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Abstract: In 2017, Bureau of Economic Geology (BEG) researchers at the University of Texas at Austin
(UT Austin) conducted an airborne lidar survey campaign, collecting topographic and bathymetric
data over Lower Laguna Madre, which is a shallow hypersaline lagoon in south Texas. Researchers
acquired 60 hours of lidar data, covering an area of 1600 km2 with varying environmental conditions
influencing water quality and surface heights. In the southernmost parts of the lagoon, in-situ
measurements were collected from a boat to quantify turbidity, water transparency, and depths.
Data analysis included processing of Sentinel-2 L1C satellite imagery pixel reflectance to classify
locations with intermittent turbidity. Lidar measurements were compared to sonar recordings, and
results revealed height differences of 5–25 cm where the lagoon was shallower than 3.35 m. Further,
researchers analyzed satellite bathymetry at relatively transparent lagoon locations, and the results
produced height agreement within 13 cm. The study concluded that bathymetric efforts with airborne
lidar and optical satellite imaging have practical limitations and comparable results in large and
dynamic shallow coastal estuaries, where in-situ measurements and tide adjustments are essential for
height comparisons.

Keywords: hydrology; remote sensing; lidar; satellite imaging; turbidity

1. Introduction

Remote sensing is the science of gathering information about an object without physi-
cal contact. In recent years, the use of active remote sensing technologies from different
platforms (orbiting satellites, aircraft, or Unmanned Airborne Vehicles) has become increas-
ingly popular to measure the topography of hard surfaces [1,2] or the depths of shallow
and relatively transparent waters [3,4]. As a result, several projects investigated and used
the technology for coastal applications such as shoreline mapping, erosion, and change
detection [5–8].

In dynamic coastal and fluvial inland water reservoirs, it is challenging to measure
depths because of electromagnetic energy (EM) scattering from the water surface and
the rapid amplitude degradation in the water column. A number of studies revealed the
challenges of bottom mapping with varying levels of water quality in coastal and inland
waters using satellite imaging and measuring pixel reflectance [9–11]. However, only a
few investigated the combined use of airborne lidar and satellite imaging technologies.
For instance, Ji et al. introduced a feature-based data fusion model [12], and Yeu et al.
evaluated and enhanced the accuracy of satellite altimeter bathymetry using airborne lidar
and multi-beam sonar on transparent, coastal waters of western Korea using a gravity-
geologic model [13].
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In 2017, the Bureau of Economic Geology (BEG) at The University of Texas at Austin
(UT Austin) acquired topographic and bathymetric airborne lidar data over Lower Laguna
Madre, a hypersaline lagoon in south Texas. Previously, using an airborne lidar system,
BEG researchers completed projects on the Gulf Coast, mapping the shallow seafloor along
the Gulf of Mexico and the Pacific Coast [7] and investigating bottom morphologies along
various river sheds in the southern US [14,15]. The principal research motivation was to
investigate the feasibility of measuring the lagoon bottom with airborne lidar and quantify
lidar bathymetry’s accuracy with applicable survey and in-situ methods. We need to
emphasize that remote sensing methods used in this study are familiar; however, their
application in challenging and varying coastal environments to complement and validate
each other is essentially important to the remote sensing community and has not been
studied or documented in detail.

For this purpose, we prepared a ground control surface, collected dual-frequency sonar
readings, observed transparency with a Secchi disk, and sampled turbidity in nephelometric
measurements from a boat. Furthermore, we studied satellite imaging pixel reflectance and
conducted satellite-derived bathymetry (SDB).

We aimed to address the following research questions in detail:

• Can we measure the bottom of a shallow and hypersaline lagoon using an airborne
lidar system? What were the possible operational bottlenecks, and what lessons did
we learn?

• Can we confirm the accuracy of lidar bathymetry with sonar? How do they comple-
ment each other?

• How can we predict varying levels of turbidity based on satellite imaging? What
were the potential benefits of conducting quantitative pixel reflectance analysis in
bathymetric lidar mapping?

• Is SDB a feasible methodology to measure the depths of shallow, turbid, and hy-
persaline lagoons? Can we compare and quantify SDB to lidar bathymetry in these
conditions?

2. Materials and Methods
2.1. Project Location

In Texas, Lower Laguna Madre is a hypersaline (i.e., saltier than seawater) lagoon that
is physio-graphically divided into two subunits [16]. Upper Laguna Madre is separated
from the lower section by a canal and partial land bridge, which was constructed from
dredged material during the building of the Gulf Intracoastal Waterway [17]. To the south,
Lower Laguna Madre borders Mexico and covers an area larger than 800 km2 (310 mi2).
The lagoon waters are transparent and shallow in the southeast and northern sections, and
water quality changes with northerly winds that carry sedimentation from sand dunes
and discharge freshwater streams. The lagoon has a unique seagrass ecosystem, protected
by the Atascosa National Wildlife Refuge area in the north and by Padre Island on the
Gulf Coast. Here, seagrass beds serve as essential nursery areas for various Gulf of Mexico
species, such as supplying food and shelter for Redhead Ducks (Aytha americana). Because
of seagrass’ essential role in supporting fish and wildlife resources, studies have attempted
to map the lagoon using remote sensing technologies [18,19].

