove background points and mixed-pixel points while preserving
valid points. Due to the complex structure of SBGs, multiple scans are usually required
from different locations to obtain complete and uniform-density point-cloud data. The
registration method based on the target sphere was adopted to unify the point-cloud data
scanned from multiple locations into the same coordinate system for subsequent processing.
Once all the laser-scanned data were collected, noise removal was conducted to extract the
valid points pertaining to the SBG. There were three types of points in the laser scanning
data of the measured object: valid points on the surface of the target object, background
points, and mixed-pixel points located between the target plane and the background
plane. In this study, the preprocessing step filtered noise using the density-based spatial
clustering of applications with noise (DBSCAN) algorithm [41], which can not only detect
and distinguish mixed pixels, but also remove mixed pixels and background points at the
same time.

As shown in Table 1, DBSCAN requires two parameters, ε and MinPts, which represent
the minimum number of neighborhood points and the threshold of neighborhood distance,
respectively. The selection of the MinPts value has a great impact on the clustering results.
If MinPts is too small, some mixed pixels may be considered as boundary points and will
not be used for the further expansion of the class. When the value is too large, some mixed
pixels may not be removed due to the increase in the number of neighborhood points. As
shown in Figure 3, assuming that the points of the measured object were evenly distributed,
the black hollow points are the valid points on the target object, the green points are the
mixed-pixel points, and the yellow points are the background points. When horizontal
or vertical, the minimum distance between two valid neighborhood points is D1, and
when in the diagonal direction, the maximum distance between two valid neighborhood
points is D2. The distance between the valid points and the mixed-pixel points, between
the mixed-pixel points and the background points, and between the background points
themselves are D3, D4, and D5, respectively, which satisfy D1 < D2 < D3, D4 > D5. The
maximum distance between adjacent valid points is D2, so the parameter ε of DBSCAN
should be greater than D2; considering the safety factor, the parameter ε is 1.2 D2. Since
D3 > 1.2 D2, point D was not density-reachable at point A and was not included in this
cluster. Then, the final background points and valid points were clustered into two clusters,
and the mixed pixels were marked as noise.

Table 1. Parameter value interpretation and setting.

Parameter Definition Setting Value

ε neighborhood The radius of neighborhoods around a datapoint pi 0.5
MinPts The minimum number of points in the neighborhood 1.2 D2
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3.2. Extraction of the Steel Cabin

For the extraction of the steel cabin composed of top and side surfaces, the proposed
method comprised three steps: (1) the extraction of the side surface; (2) the recognition of
the top surface based on plane fitting; and (3) the extraction of the intersection line.

3.2.1. Extraction of Side Surface

This step aimed to extract the side surface of the steel cabin using region-growing
segmentation based on the proposed robust PCA. Point-cloud normal vector estimation
based on plane fitting is the most commonly used method, having been initially proposed
in [42] as the core of a surface reconstruction algorithm. The algorithm estimates the
normal vector of a point pi by fitting a local plane under the assumption of planarity
in the region of the k-nearest neighbors of a given point, which is known as PCA [43].
Many region-growing methods based on PCA have been developed and implemented.
Kawashima et al. [44] introduced a normal-based region-growing method to extract the
points on a piping system and segment the points to each pipe; however, the recognition
accuracy of the junction parts was low, and the false-positive recognition rate was high.
Despite its outperformance of classical PCA in estimating the normal of a point located in
highly curved regions or sharp features, DMNE, the method proposed by Khaloo et al. [45],
requires more computational time.

Due to the influence of outliers and varying point-cloud densities, the normal vector
of the point-cloud data based on k-nearest neighbor plane fitting presented deviation. In
this algorithm, the robust PCA was designed to estimate the normal of each point with
the minimum covariance determinant (MCD) estimator. As shown in Equation (1), MCD
was used to obtain the robust mean value and covariance estimators. As stated by Nu-
runnabi et al. [46], the robust distance (RD) is used to measure the distance between each
sample point and the center, which is less sensitive to noise. The (RD) was calculated
according to Equation (2), and whether the point was an outlier was judged by comparing
the distance from the point to the sample center and the parameter threshold size. Sub-
sequently, the PCA algorithm was used to solve the minimum eigenvalue of the MCD of
each non-outlier point, and the eigenvector corresponding to the minimum eigenvalue was
used as the normal vector of the point.

