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Abstract: Understanding the hydrological surface condition changes, climate change and their
combined impacts on flood runoff are critical for comprehending the hydrology under environmental
changes and for solving future flood management challenges. This study was designed to examine the
relative contributions of the hydrological surface condition changes and climate change in the flood
runoff of a 45,421-km2 watershed in the Loess Plateau region. Statistical analytical methods, including
Kendall’s trend test, the Theisen median trend analysis, and cumulative anomaly method, were
used to detect trends in the relationship between the climatic variables, the normalized difference
vegetation index (NDVI), land use/cover change (LUCC) data, and observed flood runoff. A grid-cell
distributed rainfall–runoff model was used to detect the quantitative hydrologic responses to the
climatic variability and land-use change. We found that climatic variables were not statistically
significantly different (p > 0.05) over the study period. From 1985 to 2013, the cropland area continued
to decrease, while the forest land, pastures, and residential areas increased in the Jinghe River Basin.
Affected by LUCC and climate change, the peak discharges and flood volumes decreased by 8–22%
and 5–67%, respectively. This study can provide a reference for future land-use planning and flood
runoff control policy formulation and for revision in the study area.

Keywords: Jinghe River Basin; NDVI and LUCC; flood runoff simulation; rainfall–runoff model

1. Introduction

In recent years, the global water cycle system has undergone tremendous changes
due to the comprehensive action of the external environment (such as climate change
and human activity interference) [1,2]. The hydrological system is affected by changes
in the external environment, resulting in significant changes in water resources’ spatial
and temporal distribution. More countries and regions face many water problems [3–5].
Runoff, an essential link in the hydrological cycle and the primary source of floods, is
closely related to climate change and human activity interference [6–8]. Human activity
interference is an important cause of land use/cover change (LUCC), which is one of
the important indicators of hydrological surface condition changes [9–11]. LUCC is an
important factor affecting regional hydrological characteristics [12,13]. LUCC can lead
to changes in the hydrological processes and water distribution patterns, such as runoff,
infiltration, and lateral flow [14,15].

The Loess Plateau is in the dryland region of Northwest China. It has an altitude
of 800–3000 m and an area of 620,000 km2. It is one of the most water-scarce regions in
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China [16–18]. It also has thousands of gullies and ravines, that are more than 80% dry,
yet frequently troubled by flash floods and mountain torrents during rainstorms [19]. Due
to its unique geographical environment, insufficient natural water resources, and fragile
ecological environment, the hydrology and ecosystem of the Loess Plateau are sensitive to
climate change, hydrological surface condition changes, and other external environmental
changes [20]. LUCC has a significant impact on environmental sustainability [21]. The
evolution of the hydrology and ecosystem has a strong uncertainty and complexity [22].
The mechanism of watershed runoff evolution, driven by external environmental changes
in the Loess Plateau has become a challenging issue for global scholars [23].

Many scholars have adopted hydrological model methods to study the mechanism
of runoff evolution under changing environments [24–30]. For instance, Wang et al. [31]
established a distributed time-varying gain model in the Chaobai River, that simulated
and analyzed the monthly runoff changes. They deduced that climate change and human
activity interference contributed 32% and 68% to runoff change, respectively. Hu et al. [32]
used the climate elasticity and the M–K trend test method to quantitatively analyze the
runoff response of the Gushanchuan watershed under a changing environment. Their
results showed 12.9–15.1% and 84.9–87.1% climate change and LUCC contributions, respec-
tively. Elsewhere, Guo et al. [33] used the hydrological statistical model and the distributed
hydrological model (GBHM) to simulate and analyze the response variation status of
the hydrological variables in the Chabagou watershed of the Loess Plateau in Northern
Shaanxi, and attributed them to climate change, as well as to soil and water conservation.
They thought that the hydrological process of the Loess Plateau watershed was mainly
affected by human activities, and the attribution analysis results were relatively uncertain.
Guo et al. [34] established the SWAT model for the Chaohe River Basin. They analyzed
the impact of climate change and LUCC on runoff in the Basin, and quantified the runoff
response of the Chaohe River Basin under a changing environment. Wu et al. [35] used the
Budyko hypothesis to analyze the attribution of the runoff changes in the Loess Plateau.
They found that the main factor of runoff change in the high water season is LUCC, while
climate change has a more pronounced influence on the runoff change in the low water
season. Chen et al. [36] analyzed the runoff changes of 25 different watersheds in the
Loess Plateau and found that the runoff in the Loess Plateau showed a decreasing trend,
in which the contribution rates of LUCC and climate change to the runoff changes were
63.52% and 36.48%, respectively. The researchers quantitatively analyzed the impact of
climate change and LUCC on watershed runoff. Consequently, the current research pays
more attention to the daily, monthly, and annual runoff response mechanism under the
changing environment on the less-researched evolution mechanism of flood events in the
Loess Plateau region.