2.2. In-Situ Campaign

In 2017, an in-situ campaign was conducted in three distinct areas clustered in the
southern portion of the lagoon, where it was possible to observe water transparency,
depth, and turbidity (Appendix A). We sampled water with a turbidimeter and measured
transparency with a Secchi disk. In the north, access to the lagoon was restricted due to
private lands and the absence of public roads. We observed that in-situ Area-1 was shallow,
transparent, and registered the least amount of turbidity content, in-situ Area-2 had varying
turbidity and transparency, and in-situ Area-3 recorded the highest turbidity concentration
(Figure 1a,b).
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The sonar unit was calibrated in the lab environment, in the freshwater tank (UT 
Austin, Advanced Research Laboratories), producing depth measurements with a stand-
ard deviation of 2.7 cm at 11.8 m depth, which is acceptable for shallow-classified airborne 
lidar mapping systems [20]. In salt waters, sound waves propagate faster and require ad-
ditional adjustment for salinity (S), water temperature (T), and depth (z). In Lower Laguna 
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perature varied (24.7, 23.4, and 26.2 °C), depending on the location and the survey day. 
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an) [22]. Computations revealed that sound waves propagated with different velocities for 
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would equal 3 cm of additional ranging in a 2 m water column, we recommend an inertial 

Figure 1. (a) Aerial image of Area-1. The turbidity was low, the lagoon was shallow, and the bottom
was visible for observations. (b) Aerial image of Area-3. Turbidity and floating vegetation created
challenges for bottom measuring.

We completed the sonar surveys on three dates where atmospheric conditions influ-
encing the lagoon conditions were similar: calm and no precipitation. Survey dates 01/05
(Area-1), 05/05 (Area-2), and 12/05 (Area-3) were executed coincidently with airborne
lidar data acquisition, and depths were measured using a dual-frequency, single-beam
sonar. We mounted the sonar unit onto a kayak and towed it throughout the lagoon with
a power boat with an onboard observer. The sonar transducer was submerged with the
operator in the kayak, and the resulting 6 cm was added to the recorded heights. The sonar
measured the lagoon bottom every two seconds, and the observer manually triggered the
unit (waypoints) various times at each specified location where additional turbidity and
water transparency measurements were sampled.

The sonar unit was calibrated in the lab environment, in the freshwater tank (UT
Austin, Advanced Research Laboratories), producing depth measurements with a standard
deviation of 2.7 cm at 11.8 m depth, which is acceptable for shallow-classified airborne lidar
mapping systems [20]. In salt waters, sound waves propagate faster and require additional
adjustment for salinity (S), water temperature (T), and depth (z). In Lower Laguna Madre,
the typical salinity is 35.3 parts per thousand (ppt) [21], and we confirmed this value with
the Texas Commission on Environmental Quality (TCEQ) stations (IDs: 13446 and 13447).
These stations reported an average of 36.1 ppt and 38.6 ppt for all 2017 samplings. Figure 2
illustrates the survey location, in-situ areas, tide gauges, and TCEQ reference stations.

We recorded the water temperature using the sonar transducer, where the mean
temperature varied (24.7, 23.4, and 26.2 ◦C), depending on the location and the survey day.
Because the depth varied at each in-situ location, we used the mean value in the empirical
formula (Equation (1)) to calculate the speed of sound in the water using coefficients
(a1–an) [22]. Computations revealed that sound waves propagated with different velocities
for each survey day (1533.9, 1530.7, and 1537.5 m/s) in Lower Laguna Madre, which
required an adjustment of 1/0.963–0.967 for sonar readings. Because the lagoon was calm
and shallow, and the rocking movement with the kayak was minimal, we did not consider
rotational adjustment (attitude) of sonar readings. However, because 10 degrees of boat roll
would equal 3 cm of additional ranging in a 2 m water column, we recommend an inertial
movement unit (IMU) sensor integration for rotational adjustment of sonar recordings in
deeper and choppier waters.

c(T, S, z) = a1 + a2T + a3T2 + a4T3 + a5(S − 35) + a6z + a7z2 + a8T(S − 35) + a9Tz2 (1)
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Figure 2. Lower Laguna Madre in southern Texas and in-situ locations (TCEQ reference stations,
NOAA tide gauges, and BEG observation areas). The yellow polygon indicates the extent of the
airborne survey area (1600 km2).

2.3. Tide and Datum Adjustments for Bathymetry

The National Oceanic and Atmospheric Administration (NOAA) reported a daily
average of 23 cm of tides in the Port Isabel gauge (Station ID# 8779770: latitude 26◦3.7′N,
longitude 97◦12.9′W), observed in the last 19 years. The Port Mansfield gauge (Station
ID# 8778490: latitude 26◦33.5′N, longitude 97◦25.5′W), in May 2017 alone, recorded 44 cm
of tidal range, and the mean surface height was 0.19 m, mean sea level (MSL). The Port
Isabel gauge recorded a 90 cm tidal range for the same period, and the mean surface height
observed was 0.12 m MSL. Because of its proximity to in-situ locations, we used the tide
observations reported in Port Isabel station (in MSL) to adjust satellite bathymetry (0.29 m
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in 01/05/2017, 20:00 GMT and 0.24 m in 05/05/2017, 20:00 GMT). Because lidar and
sonar measurements were completed in conjunction, no tidal adjustments were required to
compare these datasets. For consistency purposes, all ellipsoidal heights in this study (e.g.,
lidar, GPS, and sonar) were converted to orthometric heights (real-world elevations) using
the GEOID2012B model, representing MSL elevations.

In addition to in-situ observations, TCEQ provided depth measurements through
the SWQM program. We selected five operational SWQM reference stations that were
scattered throughout the lagoon for uniformity (TCEQ IDs: 13446, 13447, 13448, 13449, and
14870). Depths provided in these stations represent the distance from the surface during
observation and were adjusted to MSL heights.