∑ MCD =
kMCD(e, n, p)∑i∈eMCD(xi − ûMCD)(xi − ûMCD)

′

e− 1
(1)

RD(x) =

√
(x− ûMCD)

t ∑̂
−1

MCD (x− ûMCD) (2)

In Equation (1), e represents the volume of data, kMCD(e, n, p) is a proportionality
constant used to ensure the consistency and unbiasedness of the covariance estimator,
and ûMCD is the position estimated by the MCD algorithm. In Equation (2), x is the
matrix composed of sample points. Once the point-cloud normal was estimated, the region-
growing segmentation process first sought a seed point pi and then used the region-growing
test criteria to grow the point by incrementally adding new points. When the growing of
the first seed point was complete, a new seed point was added for the growing of the next
segment. In this algorithm, the selection of seed points was completely automatic. The
point with the smallest curvature was used as the first seed point, and if the distance from
the neighborhood point to the seed point was within the distance parameter threshold
d, the neighborhood point was the seed point. The threshold d had to be 1.2 times the
maximum distance between adjacent points, and the distance between adjacent points
was determined by the scanning resolution selected by the laser scanner. When the angle
between the normal vector of any points and the normal vector of the seed point pi was
less than the threshold, the point was assigned the same label as the seed point. The SBG
was segmented through the robust region-growing algorithm as shown in Figure 4a. As
the normal vector difference of the side point cloud of the steel cabin was very small, the
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side point cloud was divided into a cluster. The extracted side of the steel cabin is shown in
Figure 4b.
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3.2.2. Extraction of Top Surface

The purpose of this step was to extract the top surface of the steel cabin with the
M-estimator Sample Consensus (MSAC) algorithm [47], which is a variant of the RANSAC.
The MSAC algorithm constructs a plane by means of minimizing the loss cost function
C f = ∑ ρ

(
e2

i
)

defined in Equation (3) instead of using fixed distance thresholds from points
to the plane [45], where ei indicates the error term for the i-th observation and T represents
the distance threshold from a point to the estimation plane. Thus, ρ

(
e2

i
)

is illustrated as:

ρ
(

e2
i

)
=

{
e2

i , e2
i < T2

T2, e2
i ≥ T2 (3)

As stated in Nurunnab et al. [48], the MSAC algorithm can achieve a robust evaluation
result without any further computational burden. During the execution of the algorithm,
MSAC initially constructs a plane according to the detected inliers and grows the plane
until no points can be added. The extracted top surface of the steel cabin is shown in
Figure 4c.

3.2.3. Detection of Top Boundary

After the extraction of the side and top planes, the improved mean shift algorithm
without any parameter setting was directly used to three-dimensionally detect the top
boundary of the steel cabin [49], which was equivalent to the intersection between the side
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and top surfaces. The Gaussian kernel-based mean shift algorithm included two main
steps. The first was to calculate the offset vector (Mx), as illustrated in Equation (4):

Mx =
1
k ∑

xi ∈Sh

(x− xi) (4)

where Sh is a high-dimensional sphere with a center point x and a radius h, and k is the
number of points in the Sh range. The second was to calculate the distance (di) between
the sample point and its corresponding pattern point obtained from the mean shift vector,
before determining whether the sample point was a boundary point according to the size of
di. The extracted boundary of the steel cabin and the straight line fitted from the boundary
points through the least-square method are shown in Figure 4d.