The Jinghe River Basin (JRB) is situated in the Loess Plateau of Shaanxi Province,
China. Driven by regional unique climate change and high human activity interference,
the mechanism of flood runoff evolution in the Basin is complex. Based on the hydromete-
orological data of 44 years of rainstorms and floods, 27 periods of high precision remote
sensing data of the LUCC data, and 21 periods of the NDVI data, this study involved the
construction of a distributed rainstorm runoff model suitable for the JRB and the model
simulated the flood under various LUCCs and meteorological conditions. Furthermore, this
paper includes a discussion of the evolving mechanism of external environmental changes
on the floods in different historical periods and a quantitative analysis of the response
characteristics of flood runoff under the changing environment.

2. General Situation of the Study Area

The JRB (34–37◦N, 105–109◦E) is situated in the Loess Plateau region of China, stretch-
ing over Shaanxi, Gansu, and Ningxia provinces (Figure 1). Jinghe River is a secondary
tributary of the Yellow River. The total length of Jinghe River is 445.1 km, and the drainage
area is 45,421 km2 [37]. The Basin belongs to a temperate continental monsoon climate,
with an annual average temperature of about 8 ◦C and an annual average evaporation of
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859.4–1565.8 mm. The average yearly precipitation is 350–600 mm with 73.4% rainfall in the
flood season (May–September) [38,39]. The precipitation rises sharply and falls abruptly.
It is easy to produce heavy rain with a short duration and significant intensity, forming
a disastrous flood process with a considerable peak height [40]. The unique characteris-
tics of rainstorms and flood events have resulted in water disasters that greatly influence
productivity and human life. Moreover, floods have also aggravated soil erosion and
environmental degradation [41].
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Figure 1. Geographic location of the JRB and its weather and gauge stations.

The main soil types in the Basin are loessal soil and dark loessal soil, which are thick
soil layers (50–80 m), loose in structure, collapse easily, and are eroded [42]. Farm land,
forest land, and grassland are three dominant land covers. With the preferential policy
of reforestation and revegetation in the late 1990s, the area of cropland in the JRB was
gradually reduced and the area of grassland was recovering gradually [43,44].

3. Materials and Methods
3.1. Data Used

The NDVI data for this study, from 1998 to 2018 (1 km spatial resolution), come from
the Resources and Environmental Science and Data Center of the Chinese Academy of
Sciences (https://www.resdc.cn/ (accessed on 22 November 2022)) [45]. The land use
remote sensing data comes from the research results of Yang et al. (https://doi.org/10.528
1/zenodo.4417810 (accessed on 22 November 2022)) [46]. The spatial resolution is 30 m.
The digital elevation model (DEM) data come from the SRTM (https://earthexplorer.
usgs.gov/ (accessed on 22 November 2022)) [47] with a 90 m spatial resolution. The
hydrometeorological data, i.e., precipitation, flood runoff, etc., were obtained from the
hydrological yearbook and the China Meteorological Data Network (http://data.cma.cn
(accessed on 22 November 2022)) [48], which include the measured hydrometeorological
data of one controlled hydrological station, and 16 weather stations in the Basin, from 1970
to 2013. The data were used to analyze the changes in the hydrometeorological conditions.
The spatial precipitation distribution in the Basin was calculated by inverse distance

https://www.resdc.cn/
https://doi.org/10.5281/zenodo.4417810
https://doi.org/10.5281/zenodo.4417810
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://data.cma.cn
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weighted interpolation (IDW) [49]. The rainstorm and flood data of large, medium,
and small typical flood events with good rain–flood relationships were selected for the
simulation and statistical analysis.

3.2. Research Content and Technical Route

Based on the long-term NDVI and LUCC time series data, this paper analyzed the
time series and spatial distribution change characteristics of the vegetation cover in the JRB.
It explored the changing trend of vegetation cover and land use in the Basin, from 1998 to
2018, using the Theil–Sen median trend analysis and Mann–Kendall test (M-K). The time
series was separated into the natural and human activity interference periods according to
the trend of hydrological and meteorological elements and the inspection and identification
characteristics of abrupt change points in the watershed. Finally, a grid-based distributed
rainstorm-flood hydrological model simulated and calculated the flooding process in the
JRB in different periods. It also studied the flood response characteristics in the Basin
under the joint action of long-term climate change and land use/cover change (LUCC). The
technological route and research method are shown in Figure 2.
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3.3. Analysis of the Mateo-Hydrological Elements and Underlying Surface Conditions

Combining the Theil–Sen median trend analysis with the M–K test method can allow
for judging the long-time series trend of the NDVI [50]. With a strong resistance to data
errors, this method does not need time data to obey a specific distribution [51,52].

(1) Theil–Sen median trend analysis with the Mann–Kendall test (M-K)

The Theil–Sen median trend analysis is a non-parametric statistical trend analysis
method that can avoid a few outlier influences [53]. For time series Xn = {x1, x2, . . . , xn},
the formula of Sen trend degree β in the Theil–Sen median trend analysis is as follows [54]:

β = Median
( xj−xi

j− i

)
, 1 ≤ i ≤ j ≤ n (1)

The median is a median function, and when β < 0, it shows a downward trend. When
β > 0, it offers an upward trend.