Because Lower Laguna Madre is a dynamic environment and depths vary with time,
we considered the depth results in the height domain. Therefore, the depths mentioned
in this study refer to the height measurements in the water column as perceived by a
particular survey method and may not represent the lagoon bottom, particularly in areas
with high turbidity.

2.4. Vector Data Analysis

Because point-to-point correspondence is not assumed with lidar point cloud datasets [23],
we used the Delaunay triangulation algorithm [24] to create surface patches of Triangulated
Irregular Networks (TIN) for comparison purposes to other survey methods (e.g., sonar
and GPS). There are other algorithms to construct TIN surfaces (e.g., Distance Ordering,
Region Growing). However, the Delaunay triangulation algorithm was preferred because
of superior uniform modeling, automation capabilities, and statistical consistency with
previous studies [14,15].

This study used point cloud (vector) lidar datasets to construct the TIN surface patches.
The process maximized the smallest angles of triangles by defining an empty circumcircle
and selecting the shortest distance of all points (h) to minimize the interior angle of all trian-
gles, where the triangles were equiangular. A surface patch was created by defining a set of
circumcircles (e.g., 1 m radius), and an average height was compared to a particular height
measured by the other applicable survey methods (e.g., sonar and GPS). The algorithm
picked the lidar returns that registered in the user-defined proximity (e.g., dS1i = 1 m) and
excluded the returns registered at slopes greater than the defined (e.g., α = 45◦) angle. The
vertical threshold (e.g., h = 0.5 m) was adjusted to prevent the algorithm picking up returns
from erroneous features that may represent heights (or depths) incorrectly.

2.5. Airborne Lidar Bathymetry and System Calibration

Airborne lidar bathymetry (ALB) is an active remote-sensing technology for mapping
inland reservoirs and shorelines with relatively shallow and transparent waters. A typical
ALB system integrates a laser power unit, scanner mirrors, transmitting and receiving
units, a Global Positioning System/Inertial Navigation System (GPS/INS) unit, a digitizer,
onboard storage, and an operator interface. We used an ALB system manufactured by
Airborne Hydrography AB (AHAB) of Sweden named “Chiroptera,” which uses a near-
infrared and a green-wavelength for data collection. Using the Chiroptera, we acquired 60
h of in-flight time over the lagoon with a Partenavia P68-C (N88N) fixed-wing aircraft and
Table 1 presents the system settings.

Table 1. Chiroptera system settings in the Lower Laguna Madre survey.

Item NIR (1064 nm) Green (515 nm)

Pulse repetition rate (PRF) 100–300 kHz 36 kHz
Average lidar point density 10 points/m2 (+side overlap) 2 points/m2 (+side overlap)

Average flight altitude 400–600 m
Swath width and overlap rate 250–300 m/30% overlap
Average aircraft survey speed 110–130 knots
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ALB relies on recording a waveform representing the observed amplitude of backscat-
tered energy from each transmitted laser pulse. Depths are calculated by computing the
time difference (∆t) between the distinctive peaks in the waveform that represent the water
surface (t1) and bottom (t2). The post-processing software (Leica Lidar Survey Suite, LLSS
v2.40) calculates the time differences between these peaks. Additionally, the application
considers the properties of the waveform, accounting for electronic timing delays, interac-
tions with the water column, and the speed of light traveling in the air and in the water
column.

During raw data processing, LLSS produced point cloud datasets in which each return
is assigned a numerical class. These classes were derived from the original waveform, set
by user backscatter thresholds, and they represent a position in three-dimensional space,
identifying a specific type of surface as illuminated by the laser beam. For the bathymetric
analysis, we used specific data classes, which required detailed processing, cleaning, and
analysis (sample illustrations: Appendix B). In detail, these data classes and their positions
were calculated in the following manner:

• Class 0 returns represent the water surface synthetically and they are interpolated
using a proprietary AHAB algorithm. The NIR channel measurements estimate the
water surface’s elevation, and the algorithm uses the synthetic surface to inform the
selection of peaks in the green channel waveform.

• Class 5 returns represent the water surface and are calculated by picking out the
first strong peak from the green channel waveform without using data from the NIR
channel.

• Class 7 returns represent a reflective surface in the water column and are calculated by
selecting a second strong peak from the waveform.

• Class 10 returns represent a reflective surface in the water column and are calculated
using peaks of lower amplitude than those used in Class 7. The weaker peaks are
selected using a proprietary algorithm to improve the lidar system’s depth-measuring
capability by discarding peaks created by low or moderate turbidity levels.

In Equation (2), dm is the distance traveled in meters, n is the refractive index of the
water, Cw is the speed of light in the water, and f is the digitizer sampling rate in gigahertz
(GHz). The refractive index changes with water temperature (T), salinity (S, ‰), and the
wavelength of the emitted beam (λ). To estimate the irregularity in refractive index value,
we used a tool built into LLSS v2.4 that computes the surface representation using the
refraction equation (Equation (3)) [25]. This equation determined each refraction coefficient
(n0 to n9) using the least-squares method to match the terms as a function of wavelength,
salinity, and temperature at a given atmospheric pressure [26]. We considered the water
temperature as 25 ◦C (T), typical for May; therefore, S = 35‰, and n = 1.343.

dm =
Cw ∆t
2n f

(2)

n(S, T, λ) = n0 +
(

n1 + n2T + n3T2
)

S + n4T2 +
n5 + n6S + n7T

λ
+

n8

λ2 +
n9

λ3 (3)