3.3. Extraction of the T Ribs
3.3.1. Extraction of Scanned Data Related to T Ribs

Adjacent T ribs were overlapped by multiple I beams, which were inlaid on the vertical
surface of the T ribs (as illustrated in Figure 3). In addition, the I beam was composed of
a bottom surface and a vertical surface, whose geometric properties did not differ much.
Therefore, the critical step in T-rib extraction was to detect the I beams, which involved
two main steps: (1) the extraction of the scanned data related to the T ribs and (2) the
recognition of the I beams and T ribs.

As the steel cabin was extracted in Section 3.2, the scanned data related to the T ribs
could be obtained by subtracting the extracted point-cloud data of the steel cabin from
the scanned data, as shown in Figure 5a. The robust region-growing algorithm proposed
in Section 3.2.1 was then used to distinguish between I beams and T ribs, and the results
are shown in Figure 5b. Without the influence of the normal vector of the steel cabin, the
bottom and vertical plane of each I beam had different attribute labels after the robust
cluster-growing process. Figure 5c presents the identified I beams, and the extracted T ribs
are shown in Figure 5d.
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3.3.2. Mixed-Pixel Removal for T Ribs

The individual T rib extracted in the last step was composed of two mutually perpen-
dicular planes. However, the vertical plane of the T rib was not complete and contained
numerous mixed pixels due to the occlusion of the bottom surface during scanning, as
shown in Figure 6a. Therefore, the mixed pixels that were mistakenly detected as a plane
between the vertical plane and the bottom plane needed to be removed. According to the
spatial position relationship between the mixed pixels and the two perpendicular planes,
a denoising algorithm based on the angle between the z-axis and the normal vector was
proposed to remove the mixed pixels. The angles between the normal vector and the
z-axis of the bottom plane and vertical plane point clouds were close to 0 and 90 degrees,
respectively. Nevertheless, the angle between the normal vector of the mixed pixels and the
z-axis was about 60 degrees after angle measurement, as shown in Figure 6b. If the angle
was within the threshold, the points would be recognized as mixed pixels and removed
(Figure 6c).
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Figure 6. Denoising of T ribs: (a) original T rib from segmentation; (b) denoising based on the angle
difference of the normal vector; and (c) T rib after mixed-pixel filtering.

4. Geometric Quality Assessment

Geometric dimension consistency control technology based on the Scan-vs-BIM system
was applied to assess whether the geometric quality of the steel cabin conformed to the
design requirements [32]. The technology involves three main steps: (1) data format
conversion, (2) coarse registration and fine registration, and (3) the calculation of the
deviation. These steps are further explained in Sections 4.1.1–4.1.3, respectively.

4.1. Assessment of Steel Cabin
4.1.1. Data Format Conversion

To compare the as-is and as-designed data, the as-designed BIM model of the steel
cabin needed to be converted to a point-cloud model. Therefore, the BIM model was first
converted into a transitional data format, called STereoLithography (STL), which stored 3D
geometric information for the target object through gridding. Then, the plane subdivision
scheme based on the boundary midpoint was applied to obtain the 3D point cloud from
the STL mesh. This plane subdivision scheme uses the midpoint subdivision matrix to
iteratively segment the control mesh, which can be refined continuously to increase the
number of points. By controlling the number of iterations, the non-uniform grid algorithm
was used to subsample the identified point-cloud data, so the density of the generated
point cloud was equivalent to the density of the laser-scanned data. The BIM model and
the generated point-cloud model of the steel cabin are shown in Figure 7a,b.
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4.1.2. Coarse Registration and Fine Registration

Scan-vs-BIM aims to match as-is point-cloud models with as-designed BIM models. A
RANSAC-based coarse registration and iterative closest-point (ICP)-based fine registration
process was proposed for alignment.