The M–K is a non-parametric statistical test method that can judge the significance
of trends [55,56]. This method is widely used to test the trend and mutagenicity of the
hydrological series [57]. In this paper, the significance of time series at a 0.05 confidence
level is judged by taking the significance level α = 0.05 [58,59].

(2) Cumulative Anomaly Method (CAM)
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The CAM can also examine the change points of the hydrological time series [60]. This
method is widely used in hydrological research. For the sequence Xm = {x1, x2, . . . , xm},
the cumulative anomaly at time t is expressed as [61]:

Gt = ∑t
i=1(xi − x) , x =

1
m∑m

i=1 xi (2)

where Xi is the value of the hydrological series, m is the time series length, and Gt is the
cumulative anomaly at time t. x is the mean of the sequence. Drawing Gt − t curve, the
corresponding maximum and the minimum point is the abrupt change point.

3.4. Grid-based Distributed Rainstorm and Flood Model

The modified grid-cell distributed rainfall–runoff (MCDRM) model is a unit dis-
tributed rainstorm–runoff model that was developed by the Institute of Disaster Preven-
tion, Kyoto University, Japan, in 2003 [62–64]. The Monte Carlo method (MC) was used
to obtain the automatic optimization of model parameters in the Basin with the change of
underlying surface conditions to reduce the uncertainty of the simulation and calculation
of the flooding process [65]. The input data of the model included the topography, hourly
precipitation data, land use, etc. The basic principle of the model, considering the human
activity interference, is shown in Figure 3.
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Figure 3. MCDRM model structure and schematic diagram.

The Basin terrain data of the MCDRM model was represented by the digital elevation
model (DEM). Each square grid in the terrain data was a grid cell, and the motion wave
equation solved the runoff of the corresponding grid on each grid cell. The model could
simulate three lateral flow mechanisms: capillary hole underground flow, non-capillary
hole underground flow, and soil surface flow. Darcy’s law was used to simulate the
unsaturated seepage in each grid cell. Figure 4 showed the mechanism of the slope
runoff generation [66].
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The average velocity vn in the direction of the capillary pore gradient was estimated
as follows:

vn = −k
(

∂h
∂x

)
(3)

where x is the horizontal distance of the grid, m; h is the water head, m; k is unsatu-
rated hydraulic conductivity, m/s. According to the formula of unsaturated hydraulic
conductivity [67]: k = knSβm

e ,i.e., Formula (3) can be rewritten as:

vn = ksSβ
e

(
i− ∂ϕ

∂x

)
= ks

(
θ

θm

)β(
i− ∂ϕ

∂x

)
∼= ks

(
θ

θm

)β
i = ks

(
d
lm

)β
i

(4)

where ke is the saturated hydraulic conductivity of capillary water, Se is the saturation,
Se = θ/θm, θ is the water content, θm is the maximum water content of capillary water, i
is the hillside gradient, d is the water level, β is the unsaturated flow constant, lm is the
capillary soil depth, lm = Dθm, (D is the soil depth).

When unsaturated (0 ≤ d ≤ lm), the lateral flow per unit width q of the grid cell:

q = lmks

(
d
lm

)β

i (5)

When saturated, the total flow per unit width q of the grid is calculated from the sum
of the capillary flow and gravity flow:

q = lmksi + (d− lm)kai (6)

where ka is the saturated hydraulic conductivity. The average velocity va in the direction of
the non-capillary pore gradient is calculated va = ika.

When d = lm, to maintain the discharge flux, if the dq/dd of Formula (5) is equal to
that of Formula (6), there are:

ks =
ka

β
(7)
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When d > la, la = Dθa, θa is effective porosity, the water flows as surface runoff. Its
surface flow average velocity vs is calculated using the Manning formula:

vs = kai +
√

i
n
(d− la)

2
3 (8)

where n is the Manning roughness coefficient related to the land-use type, and the total
flow q is the sum of the surface and groundwater volume:

q = lmksi + (d− lm)kai +
√

i
n
(d− la)

5
3 (9)

These three processes can be represented as follows:

q =


vnlm

(
d
lm

)β
, 0 ≤ d ≤ lm

vnlm + va(d− lm) , lm ≤ d ≤ la

vnlm + va(d− lm) +
√

i
n (d− la)

5
3 , d >la

(10)

The following equation reflects the continuity of the flow of each grid cell:

∂h
∂T

+
∂q
∂x

= r(T) cos γ (11)

where T is the time, γ is the inclination angle, and r is the net rain intensity. The Lax–
Wendroff difference scheme solves the 1-D motion wave equation of each node in the grid
cell. Figure 5 shows the relationship between the water depth and the unit width discharge
(q-d) in each grid [63].
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Figure 5. The relationship between the water depth and the unit width discharge (q-d) in each grid.