It is possible to compute the duration of each sample (td) by dividing the time difference
(∆t) by the system sampling rate (f ) (Equation (4)). We can also calculate the vertical spacing
between the lidar pulses traveling in space and the water column. Assuming the refraction
is constant, such as in a vacuum (n = 1), each sample represents a spacing of 0.167 m. In
seawater, with the addition of a higher refraction index and the slowing light propagation,
the sample spacing decreases, e.g., n = 1.342, and the spacing equals 0.0931 m between the
samples.

td =
1
f
× ∆t (4)

The accuracy of the lidar-derived measurements relies on the calibration of individual
system components. The eccentricity and misalignment between the laser mirrors, the
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inertial movement unit (IMU), and the GPS antenna must be determined precisely. The
process requires collecting height measurements of a relatively flat surface using a geodetic-
grade GPS and comparing these heights to lidar measurements. For this purpose, we
surveyed the Port Isabel-Cameron County airport (KPIL) taxiway using a Trimble R8
receiver. Static GPS survey points were post-processed to improve their positioning using
a TxDOT (Texas Department of Transportation) maintained TXLN (Texas Laguna Madre,
26◦5”41.6392′N, −97◦18”02.4998′W) NOAA-CORS (National Oceanic and Atmospheric
Administration-Continuously Operating Reference System) base station.

2.6. Satellite Imagery and Pixel Reflectance Analysis

Satellites with high-resolution imaging sensors can capture information on large areas,
allowing identification of various features. Because Lower Laguna Madre is dynamic, and
airborne lidar measurements were acquired in May and June, we downloaded imagery
acquired solely in May and June 2016–2019 for temporal study purposes. We omitted 2020
imagery due to clouds blocking in-situ measurement locations.

The European Space Agency operates the Sentinel series satellites, and the Payload
Data Ground Segment unit processes Level-1C (L1C) products and outputs radiometri-
cally and geometrically corrected top-of-atmosphere images. L1C products are composed
of 100 × 100 km tiles, including cloud masks and European Centre for Medium-Range
Weather Forecasts information (total ozone column, water vapor, and MSL pressure). Every
L1C product registers information with wavelength bands 1 to 9 (442 to 864 nm). Bands
2-blue, 3-green, 4-red, 5-red edge, and 8-NIR (492, 559, 664, 704, and 832 nm) were essential
to this study because of their capability to distinguish the differences in pixel reflectance
values, emphasizing the boundary between land and water [27]. The spatial resolution
varied with each band: 10 m per pixel for bands 2 to 4 and 8 and 20 m for band 5. Table 2
summarizes the sensing time, date, tile numbering, and other specifics of the downloaded
imagery.

Table 2. Details of Sentinel-2A L1C imagery used in the study.

Date
Sensing

Time
(UTC)

Tile
Sun

Elevation
(Degrees)

Sun
Azimuth
(Degrees)

Cloud
Coverage (%)

12/05/2016 17:11:44 T14RPQ 72 113.6 20
12/05/2016 17:11:44 T14RPP 72.3 111.1 24
16/06/2017 17:15:05 T14RPQ 72.9 96.9 6
16/06/2017 17:15:05 T14RPP 73 94 6
17/05/2018 17:10:16 T14RPQ 72.4 110.5 0
17/05/2018 17:10:16 T14RPP 72.8 107.9 0
27/05/2019 17:16:29 T14RPQ 73.1 104.5 25
27/05/2019 17:16:43 T14RPP 73.3 101.6 16

Analysis of EM radiation recorded from underwater reflectance and optics may supply
essential information about quality, depth, and other distinctive properties of water. There-
fore, we studied optical information and used algorithms to estimate bathymetry [28]. The
blue-green and NIR wavelengths can distinguish the varying concentrations of suspended
particulate matter in the water [29,30]. Previous studies indicated that Band 4 (665 nm) can
distinguish the chlorophyll-A absorption, and Band 5 (705 nm) relates to the vegetation
monitoring and turbidity patterns in shallow lagoons [31,32].

The ENVI Spectral Profile Tool was used to analyze the radiance recorded at each
pixel. Our objective was to distinguish the areas with high turbidity; nevertheless, the pixel
radiance values helped us to identify the features surrounding the lagoon (e.g., vegetation
and dunes). Areas with clouds have exceedingly high reflectance values, and we generated
masks to exclude these areas from further analysis. To plot the results, we used ENVI’s
Iterative Self Organizing Data Analysis (ISODATA) clustering algorithm, an unsupervised
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classification tool that iteratively clusters pixels to the nearest class [33]. The algorithm
does not require a priori knowledge of the surfaces. Instead, it computes the mean radiance
values by reclassifying the pixels until the difference between them is less than the threshold
(e.g., 2%) or the maximum number of iterations, ten by default, is achieved. The process
is similar to K-means clustering, which has advantages for fast converging datasets and
a simple implementation process [34]. Further, we conducted a Normalized Difference
Water Index [NDWI = (green − NIR)/(green + NIR)] analysis to build a surface map by
mounting the areas of interest [35]. Typically, NDWI analysis can detect moisture changes
in vegetation [36], and we used the algorithm to exclude cloudy and vegetated areas as
identified by the ISODATA analysis. The band reflectance was normalized (0–1) using
the ENVI Band Math tool because the scaling factor normalizes the images to reduce
radiometric differences across non-surface effects [37].

2.7. Satellite-Derived Bathymetry

We studied the satellite-derived bathymetry that utilizes ocean optics and algorithms
to estimate depths [29]. Water-leaving radiance is the backscatter upwelling after traversing
the air/water interface and recording subsurface volumetric and bottom information.
Previous studies developed the bottom albedo-independent bathymetric algorithm that
accurately distinguishes bottom types such as sand, rock, and vegetation up to 15 m depth
under ideal atmospheric and water conditions [38,39].