There were several error point pairs at the initial points of the boundary features.
In order to improve the matching accuracy and the convergence speed, the RANSAC
algorithm based on a distance constraint was applied to remove the error point pairs.
Firstly, three corresponding point pairs were randomly selected. The rotation matrix of
rigid body transformation and the distance error of the remaining points were calculated,
respectively. If the distance error was less than the threshold error, the point was considered
a sample point; otherwise, it was considered a non-sample point. The above steps were
repeated until the upper bound of the number of iterations was reached. The number
of points in the sample under different rigid transformation models was calculated, and
the model with the largest number of sample points was input to calculate the point-
cloud registration operation. Then, the ICP algorithm was used for fine registration [50],
which aligned the boundary feature point sets to obtain the transformation matrix through
minimizing the root mean square error (RMSE) between them. In this study, the as-designed
BIM model with geometric information was set as a reference, while the as-is point-cloud
model was registered with the BIM model to calculate the discrepancy. The matching of
the steel cabin model with coarse and fine registration is shown in Figure 7c,d.
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4.1.3. Calculation of Deviation

Based on the registration results, the degree of matching (DOM) and the degree of
completeness (DOC) defined in Equations (5) and (6) were used as the geometric quality
assessment metrics, having been initially presented in Wang et al. [14].

DOM = Nmatch/Ntotal (5)

DOC = Amatch/Atotal (6)

where Nmatch refers to the number of matching points between the as-designed model and
the as-is model, and Ntotal indicates the total points; thus, DOM refers to the percentage
of matched points. In addition, Amatch refers to the area that matches the as-designed
model, and Atotal refers to the total area of the as-designed model; thus, DOC denotes the
percentage of areas that successfully matched the as-designed model. According to the
pre-set DOM and DOC thresholds, the geometric quality of components could be judged
by calculating the values of DOM and DOC for the model after registration.

4.2. Assessment of T Ribs

This step aimed to assess the geometric quality of the T ribs, including their location
and orientation. Table 2 shows the location and orientation inspection checklist for the T
ribs, which are illustrated in Sections 4.2.1 and 4.2.2 respectively.

Table 2. Assessment checklist items for T ribs.

Element Category Inspection Checklist Tolerance

T rib Location (1) Distance from the intersection point to the upper boundary (L1)
(2) Distance between adjacent T ribs (L2) 5 mm

T rib Orientation Deviation between the normal vector of the steel cabin and the direction of the T ribs 1◦

4.2.1. Calculation of Locations

After removing the mixed pixels in Section 3.3.2, the locations of the T ribs were
assessed to determine whether each T rib was installed in the correct location. As each T
rib is manually welded by workers, the actual location of the as-is T ribs may be different
from the as-designed location. Hence, it is necessary to evaluate the geometric quality of
the T ribs after welding.

As depicted in Figure 2a, the three planes, including the side surface of the steel
cabin, the bottom surface of the T rib, and the vertical plane of the T rib, intersected at a
common point, which could be extracted by calculating the intersection point of the three
intersecting planes or extracting the coplanar point based on Gaussian map clustering [51].
However, due to the large size (19 meters in length and 4 meters in width) of the side
surface of the steel cabin in the actual project, as described in Section 5, and the fact that the
side surface was not always a regular plane but could be curved in places, the method of
obtaining the common intersection by fitting the intersecting planes was not effective in this
case. For an individual T rib, the bottom and vertical surfaces have a unique intersection
point with the side-surface of the steel cabin. Consequently, the location of the intersection
point can be used to determine whether the T rib location meets the design requirements.
The proposed geometric quality assessment of the T rib location included three main
steps: (1) the recognition of planes, (2) the extraction of the intersection points, and (3) the
calculation of distances, as shown in Figure 8.
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Figure 8. Flowchart of the T-rib location assessment.