3.5. Quantitative Separation of Runoff Response
3.5.1. Unimpaired Precipitation Calculations

The precipitation series with no trend change, compared with the natural period, were
obtained by the unimpaired calculation of the flood season precipitation (Pflood season) in
the human activity interference period (1979–2013) [68]. In the unimpaired precipitation
calculation, first, the linear change ratio of the series was analyzed by the long series annual
average data. The linear change ratio was the change quantity of the series. Secondly, the
linear change of the series was calculated yearly according to the linear change range of
the annual average series. Then, the monthly distribution ratio change was calculated
in the natural period. Using the distribution ratio of each month, the distribution and
superposition of the annual average change in each month was calculated. Furthermore,
the proportion coefficient between the superposition of each month and the actual value
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was derived. Finally, the scale coefficient of each month in the year was used to scale the
actual precipitation amount and precipitation data of the corresponding year and month to
obtain the unimpaired Pflood season data.

3.5.2. Quantitative Separation Method of the Hydrological Response

Using the calibrated and validated model, the contribution rate of climate change and
human activity interference to the flood change was quantified by inputting the unimpaired
precipitation data, the measured precipitation, and the land use data. To clearly describe the
separation and quantification process of climate change and human activity interference,
the relationship between the variables could be expressed as follows:

W1 −W = Cclimate + Hhuman + Sseasonal (12)

W2 −W1 = Cclimate (13)

W3 −W2 = Hhuamn (14)

(W1 −W)− (W3 −W1) = Sseasonal (15)

α =
W2 −W1

W3 −W1
× 100% =

Cclimate
Cclimate + Hhuman

× 100% (16)

β =
W3 −W2

W3 −W1
× 100% =

Hhuman
Cclimate + Hhuman

× 100% (17)

where W represents the measured flood volume, W1 represents the flood volume calculated
by the measured precipitation and land use data of the corresponding years, W2 repre-
sents the flood volume calculated by the unimpaired precipitation and land use data of
the corresponding years, W3 represents the flood volume calculated by the unimpaired
precipitation and land use data of the natural period, unaffected by climate change and
human activity interference, Sseasonal is the high and low change quantity of precipitation,
Cclimate is the amount of climate change influence, Hhuman is the amount of human activity
interference influence; α is the impact ratio of climate change; β is the influence ratio of
human activity interference.

4. Results
4.1. Analysis of the Hydrometeorological Changes
4.1.1. Time Series Variation Characteristics of Precipitation

According to the area average precipitation data for the Basin, from 1970 to 2013, and
combining the results of the mutation test by the M–K method and cumulative anomaly
method, 1979, 1991, and 1999 were determined as mutation years. The precipitation
series in the Basin was divided into natural and human activity interference periods. It
was considered that human activity interference in the natural period had relatively little
influence on the water cycle and that runoff change was mainly caused by the evolution law
of climate change itself. The hydrological process in the human activity interference period
was affected by the combined action of climate change and human activity interference.
Similarly, the precipitation series in the Basin was divided into natural and anthropogenic
periods. Here, the natural period was 1970–1978, while the human activity interference
period (I) was 1979–1990, the human activity interference period (II) was 1991–1998, and
the human activity interference period (III) was 1999–2013.

4.1.2. Spatial Temporal Variations of Precipitation

The precipitation ratio for the flood season to the annual precipitation in the Basin,
from 1970 to 2013, was calculated. From Figure 6, the change in the precipitation proportion
for the flood season to the annual precipitation, exhibited stage change characteristics.
From 1970 to 1978, the average precipitation growth rate for the flood season to the annual
precipitation was 0.1 mm/year. In 1990, the precipitation proportion for the flood season
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to the annual precipitation decreased by 25.21%, compared to 1979. The proportion of
Pflood season to the annual precipitation from 1991 to 1998 and 1999 to 2013, showed an
increasing trend. Compared with 1999, the proportion of Pflood season to the annual precipi-
tation in 2013, increased by 29.29%. In 1970–1978, 1979–1990, 1991–1998, and 1999–2013, the
average proportion of Pflood season to the annual precipitation was 67.19%, 68.51%, 63.47%,
and 68.91%, respectively. Overall, the proportion of Pflood season to the annual precipitation
increased, easily leading to rainstorms and flood events.
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Figure 6. Trend chart of Pflood season to the annual precipitation in the JRB, from 1970 to 2015;
y1: the trend line of the proportion of Pflood season to the annual precipitation in the natural period
1970–1978; y2: the trend line of the proportion of Pflood season to the annual precipitation in the
human activity interference period (I) 1979–1990; y3: the trend line of the proportion of Pflood season

to the annual precipitation in the human activity interference period (II) 1991–1998; y4: the trend
line of the proportion of Pflood season to the annual precipitation in the human activity interference
period (III) 1999–2013.