The Spectral Processing Exploitation and Analysis Resource (SPEAR) algorithm in
the Relative Water Depth tool in ENVI v5.5 allows analysts to understand bathymetric
properties using the blue, green, and NIR bands (2, 3, 4, and 8). In this study, in-situ
measurements were required to generate absolute results; therefore, we input depth values
into 06/2017 imagery, which included a combination of TCEQ station observations and
sonar waypoints, all relative to MSL.

3. On-Site Analysis

We conducted preliminary data processing activities immediately after each airborne
data acquisition mission. Decimated (e.g., 1/100) vector datasets were output to confirm
lidar swath coverage and height measurements.

Previously, in the Colorado River study [40], where water was deeper (up to 12 m)
and relatively transparent, we observed an increase in Chiroptera’s bathymetric capability
by 0.8 m (9.2%) using the Class 10 algorithm. In Lower Laguna Madre, where water was
shallower than 3.35 m, the on-site analysis revealed a 41.2% depth measuring increase
using the same algorithm (Table 3). In contrast, our analysis indicated a reduced correlation
between Classes 0 and 5 (water surface) with increasing turbidity (Table 4). Naturally, esca-
lating turbidity scattered Class 5 pulses, generating a less consistent surface representation.
Therefore, we used Class 0 returns to define the water surface that averaged heights derived
from returns of both wavelengths.

Additionally, we analyzed the influence of turbidity on the bathymetric capability of
Chiroptera by studying the in-situ observations (Appendix A). We converted the turbid-
ity measurements to logarithmic values, and the findings indicated a linear relationship
(R2 = 0.82) between the maximum measurable depth (theoretical, Dmax) and escalating
turbidity at locations where the bottom was not visible to the observer (Figure 3).

Table 3. Bathymetric class data output (Classes 7 and 10) comparison to sonar recordings at BEG-
observed in-situ locations.

In-Situ
Area

Number of
Measurements

(Class 7/10)

Mean Sonar
Depth

(m, MSL)

Mean Lidar
Depth (m, MSL)

(Class 7/10)
(Class 7/10)

Standard
Deviation (m)

(Class 7/10)

Bathymetric
Improvement

(%)

1 256/130 −1.35 −1.28/−1.57 0.14/0.23 23
2 381/140 −1.43 −1.42/−1.78 0.17/0.38 20.2
3 551/272 −1.84 −1.35/−1.84 0.62/0.63 41.2
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Table 4. Turbidity and surface class data output (Classes 0 and 5) comparison. Escalating turbidity
levels scattered Class 5 returns and adversely influenced root-mean-square error (RMSE) values.

In-Situ
Area

Mean
Turbidity

(NTU)

Number of
Returns

(Class 0/5)

Median
Difference (m)
(Class 0 to 5)

RMSE (m)
(Class 0 to 5) R2

1 2.7 528/173 −0.07 0.03 0.94
2 8.6 907/653 −0.09 0.06 0.65
3 10.5 806/420 −0.11 0.08 0.32
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Figure 3. The influence of increasing turbidity on the theoretical bathymetric capability (maximum
depth: Dmax) of Chiroptera is a linear relationship (R2 = 0.82).

4. Results
4.1. ALB System Calibration

Using the least-squares statistical method, we compared 448 ground GPS survey point
elevations to lidar derived surface TIN patches [41]. For both scanners, the correlation
produced high confidence (R2 > 0.95). Each scanner’s median height bias and RMSE were
less than 2.8 cm. Findings revealed a minor height bias between the scanners (<4 cm),
conceivably caused by NIR and green wavelength pulses registering different surface
heights due to beam divergence differences (Table 5, Figure 4).
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Table 5. Chiroptera ALB system height calibration results.

Scanner Number of
Samples Data Range (m) Median

(m) RMSE (m) R2

NIR (1064 nm) 448 0.14 0.025 0.025 0.96
Green (515 nm) 448 0.17 −0.013 0.028 0.95

4.2. Pixel Reflectance

Six ISODATA classes of pixel reflectance (1-low, 2-mixed, 3-moderate-low, 4-moderate-
high, 5-high, and 6-unclassified/cloud) were generated, which was in line with the Alaskan
North Slope study [30]. The classifications were based on 2% spectral variability, and results
omitted excessive turbid and unclassified/cloud areas using masking polygons. Table 6
presents the pixel count (%) of each image as the result of ISODATA classification, and the
maps illustrate the dynamic nature of the lagoon by indicating the water quality variations
(Figure 5a–d). Interpreting the results and predicting the temporal changes that occurred
over the years is possible, and these variations can uncover potential geomorphological
changes such as subsidence or coastal erosion. Additionally, results may highlight the need
to update local charts and coastal geology maps.

Table 6. Pixel reflectance count (%) of Lower Laguna Madre imagery, classified by ENVI’s ISODATA
algorithm. N/A indicates the areas outside the study area.

Imagery Pixel Reflectance Count (%)

1-Low 2-Mixed
3-

Moderate-
Low

4-
Moderate-

High
5-High

6-
Unclassified/

Cloud
N/A

2016 4.16 5.79 6.11 2.97 0.58 0.09 80.31
2017 1.05 6.02 5.58 3.18 1.05 0.04 83.07
2018 3.94 5.68 5.51 4.08 1.14 0.14 79.50
2019 4.33 4.91 5.37 2.66 1.18 0.09 81.47

We can assume the following statements by examining the findings:

• In 2016, the average reflectance values were the lowest; therefore, the overall water
quality was higher. Furthermore, the moderate-high and high reflectance classes
indicated the lowest pixel counts (3.54%), confirming higher water quality, particularly
in the southwestern parts of the lagoon (Figure 5a).