Since part of the point-cloud data was missing due to the occlusion, the bottom and
vertical surfaces of the T rib were completely separated, as shown in Figure 9c. Therefore,
the bottom and vertical surfaces of the T rib could be extracted by a simple cluster, as show
in Figure 9a,b. To quantify the assessment index, the distance from the intersection point
to the upper boundary line of the steel cabin extracted in Section 3.2.3 was applied to the
location evaluation of the T ribs. A method based on boundary intersection was proposed
to extract the intersection of the three planes. Firstly, the boundary of the bottom surface
and the vertical surface were detected by the boundary extraction algorithm proposed
in Section 3.2.3, as shown Figure 9c,d. Then, the boundaries near the side surface of the
steel cabin were extracted by setting the points of interest. Subsequently, the extracted
boundary was fitted into a straight line, and the intersection point of the line was the
required three-plane intersection point, as shown in Figure 9e.
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Figure 9. Calculation of the intersection point: (a) vertical plane of the T rib; (b) bottom surface of the
T rib; (c) boundary of the vertical plane; (d) boundary of the bottom plane; and (e) the calculation of
the intersection point of the target boundary line.

After extracting the intersection, the last step was to calculate the distances. As shown
in Figure 10a, d1 is the distance from the intersection point to the upper boundary extracted
in Section 3.2.3. The distance (d2) between adjacent T ribs should also be consistent with
the design requirements. The median line of the bottom surface of one T rib was fitted by
least squares. Then, the distance between the center points on another T rib and the fitted
line was calculated, and the average distance (d2) was obtained, as shown in Figure 10b.
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Figure 10. Calculation of inspection checklist items: (a) distance (d1) from intersection point to upper
boundary line; (b) distance (d2) between adjacent T ribs; (c) local normal vector (n1) of the steel cabin
for each T rib; and (d) direction (n2) of the bottom of the T rib based on the OBB.

4.2.2. Calculation of Orientations

This step aimed to assess the direction of the T rib that formed a fixed angle with the
side surface of the steel cabin. After the cantilever beam components are welded, rebars are
laid on the cantilever beam components and the concrete is poured, so it is important that
the direction of the cantilever beam T rib meets the design requirements. The method of
T-rib angle evaluation included three main steps: (1) calculating the local normal vector of
the steel cabin for each T rib, (2) calculating the principal direction of the bottom surface of
the T rib, and (3) calculating the angle between the normal vector and the bottom plane
direction and the deviation. The robust normal estimation method proposed in Section 3.2.1
was applied to calculate the local normal vector of the steel cabin for each T rib. The
calculated local normal vector (n1) is shown in Figure 10c.

Since a T rib is composed of a vertical surface and bottom surface, the direction of
the T rib is consistent with the bottom surface. According to the design requirements, the
T rib forms a certain angle with the side of the steel cabin to achieve the best mechanical
properties, so the direction of the bottom surface should be strictly controlled during
the prefabrication and installation of T ribs. A PCA-based oriented bounding box (OBB)
method was developed to estimate the direction of the bottom plane of the T ribs [52].
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Bounding boxes with simple characteristics can be used to replace complex geometric
objects and are widely adopted for collision detection [53,54]. The covariance matrix was
calculated and the eigenvalues and eigenvectors were solved using Equation (7), as follows:

Ci,j = COV
(
Xi, Xj

)
= E

[
(Xi − ui)

(
Xj − uj

)]
i, j = 1, 2, . . . , n (7)

The eigenvector corresponding to the largest eigenvalue of the covariance matrix in
the PCA algorithm is the direction of the OBB. As shown in Figure 10d, the direction (n2)
of the bottom surface was calculated. In order to obtain the maximum and minimum
values in the three axial directions, which are the vertex coordinates of the bounding box,
the coordinate points were subsequently projected onto the direction vector. Finally, the
coordinates of the bounding box were projected back into the original coordinate system to
obtain the OBB along the main direction of the original point cloud.

Next, the local normal vector of the steel cabin (denoted as n1) and the principal
direction of the bottom surface of the T rib (denoted as n2) were determined. The angle
(θ) was the return value of the inverse cosine function (cos−1 ) in degrees, as shown in
Equation (8).

θ = acosd
(

n1·n2
|n1||n2|

)
(8)

During data collection, the considered angle between the bottom of the T rib and the
side of the steel cabin was manually measured as θ1. Therefore, the angle deviation was
calculated according to Equation (9).