Figure 7 shows the spatial distribution of the precipitation in the Basin. From 1979
to 2013, the Pflood season in the JRB was concentrated in the middle and lower reaches of
the Basin, and its spatial distribution was characterized by dynamic stage changes. By
comparison, the spatial distribution of Pflood season, in the natural period (1970–1978), was
more uniform, and the spatial deviation of precipitation was the historical maximum
Cv = 0.11. Compared with the natural period, the spatial precipitation distribution in the
human activity interference period is more concentrated, and the spatial deviations of
Pflood season in the human activity interference periods (I), (II), and (III) were Cv = 0.09,
Cv = 0.04, and Cv = 0.09, respectively. Moreover, the proportion of Pflood season to the annual
rainfall in the human activity interference period increased continuously, and precipitation
was concentrated within the year. The concentrated spatial distribution of precipitation
easily increased the frequency of rainstorms and flood events.
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4.2. Characteristics of the LUCC and NDVI
4.2.1. Analysis Variation of the LUCC

Figure 8 shows LUCC in the human activity interference periods and Figure 9 shows the
changes in land types and their area proportions in the study area, from 1985 and 1990–2013.
Croplands and pastures predominated the Basin, accounting for 86% of the total basin
area. The relationship of the land use types followed the trend: pasture > cropland > forest
land > residential area > water area > bare soil. The water and soil conservation and man-
agement work in the JRB began in the early 1950s. From 1985 to 2013, the cropland area
in the JRB continued to decrease, while the forest land, pastures, and residential areas in-
creased. The environmental improvement effect of reforestation and revegetation in the Basin
was pronounced.
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Figure 9 and Table 1 illustrate that from 1985 to 2013, the cropland area in the JRB
decreased, while forest land, pastures, and residential land increased notably; all changes
peaked in 2013. Among them, the forest land area accounted for 12.10% in 2013, 3.24%
higher than in 1985; therefore a 36.50% increase. The pasture area accounted for 55.90%
in 2013, i.e., 4.84% higher than that in 1985, with rise of 9.42%. The residential land area
accounted for 0.92% in 2013, 0.66% higher than in 1985, recording a 259% increase. From
1985 to 2013, the cropland area continued to decrease, accounting for 31.03% in 2013, a
decrease of 8.72%, compared with 1985. The proportion of water and the bare land areas
barely changed. Based on the time series identification and geographic information systems,
the land use transfer matrices of 1985–1991, 1991–1999, and 1999–2013 were made using
the land use data of 1985, 1991, 1999, and 2013. Tables 2–4 list the results.

Table 1. Statistics of land use areas in the JRB during 1985–2013.

Land Use 1985 1990 1995 2000 2005 2010 2013

Crop (%) 39.745 39.248 38.230 37.609 36.106 33.160 31.029
Forest (%) 8.869 8.888 9.453 9.777 10.260 11.057 12.105

Pasture (%) 51.086 51.545 51.935 52.155 53.045 55.054 55.898
Water (%) 0.040 0.043 0.034 0.031 0.043 0.039 0.049

Residential area (%) 0.255 0.271 0.344 0.424 0.544 0.687 0.915
Bare soil (%) 0.005 0.004 0.004 0.002 0.002 0.002 0.003

Table 2. LUCC transfer matrix of the JRB from 1985 to 1991 (area:km2).

Land Use Types
1991

Water Residential Area Pasture Forest Crop Land Bare Soil Total

1985

Water 14.5 0.2 1.1 0 0.8 0 16.6
Residential area 0.2 94.1 1.6 0 3.1 0 99.0

Pasture 0.5 2.0 21,759.3 63.6 1650.4 0.5 23,476.3
Forest 0 0.0 40.7 4004.6 34.2 0 4079.6

Crop land 3.1 17.2 1808.0 30.1 15,835.0 0 17,693.4
Bare soil 0 0 0.6 0 0.1 1.2 1.9

Total 18.3 113.5 23,611.3 4098.3 17,523.6 1.7 45,366.7

Table 3. LUCC transfer matrix of the JRB from 1991 to 1999 (area:km2).

Land Use Types
1999

Water Residential Area Pasture Forest Crop Land Bare Soil Total

1991

Water 10.3 1.1 1.6 0.2 5.0 0 18.3
Residential area 0.4 104.8 2.8 0 5.5 0 113.5

Pasture 0.7 6.7 20,682.2 367.9 2552.6 0.4 23,610.5
Forest 0 0 83.5 3975.1 39.4 0 4098.0

Crop land 1.9 45.8 3125.9 118.8 14,230.8 0 17,523.3
Bare soil 0 0.1 1.0 0 0.1 0.5 1.7

Total 13.4 158.4 23,897.1 4462.0 16,833.4 0.9 45,365.2

Table 4. LUCC transfer matrix of the JRB from 1999 to 2013 (area:km2).