• In 2017, the low reflectance classes were least significant (1.05%), while the mixed
reflectance class registered (6.02%) as the most substantial, translating to the lowest
water quality of all years analyzed (Figure 5b).

• In 2018, pixel count was lower in moderate-high and high reflectance classes (5.22%),
which translated to lower water quality. However, water quality has increased visibly
in the northern parts of the lagoon (Figure 5c).

• In 2019, the low reflectance class registered the highest pixel count (4.33%), resulting
in the most suitable conditions for SDB analysis (Figure 5d).
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4.3. Lidar Bathymetry

Chiroptera measured the lagoon bottom deepest at 3.35 m in Area-1 and 4.25 m on the
northeastern edge of the survey area, at the Gulf coastline. Lidar measurements indicated
the mean depth of the lagoon was no more than 0.61 m, where 42.65% of the depths
registered were between 0.4 m and 1.2 m, and only 1.07% of measurements were deeper
than 2 m (Figure 6).

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 24 
 

 

Table 6. Pixel reflectance count (%) of Lower Laguna Madre imagery, classified by ENVI’s ISODATA 
algorithm. N/A indicates the areas outside the study area. 

Imagery Pixel Reflectance Count (%) 

 1-Low 2-Mixed 
3-Moderate-

Low 
4-Moderate-

High 5-High 
6-Unclassi-
fied/Cloud N/A 

2016 4.16 5.79 6.11 2.97 0.58 0.09 80.31 
2017 1.05 6.02 5.58 3.18 1.05 0.04 83.07 
2018 3.94 5.68 5.51 4.08 1.14 0.14 79.50 
2019 4.33 4.91 5.37 2.66 1.18 0.09 81.47 

4.3. Lidar Bathymetry 
Chiroptera measured the lagoon bottom deepest at 3.35 m in Area-1 and 4.25 m on 

the northeastern edge of the survey area, at the Gulf coastline. Lidar measurements indi-
cated the mean depth of the lagoon was no more than 0.61 m, where 42.65% of the depths 
registered were between 0.4 m and 1.2 m, and only 1.07% of measurements were deeper 
than 2 m (Figure 6). 

We completed the lidar data acquisition campaign in approximately 60 flight hours. 
Due to the tides, surface datasets revealed height differences of 0.84 m (lowest = −0.28 m 
MSL, highest = 0.56 m MSL) in two weeks. The mean surface height was 0.04 m, and the 
standard deviation was 0.18 m throughout the data acquisition campaign. Surface height 
variation aligned with the 0.9 m tide range that was observed at the Port Isabel gauge in 
May 2017 (Figure 7). 

We must emphasize that lagoon bottom measurements shallower than 0.4 m may not 
represent the true bottom due to the environmental limitations imposed by turbidity and 
the waveform sampling capability of Chiroptera’s digitizer. Particularly in moderately 
turbid sections of the lagoon, a considerable number of lidar beams penetrated the water 
column slightly. However, beams were scattered and reflected to the receiver by sus-
pended material before reaching the bottom, causing very shallow depths or no depths to 
be registered. Therefore, measurements greater than 0.4 m (>51%) have a higher probabil-
ity of being accurate and represent the actual lagoon bottom (Figure 8). 

 
Figure 6. Lidar bathymetry of the entire lagoon. The mean depth was 0.61 m, and 42.65% of all 
measurements were between 0.4 and 1.2 m. 

Figure 6. Lidar bathymetry of the entire lagoon. The mean depth was 0.61 m, and 42.65% of all
measurements were between 0.4 and 1.2 m.

We completed the lidar data acquisition campaign in approximately 60 flight hours.
Due to the tides, surface datasets revealed height differences of 0.84 m (lowest = −0.28 m
MSL, highest = 0.56 m MSL) in two weeks. The mean surface height was 0.04 m, and the
standard deviation was 0.18 m throughout the data acquisition campaign. Surface height
variation aligned with the 0.9 m tide range that was observed at the Port Isabel gauge in
May 2017 (Figure 7).
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We must emphasize that lagoon bottom measurements shallower than 0.4 m may not
represent the true bottom due to the environmental limitations imposed by turbidity and
the waveform sampling capability of Chiroptera’s digitizer. Particularly in moderately
turbid sections of the lagoon, a considerable number of lidar beams penetrated the water
column slightly. However, beams were scattered and reflected to the receiver by suspended
material before reaching the bottom, causing very shallow depths or no depths to be
registered. Therefore, measurements greater than 0.4 m (>51%) have a higher probability of
being accurate and represent the actual lagoon bottom (Figure 8).
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4.4. Lidar Bathymetry versus Sonar

The varying levels of turbidity and transparency influenced lidar and sonar measure-
ments, especially in the southwestern and northern sections. A comparison of depths
indicated that sonar (dS) recorded deeper versus lidar (dL) in all in-situ areas, and the mean
difference was greater at locations with higher turbidity, which exposed a limitation of lidar
bathymetry. Particularly in Area-3, where turbidity was the highest, lidar returns were
scattered and attenuated rapidly, either on the immediate surface or in the water column,
resulting in fewer matches between the measurements (Table 7). Investigating the results,
we can consider the following statements for each of the in-situ areas:

• In Area-1, the water was shallow, the bottom was visible to the observer, and we
sampled the lowest turbidity (2.7 NTU). Initially, the comparison algorithm returned
poor correspondence efficiency (5%) in matching sonar to lidar measurements because
of the sparse nature of sonar recordings. Therefore, we increased the distance of
circumcenter triangle coverage (default dS1i = 1 m) of lidar TIN patches to 5 m and
the height (h) tolerance to 1 m (default = 0.5 m). We kept the slope angle at the default
setting (45◦). As a result, the algorithm efficiency increased, and the matching rate
improved (55%). The correspondence produced a linear relationship, where returns
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deeper than 1 m were scattered (R2 = 0.68). In this location, the average height for
lidar/sonar was −0.87/−0.92 m MSL and the deepest measurement was −1.83 m
MSL (Figure 9a,b).