∆θ = θ − θ1 (9)

5. Case Study

To validate the proposed method for the geometric quality assessment of SBG compo-
nents based on 3D laser scanning and BIM, an experiment was carried out on a section of
real SBGs on a prefabrication site. The actual SGB components are shown in Figure 11a,b,
with dimensions of about 19 m× 3 m× 4 m. The laser-scanned data of the prefabricated
SBG components were processed using the proposed method, and the obtained geometric
dimensions and locational relationships were compared with manual measurements to
evaluate the accuracy of the proposed method. The entire process was implemented in
MATLAB and executed on a computer with Intel Core i7-6700 CPU and 16 GB RAM.
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5.1. Collection of Laser-Scanned Data

The laser-scanned data of the prefabricated SBGs was collected by a Trimble TX8 laser
scanner with a noise range smaller than 2 mm on most surfaces from 2 m to 120 m and
18–90% reflectivity in standard-scan mode. The whole prefabrication site was scanned,
including the cantilever structure components, as shown in Figure 11c. Due to the large span
of the prefabricated components and the complex scheme, scans taken from 17 different
locations were included to reduce occlusions, and Trimble’s RealWorks was used for scan
registration based on the six targets.

5.2. Experimental Results

Figure 12 shows the effect of background points based on the DBSCAN algorithm.
Figure 12a,c show the top view and side view, respectively, of the scan data obtained
from the prefabricated SBGs, which contained many background points and mixed pixels.
After using the proposed method, most background points and mixed-pixel points were
removed, as presented in Figure 12b,d.

Remote Sens. 2023, 15, 556 17 of 23 
 

 

the large span of the prefabricated components and the complex scheme, scans taken from 
17 different locations were included to reduce occlusions, and Trimble’s RealWorks was 
used for scan registration based on the six targets. 

5.2. Experimental Results 
Figure 12 shows the effect of background points based on the DBSCAN algorithm. 

Figure 12a,c show the top view and side view, respectively, of the scan data obtained from 
the prefabricated SBGs, which contained many background points and mixed pixels. After 
using the proposed method, most background points and mixed-pixel points were 
removed, as presented in Figure 12b,d. 

 
Figure 12. Experimental process for background points: top view of the scanned data of SBGs (a) 
before and (b) after applying the DBSCAN algorithm; side view of the scanned data of SBGs (c) 
before and (d) after applying the DBSCAN algorithm. 

Then, the laser-scanned data were classified into a few clusters with different 
attribute labels using the proposed robust normal-based region-growing algorithm, as 
shown in Figure 13b. The two main categories of clusters were the steel cabin (Figure 13c) 
and the T ribs (Figure 13d). After the extraction of the side and top planes (Figure 13e,f), 
the as-is steel cabin was then matched with the as-designed BIM model to assess whether 
the dimensions of the steel cabin were consistent with the design requirements. Thirdly, 
the locations of the T ribs were evaluated by calculating the distance from the intersection 
point to the upper boundary line (Figure 13g) and the distance from the bottom surface of 
the adjacent T rib, as presented in Figure 13h,i. Lastly, the orientations of the T ribs were 
evaluated based on the local normal estimation of the side surface of the steel cabin and 
the direction of the bottom plane of the T ribs with the OBB. 

Figure 12. Experimental process for background points: top view of the scanned data of SBGs
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(c) before and (d) after applying the DBSCAN algorithm.

Then, the laser-scanned data were classified into a few clusters with different attribute
labels using the proposed robust normal-based region-growing algorithm, as shown in
Figure 13b. The two main categories of clusters were the steel cabin (Figure 13c) and the T
ribs (Figure 13d). After the extraction of the side and top planes (Figure 13e,f), the as-is steel
cabin was then matched with the as-designed BIM model to assess whether the dimensions
of the steel cabin were consistent with the design requirements. Thirdly, the locations of the
T ribs were evaluated by calculating the distance from the intersection point to the upper
boundary line (Figure 13g) and the distance from the bottom surface of the adjacent T rib,
as presented in Figure 13h,i. Lastly, the orientations of the T ribs were evaluated based on
the local normal estimation of the side surface of the steel cabin and the direction of the
bottom plane of the T ribs with the OBB.
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5.3. Feasibility of the Proposed Method

The geometric dimensions and locational relationships of the prefabricated compo-
nents calculated through the proposed method were compared to the actual figures, which
were acquired by manually measuring using a steel tape with a millimeter scale and an
angle square. The deviations between the assessed results and the manual measurement
results were calculated and analyzed as follows.