Land Use Types
2013

Water Residential Area Pasture Forest Crop Land Bare Soil Total

1999

Water 9.5 1.3 0.4 0.1 2.0 0 13.4
Residential area 1.4 144.9 3.2 0 8.9 0 158.5

Pasture 4.7 29.0 21,303.4 699.8 1859.5 0.4 23,896.8
Forest 0.1 0.1 114.3 4316.2 31.2 0 4462.0

Crop land 6.3 180.8 4086.4 307.4 12,251.5 0.2 16,832.6
Bare soil 0 0 0.7 0 0 0.2 0.9

Total 22.0 356.2 25,508.5 5323.5 14,153.2 0.8 45,364.2

In 1985 (Table 2), the transferred cropland and pasture areas (1858 and 1717 km2,
respectively) were the largest, mainly converted into the forest and residential lands.
Compared with 1985, in 1991, all land-use types (except for cropland and bare land)
increased in various degrees: pastures increased by 135.1 km2, the forest grew by 18.76 km2,
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residential land increased by 14.50 km2, water area increased by 1.65 km2, while cropland
and bare land decreased by 169.8 km2 and 0.17 km2, respectively.

From Table 3, the cropland area decreased continuously in 1999, and a total of 690 km2

of cropland was transferred out, mainly for residential and forest lands. Furthermore,
compared with 1991, the area of forest land, pastures, and residential land in 1999 increased
by 364.0, 286.6, and 44.97 km2, respectively, while those of water and bare land decreased
by 4.89 and 0.77 km2, respectively.

From 1999 to 2013 (Table 4), the cropland area decreased continuously down to 2679 km2,
mainly converted into pastures, forest, and residential lands. By 2013, pastures, forest, and
residential lands increased by 1612, 861.5, and 197.7 km2, respectively. Furthermore, the water
area increased by 8.65 km2, while the bare land decreased by 0.15 km2.

4.2.2. Analysis Variation of the NDVI

(1) Temporal Variation of the NDVI

The interannual variation of the NDVI value in the JRB, from 1998 to 2018, was counted
(Figure 10). The annual average NDVI value in the JRB showed a staged growth trend. The
minimum annual average value of the NDVI was 0.449, occurring in 1999. Beginning in
2003, the growth accelerated and peaked at 0.695 in 2018. This continuous increase could
be related to reforestation, revegetation, and a series of water conservation measures, since
the 1990s.
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Figure 10. NDVI changes in the JRB, from 1998 to 2018.

(2) Spatial Variation of the NDVI

Using the NDVI time-series data from 1998 to 2018, the 21-year average NDVI spatial
distribution map of the JRB was obtained (Figure 11a). The spatial distribution of the NDVI
in the Basin showed that the distribution characteristics were low in the north and high in
the south. The area with the highest NDVI (0.75–0.86) accounted for 9.96%, mainly forest
land and pastures, as the vegetation thrived. The NDVI value of the Basin ranges from 0.30
to 0.75, accounting for 89.55% of the basin area. The areas with an NDVI value less than
0.30, account for only 0.49%.
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According to the actual situation and reference to relevant studies [69], this paper
superimposed the results of the Theil–Sen median trend analysis and the M–K test, to obtain
the change trend data of the NDVI on a pixel scale. It divided the results into five types
(Figure 11b and Table 5). From 1998 to 2018, the improved vegetation coverage area in the
JRB was 98.61%, and the degraded area was 1.07%; the improvement effect was remarkable.
In the JRB, 91.73% of the Basin significantly improved, while only 1.07% (concentrated in
the southern urban areas) was degraded. The continuous and large-scale transformation
of the underlying surface conditions of the Basin by human activity interference led to
the change in various types of vegetation coverage areas and land use areas. It drove the
change in the flooding process and its evolution mechanism.

Table 5. Trend of the NDVI in the JRB.

Sen-NDVI Z-Value NDVI Trend Percentage (%)

≥0.0005 ≥1.96 Significantly improved 91.73
≥0.0005 −1.96−1.96 Slightly improved 6.88

−0.0005–0.0005 −1.96−1.96 Stable 0.32
<−0.0005 −1.96−1.96 Slightly degraded 0.53
<−0.0005 <−1.96 Severely degraded 0.54

4.3. Simulation and the Attribution of Rainstorms and Flood Events under the
Changing Environment
4.3.1. Calibration and Verification of the Model Parameters

The distributed storm runoff simulation was constructed by selecting 20 typical rain-
storm and flood event data with complete rainfall and flood event data, from 1970 to
2013, in the Basin, among which six flood events were selected from the natural period
(1970–1978) and the human activity interference period (I) (1979–1990) to calibrate the
model parameters, and five flood events were selected from the human activity interference
period (II) (1991–1998) to verify the model. Figure 12 shows the simulation results of four
specific flood events. Table 6 lists the model verification results.

Table 6 shows that the model’s simulation of the peak discharge (Qpeak) and peak time
(Tpeak) were relatively accurate. The average relative error of Qpeak of 11 flood events was
0.48%, while the maximum and minimum errors were −1.04% and −0.11%, respectively.
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The overall simulation results were ideal. The simulation of Tpeak was also accurate, and
the simulation error of Tpeak of the flood events was less than 1 h.
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Table 6. Model verification results of the flood simulation of the JRB.