• In Area-2, the lagoon bottom was partially visible, and we observed varying Secchi
disk depths (0.6–0.9 m). Overall, turbidity has increased (8.6 NTU), and the compar-
ison algorithm matched fewer sonar to lidar measurements (40%), producing less
dependable matches, particularly in depths shallower than 1 m, indicating the in-
creased turbidity. The mean lidar depth was −1.09 m MSL, and the sonar measured
14 cm deeper (−1.23 m MSL). The correspondence between the measurements was
linear but produced a less favorable agreement (R2 = 0.38, Figure 10a,b).

• In Area-3, deeper bottom and poor water quality were observed. The Secchi disk
depths were recorded between 0.7 and 1.3 m, and we sampled turbidity at 10.5 NTU;
hence, lidar beam amplitudes were insufficient to measure the lagoon bottom. With
default threshold parameters, the comparison algorithm produced unreliable results;
consequently, we applied looser values to the experiment (dS1i = 10 m) and the
algorithm included more legitimate matches. As a result, the matching efficiency
dropped (8%), and generated a linear agreement (R2 = 0.71). The mean lidar depth
was −1.14 m MSL, and sonar measured deeper at −1.39 m MSL (Figure 11a,b).
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Figure 9. (a,b). In Area-1, lidar and sonar heights produced a linear agreement (R2 = 0.68), indicating
higher turbidity levels in depths greater than 1 m. The sonar-recorded slightly deeper compared to
lidar measurements (mean difference = 5 cm).
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Figure 10. (a,b). In Area-2, turbidity was high in depths shallower than 1 m (mean = 8.6 NTU),
scattering and attenuating lidar pulses, influencing the correspondence between lidar and sonar
measurements adversely (R2 = 0.38). The mean height difference was 14 cm.
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Figure 11. (a,b): In Area-3, turbidity was the highest (mean = 10.5 NTU) and increased with depth.
Fewer sonar and lidar measurements were matched (8%) because of loose algorithm thresholds. The
mean height difference increased to 25 cm, improving the regression, and generating a bi-modal
distribution (R2 = 0.71).

Table 7. Sonar versus lidar bathymetry comparison at in-situ locations.

In-Situ Area
Mean

Turbidity
(NTU)

Comparison
Parameters (dSli,
h, Slope Angle)

Matching
(%)

Mean Depth
(dL/dS, m,

MSL)

Difference
(dL–dS, m) RMSE (m) R2

1 2.7 5/1/45 55 −0.87/−0.92 −0.05 0.14 0.68
2 8.6 5/1/45 40 −1.09/−1.23 −0.14 0.10 0.38
3 10.5 10/1/45 8 −1.14/−1.39 −0.25 0.09 0.71

4.5. Satellite-Derived Bathymetry versus Lidar Bathymetry

We analyzed the 2017 Sentinel-2A imagery and investigated satellite-derived bathymetry
of Lower Laguna Madre. The principal motivation was to compare and quantify the resul-
tant satellite bathymetry to lidar measurements and study the compatibility, particularly in
the in-situ areas. The satellite imagery’s varying turbidity, excessive shallow depths, and
coarse grid spacing (20 m) were expected to adversely influence the bathymetric quality
and completeness. Therefore, we assessed the comparison algorithm threshold values (e.g.,
dS1i = 5 m) and included more measurements in the computations. We must emphasize
that satellite bathymetry was adjusted with local tides to match lidar measurements and
observed MSL values were extracted from heights (depths).

We compared the SDB findings to lidar measurements at in-situ locations in Area-1
and Area-2 and omitted those in Area-3 because the location was blocked with excessive
clouds. Because SDB measurements were coarse, the matching process did not produce
a reliable correspondence. Using a 5 m threshold, in Area-1, where turbidity was lower,
mean satellite bathymetry was 13 cm deeper compared to lidar measurements (−0.99 m
versus −0.86 m MSL), and using a 10 m threshold, the mean difference was reduced to 11
cm. In Area-2, where turbidity and depths increased, we observed mean heights matching
each other within 0.02 m (Table 8). To visualize the relationship further, we plotted sample
height profiles and produced histograms (Figures 12 and 13). In both in-situ locations,
SDB produced linear measurements with a low standard deviation (0.03 m), where lidar
measurements were scattered, and produced a higher standard deviation (0.16 m). We
calculated the RMSE between the measurements at less than 0.15 m.

Studying the SDB results and their correspondence to lidar measurements at both
in-situ locations, we can assume that the optical technology has depth-resolving limitations
in shallow waters with varying turbidity. However, results suggested that SDB correlated
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adequately with lidar measurements, indicating the depth coarsely, and can be an effective
method to evaluate the feasibility of conducting an expensive and comprehensive airborne
lidar survey campaign.