Table 3 presents the location deviations of the T ribs calculated with the proposed
method. L1 is the distance from the intersection point to the upper boundary, as illustrated
in Figure 11a, and L1′ is the distance measured manually. L2 is the distance between
adjacent T ribs calculated by the proposed method, and L2′ is the distance measured
manually. Figure 14a shows the error analysis histogram for the T rib positions; the
maximum and minimum absolute differences were 12.5 mm and 0.2 mm, respectively, and
the RMSE was 4.7 mm. Note that, in this case, the number of measurements (‘n’ in the
RMSE formula) was 24. An average dimension estimation error of 2.4 mm was obtained,
which was within the specified tolerance of 5 mm. Therefore, the proposed geometric
quality assessment method could measure the location of the T ribs with sufficient accuracy.
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Table 3. Dimension and location assessment results for prefabricated T ribs compared with manually
measured results (measurement unit: m).

1 2 3 4 5 6 7 8 9 10 11 12 13

L1 0.4975 0.4918 0.4866 0.5057 0.5011 0.5072 0.495 0.4873 0.4985 0.4889 0.4951 0.4989 0.5020
L1′ 0.5003 0.4942 0.4927 0.4993 0.5019 0.5030 0.5003 0.4998 0.4987 0.4980 0.4990 0.4980 0.4988

|∆L1| 0.0028 0.0024 0.0061 0.0064 0.0008 0.0042 0.0053 0.0125 0.0002 0.0091 0.0039 0.0009 0.0032
L2 1.7579 1.7381 1.8441 1.7056 1.8098 1.3492 1.6656 1.7985 1.7335 1.7758 1.7474 1.6240
L2′ 1.7600 1.7399 1.8405 1.6980 1.8102 1.3474 1.6663 1.7983 1.7317 1.7724 1.7508 1.6279

|∆L2| 0.0021 0.0018 0.0036 0.0076 0.0004 0.0018 0.0007 0.0002 0.0018 0.0034 0.0034 0.0039
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Table 4 shows the orientation deviations of the T ribs. θ is the angle calculated by the
proposed method, and θ′ refers to the angle measured manually. Figure 14b shows the
error analysis histogram for the T rib orientations; the maximum and minimum absolute
deviations were 0.4152◦ and 0.0160◦, respectively. An average orientation estimation error
of 0.1925◦, which was within the tolerance boundary of 1◦, was obtained, and the RMSE
was 0.2594◦. Note that, in this case, the number of orientation assessment measurements
(n in the RMSE formula) was 11. Therefore, the proposed geometric assessment method
could measure the orientation of the T ribs with sufficient accuracy.

Table 4. Orientation assessment results for prefabricated T ribs compared with manual measure-
ment results.

1 2 3 4 5 6 7 8 9 10 11 12

θ 8.4512◦ 8.4840◦ 8.0882◦ 8.3251◦ 8.5672◦ 8.3347◦ 8.3878◦ 8.0848◦ 8.5815◦ 8.5261◦ 8.1246◦ 8.9150◦

θ′ 8.5000◦ 8.5000◦ 8.5000◦ 8.5000◦ 8.5000◦ 8.5000◦ 8.5000◦ 8.5000◦ 8.5000◦ 8.5000◦ 8.5000◦ 8.5000◦

|∆θ| 0.0488◦ 0.0160◦ 0.4118◦ 0.1749◦ 0.0672◦ 0.1653◦ 0.1122◦ 0.4152◦ 0.0815◦ 0.0261◦ 0.3754◦ 0.4150◦