Date of Event Onset
Qpeak (m3/s)

The Error for Tpeak (h)
Measured Simulation Error (%)

13/7/1973 507.00 508.30 0.26 1
17/8/1973 1380.00 1385.77 0.42 1
25/7/1975 2352.85 2339.87 −0.55 0
26/6/1986 1760.00 1753.22 −0.39 0
5/8/1989 1040.00 1043.06 0.29 0

30/7/1990 532.00 530.79 −0.23 0
4/8/1993 1280.00 1278.65 −0.11 0
7/7/1994 2350.00 2361.27 0.48 0
5/8/1995 2780.00 2798.19 0.65 0
7/7/1996 1140.00 1149.98 0.88 0
6/7/1998 1290.00 1276.56 −1.04 0

Figure 12 depicts that the MCDRM model simulated the sharp and thin flood events
(with a steep rise and fall) excellently. Conversely, simulating the multi-peak flood events
is poor. Overall, the MCDRM model simulated the flooding process in the JRB. The model
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was more accurate for short-duration and high intensity precipitation simulations. The
poor multi-peak precipitation may be caused by two reasons: (1) the impact of the data
processing in the early stage of the model. The model requires that the input precipitation
data be generalized into one hour, thus smoothing the flooding process. The study area
was consisted mainly of infiltration-excess runoff production. The sudden rise and fall of
floods were evident, so the total amount of floods simulated by the model was too large;
(2) the uncertainty of model parameters. The model was simple, flexible, and efficient.
Although the Monte Carlo module was built to optimize the parameters, and the simulation
principle of giving priority to the Tpeak and Qpeak accuracy was set simultaneously, the
change interval of the parameters was still uncertain.

4.3.2. Quantifying the Impact of Climate Change and LUCC on Floods

Using the calibrated and validated model, the contribution rate of LUCC and climate
change to flood change was quantitatively calculated by inputting the unimpaired pre-
cipitation data, the measured precipitation and the land use data in the natural period.
For the convenience of expression, Q represents the measured Qpeak, Q1 represents the
Qpeak calculated by the measured precipitation and land use data, Q2 represents the Qpeak
calculated by the unimpaired precipitation and land use data of the corresponding years,
and Q3 represents the Qpeak calculated by the unimpaired precipitation and land use data
of the natural period. W represents the measured flood volume, W1 represents the flood
volume calculated by the measured precipitation and land use data, and W2 represents the
flood volume calculated by the unimpaired precipitation and land use data of the corre-
sponding years. In contrast, W3 represents the flood volume calculated by the unimpaired
precipitation and land use data of the natural period. According to the K-means cluster-
ing method, and referring to the actual situation of the Basin, the flood magnitude was
divided into three levels: large flood, medium flood, and small flood. Among them, a small,
medium, and the large flood has a Qpeak of <1200, 1200–2300, and >2300 m3/s, respectively.
The simulation results of the rainstorms and floods under various underlying surface and
meteorological conditions are provided in Table 7. Figure 13 shows the simulation result of
the flooding process in the Basin under the changing environment.

Table 7. Simulation of the JRB under the changing environment.

Date of Event Onset Q (m3/s) Q1 (m3/s) Q2 (m3/s) Q3 (m3/s) W (m3) W1 (m3) W2 (m3) W3 (m3)

4/8/1993 1280.00 1278.65 1441.04 1438.13 10,965.14 14,292.37 15,742.60 15,991.65
7/7/1994 2350.00 2361.27 2710.97 2734.82 16,018.08 21,163.60 23,277.95 24,582.31
5/8/1995 2780.00 2798.19 3024.32 3038.52 17,470.95 26,477.07 28,353.85 29,080.69
7/7/1996 1140.00 1149.98 1390.24 1389.03 15,082.29 16,177.08 17,859.37 18,452.04
6/7/1998 1290.00 1276.56 1409.27 1416.80 5305.38 7073.28 8442.96 8597.32
24/8/2003 3610.00 3581.98 3898.42 3911.60 24,784.29 35,481.29 38,596.65 39,556.82
20/7/2005 1180.00 1230.45 1355.33 1356.34 7287.49 7528.04 7631.49 7690.02
23/7/2010 1880.00 1867.60 2062.65 2066.55 17,322.60 21,748.65 24,287.59 25,399.11
8/7/2013 772.00 783.13 856.37 868.83 6089.22 7176.35 7681.67 8004.05

As illustrated in Table 7, the simulated Qpeak and flood volume in the period unaffected
by LUCC and climate change were larger than the measured data. Furthermore, LUCC and
climate change had a pronounced peak clipping effect on the flooding process, among which
the Qpeak change ratio was between 8% and 22%. Specifically, the Qpeak change ratio of
21.8% in 7/7/1996 was the largest. Because the precipitation in the JRB is primarily a short-
duration rainstorm, and the flood pattern is mostly very thin, the flood pattern does not
change significantly before and after the change in precipitation and land use. Furthermore,
the attenuation of the flood volume was mainly affected by the Qpeak attenuation. The
change ratio of the flood volume range was 5–67%, and the change ratio of the flood volume
in 19950805 floods (66.45%) was the largest.

Table 8 lists the quantitative results of the flood response to climate change and LUCC
in the JRB. The results showed that climate change contributed >60% to floods in different
flood magnitudes due to climate change and LUCC. The average contribution of climate
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change to small, medium, and large floods was 66.29%, 81.58%, and 70.12%, respectively.
The average contribution rate of LUCC to small, medium, and large floods was 33.71%,
18.41%, and 29.88%, which indicated that the impact of LUCC on the flood was inversely
proportional to the flood magnitude. With the increase in rainstorm intensity, the impact of
LUCC on the flooding process gradually decreased. For large and medium-sized floods,
the rainstorm intensity had a more significant effect.
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event onset is 24/8/2003; (g) Date of event onset is 20/7/2005; (h) Date of event onset is 23/7/2010;
(i) Date of event onset is 8/7/2013.

Table 8. Quantitative calculation of the influence of climate change and LUCC on floods in the JRB.

Date of event onset Flood Peak
Change Ratio (%)

Flood Volume
Change Ratio (%) Cclimate (m3) Hhuman (m3) Sseasonal (m3) α (%) β (%)

4/8/1993 12.47 45.84 1450.23 249.05 1627.95 85.34 14.66
7/7/1994 15.82 53.47 2114.35 1304.36 1726.81 61.85 38.15
5/8/1995 8.59 66.45 1876.78 726.85 6402.5 72.08 27.92
7/7/1996 20.79 22.34 1682.30 592.66 −1180.17 73.95 26.05
6/7/1998 10.99 62.05 1369.68 154.36 243.86 89.87 10.13
24/8/2003 9.20 59.60 3115.37 960.17 6621.47 76.44 23.56
20/7/2005 10.23 5.52 103.46 58.53 78.57 63.87 36.13
23/7/2010 10.65 46.62 2538.94 1111.51 775.59 69.55 30.45
8/7/2013 10.94 31.45 505.32 322.38 259.43 61.05 38.95
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5. Discussion

(1) By analyzing the spatial temporal changes of the hydrometeorological elements,
the normalized difference vegetation index and land use/cover change data, the
hydrological sequence was split into natural and human activity interference periods.
From 1979 to 2013, the Pflood season in the JRB was concentrated in the middle and
lower reaches of the Basin, and its spatial distribution showed periodic dynamic
changes. Compared with the natural period, the proportion of Pflood season to the
annual precipitation in the human activity interference period increased consistently;

(2) Normalized difference vegetation index (NDVI) showed an upward trend at a rate
of 0.01 a−1 during 1998 and 2018. The spatial distribution of the NDVI was hetero-
geneous in the study area. Combined with the historical land-use situation in the
study area, the cropland area in the JRB continued to decrease, while the forest land,
pastures, and residential areas increased. In the 1950s, the water and soil conservation
and management work began in the Basin. The environmental improvement effect of
reforestation and revegetation was noticeable. Since, 91.73% of the JRB area has im-
proved the vegetation coverage, while only 1.07% of the area has degraded, especially
in the southern urban areas of the Basin. The continuous large-scale transformation
of the underlying surface conditions of the Basin has led to the various types of land
use and vegetation coverage areas. It drove the change in the flooding process and its
evolution mechanism;

(3) The joint impact of LUCC and climate change has significantly lowered the Qpeak
and flood volume in the JRB, from 1999 to 2013. Affected by climate change, the
precipitation proportion during the flood season to the annual precipitation in other
periods increased steadily, readily causing an increase in the frequency of rainstorms
and flood events. However, due to the enhancement of flood regulation and storage
caused by the transformation of the underlying surface conditions by human activity
interference, the Qpeak and the flood volume are still decreasing in the current situation;

(4) The distributed storm flood model (MCDRM) revealed that the contribution rate of cli-
mate change to the flood volume reduction of different magnitude flood events followed
the trend: medium flood > large flood > small flood. The shift in the runoff process of
the medium and large floods was mainly driven by climate change, while anthropogenic
and climate change impacts on the change of small floods were identical. Since 1994, the
influence of climate change on the flood runoff change gradually weakened, while the
effect of LUCC on the flood runoff change increased obviously.

6. Conclusions

In this study, the distributed hydrological model excellently simulated the flood Qpeak
and peak occurrence times, showing meager errors. In constructing the MCDRM model,
the distribution of the hydrological and meteorological observation stations, LUCCs were
fully considered to reduce the uncertainty caused by the data input. Meanwhile, we also
optimized the model algorithm to reduce the model simulation’s uncertainty. However,
geological hazards within the Basin and internal water migration were not considered,
such as the impact of landslides, irrigation pumping, and wastewater discharge on the
local hydrological cycle, which bring uncertainty to the simulation results of the model.

With the increase of human activities in the Loess Plateau region, the evolution mech-
anism of the flood process will become more complicated and the uncertainty of flood
simulations will increase. Therefore, it is necessary to study the runoff evolution mechanism
affected by typical human activities, and optimize the structure of the model accordingly,
to improve the simulation accuracy of the model in the follow-up research.
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