The ∆L1 values of T ribs 3, 4, and 8 were significantly different from the standard
design values, especially for T rib 8. L1 refers to the distance from the geometric key
feature point to the feature plane, which was used to evaluate whether the position of the
rib met the design requirements. The experimental object considered was an arc-shaped
SBG cantilever member, and T rib 8 was located at the center of the cantilever member.
Due to the setting of the scanning position of the large-scale cantilever beam components,
the occlusion formed by the bottom surface of the T rib caused the missing area of the
vertical surface of the T rib to be the largest. Therefore, the distance L1 from the geometric
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key point to the feature plane calculated by the proposed method was smaller than the
actual distance. Evidently, scanning positions and numbers should be carefully planned to
collect high-quality laser scanning data for the geometric quality inspection of large-scale
SBG prefabricated elements in complex prefab schemes. To collect the surface geometric
data characteristics of the measured objects in a holistic way, the automatic-scanning site
planning of large prefabricated components in complex schemes will be included in our
future research.

Table 5 shows the time required to perform the detection method proposed in this
paper and the traditional manual measurement method. The time taken by the proposed
method included three stages: (1) the time spent planning the scan of the SBG construction
site; (2) the time spent collecting point-cloud data for the SBGs at each site; and (3) the
time spent processing and quantifying the 3D model of the SBGs using the point-cloud
processing algorithm. Compared with the manual measurement method, the proposed
method saved about 115 minutes, or 31.9% of the total detection time.

Table 5. Time comparison between the detection method proposed in this paper and the manual
measurement method.

Site-Scan Planning Data Acquisition Data Processing Total Time

The proposed method 10 min 136 min 99 min 245 min
The manual method 360 min

6. Conclusions

This study proposed a geometric quality assessment method for as-is prefabricated
SBG components using 3D laser scanning and BIM. The presented method will be beneficial
to the industry by reducing inspection times and labor costs, improving the accuracy of ge-
ometric quality inspections, strengthening construction quality through the early detection
of position and orientation deviations, and reducing delays in the on-site installation of
SBG components.

The proposed method first removed the background points and the mixed pixels
from the laser-scanned data with the DBSCAN algorithm. Then, the SBG components
were classified under different attribute labels using the proposed robust normal-based
region-growing algorithm, and the side surface of the steel cabin with the largest attribute
label was extracted. Next, the top surface of the steel cabin was detected, and the scanned
data related to the T ribs were extracted using the presented subtraction algorithm. Subse-
quently, in order to assess whether the extracted SBG components conformed to the design
specifications, the Scan-vs-BIM system was applied to assess the dimensions of the steel
cabin. Finally, the vertical and bottom planes of the T ribs were extracted using the angle
difference clustering algorithm. The locations and orientations provided in the inspection
checklist were used to assess the geometric quality of the T ribs.

The proposed technique was validated on a real SBG project with a length of about
19 m. The presented geometric quality assessment method was applied to the laser-scanned
data of the SBGs, and the locations and orientations of the T ribs acquired using the
proposed method were compared to the actual data acquired from manual inspections.
The comparison results showed that the average dimension and angle differences between
this method and the manual detection of T rib positions and orientations were 2.4 mm and
0.1925◦, respectively. According to the tolerance values (5 mm and 1◦), the experimental
results showed that the developed method could provide accurate assessments of the
geometric quality of SBG components. Compared with the manual measurement method,
the time efficiency of the proposed method was improved by 31.9%.

Nevertheless, the proposed approach had a few limitations. First, in the calculation
of the intersection point, it was necessary to set the region of interest when extracting the
boundary points of line fitting. Therefore, our future work will focus on the boundary
extraction step, aiming at the extraction of the specified boundary rather than the complete
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boundary. Second, the accuracy of the inspection results depends on the quality of the
acquired laser-scanned data, and so the laser-scanned data collection path plays an impor-
tant role. Future research is needed regarding the planning of optimal laser-scanned data
collection paths.
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