Table 8. Comparison of SDB to lidar measurements in 2017. Area-3 was covered with clouds (N/A)
and was excluded from the study.

In-Situ
Area

Pixel Re-
flectance
Category

Mean
Turbidity

(NTU)

Comparison
Parameters

(dSli, h, Slope
Angle)

Correlation
(%)

Mean ALB
(m, MSL)

Mean SDB
(m, MSL)

Mean
Difference
(dL–dS, m)

RMSE
(m)

1 1-Low 2.7 5/0.5/45 46 −0.86 −0.99 −0.13 0.15
1 1-Low 2.7 10/0.5/45 66 −0.88 −0.99 −0.11 0.14
2 2-Mixed 8.6 5/0.5/45 42 −1.06 −1.05 0.01 0.14
2 2-Mixed 8.6 10/0.5/45 61 −1.06 −1.04 0.02 0.15
3 N/A 10.5 N/A
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Figure 12. (a,b). SDB versus lidar bathymetry in 2017 in Area-1. Measurement differences produced
a skewed distribution and SDB measured deeper than lidar (mean difference < 13 cm).
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Figure 13. (a,b). SDB versus lidar depths in 2017 in Area-2. Turbidity increased, and the confidence
between the measurements declined (<61%), particularly in areas deeper than 1 m.

5. Discussion

In this study, we acquired, processed, and analyzed remotely sensed datasets of Lower
Laguna Madre and investigated the depths in the height domain. Our objective was driven
by a desire to further understand and quantify the quality-control aspects of airborne lidar
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bathymetry with applicable survey methods, as we previously demonstrated at inland
water reservoirs [14,15].

We summarized the best practices for airborne lidar data acquisition for the Frio River
in Texas and mapped the river bottom. The study provided considerations for similar
deployments where environmental conditions were almost ideal. At Devils River in south-
western Texas, the survey area included varied terrain with less favorable conditions, and
submerged aquatic vegetation that blocked lidar and sonar measurements. Therefore,
we used a variety of measurement methods and demonstrated the feasibility of merging
airborne lidar measurements with GPS, sonar, and ground penetrating radar (GPR) record-
ings. The challenge was to align EM waves to each other, and we concluded the study by
adjusting the propagation speed of GPR radio waves by measuring the water temperature
and salinity.

In Laguna Madre, we conducted in-situ campaigns to understand the water proper-
ties and analyzed pixel reflectance to build spatial masks to distinguish land and water
boundaries. Moreover, with reflectance maps, we were able to predict and classify areas
that were impacted by turbidity. To align all measurements with each other, we converted
lidar measurements to real world heights using the GEOID12B model, adjusted all mea-
sured depths to MSL, and applied applicable tide corrections, where applicable. The study
demonstrated that in large and remote survey locations where in-situ measurements may
not be practical or sufficient to cover all areas, satellite imaging pixel reflectance analysis
can provide a cost-effective means of evaluating the feasibility of conducting airborne lidar
surveys. Furthermore, lidar versus sonar depth comparison revealed adequate results that
exceeded the Special-Order standards set by the International Hydrographic Organization
(total vertical uncertainty < 0.26 m, depths shallower than 10 m, [42]).

Our study concludes that higher levels of turbidity (>2.7 NTU) reduced the correlation
confidence between sonar and lidar measurements and adversely impacted the confidence
in lidar measurements. We confirmed that lidar beams were not able to map 48% of
the lagoon bottom due to environmental and technical limitations, demonstrating an
important limitation of the technology. Nevertheless, airborne lidar bathymetry is detailed
and accurate, particularly in shallow and relatively transparent waters. Concluding our
study, we aimed to fill the gap in the literature with lidar mapping of water reservoirs
that are subject to diverse environmental conditions and excessively shallow depths. We
demonstrated that prior to airborne lidar data acquisition, researchers should investigate
the local wind and tide patterns, account for aquatic vegetation growth season, and plan
the airborne campaign accordingly.

6. Conclusions

In conclusion, we addressed doubts concerning the reliability of water bottom measure-
ments using airborne lidar and optical imaging methods to support bathymetric mapping
efforts in a hyper-saline lagoon in southern Texas. Overall, we conclude the following as
the answers to our research questions outlined in the introduction:

• Measuring the lagoon bottom with airborne lidar has practical and theoretical lim-
itations. This advanced technology is expensive but effective and produces highly
detailed vector data. Therefore, we suggest that researchers should carefully study
local environmental conditions and modify survey areas before the data acquisition
campaign.

• In-situ campaigns are an essential practice of mapping with airborne lidar bathymetry.
As demonstrated, we recommend careful planning and executing in-situ campaigns
with airborne missions. Sonar surveys are invaluable to confirm the bottom (or depth)
measurements attained by airborne lidar; however, sonar units require calibration to
align with the survey location’s environmental conditions.

• Our study highlights the need to conduct satellite imaging analysis before surveying
estuaries and oceanic areas using an airborne lidar system applicable to large inland
water reservoirs. Analysts can estimate and modify their survey requirements with
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the resultant pixel reflectance analysis and predict the areas with low water quality
that may directly influence the remotely sensed bottom measurements.

• Airborne lidar bathymetry is more detailed compared to SDB. Coarse grid sampling
of satellite bathymetry limited a comprehensive depth comparison and cross-use
of datasets. However, the study results indicated adequate agreement between the
measurements, particularly in the relatively transparent sections of the lagoon.

In Lower Laguna Madre, the water conditions were variable, and depths were shallow
for effective airborne lidar mapping efforts. Our study indicated that 51% of the lagoon
was in acceptable limits of bathymetric mapping (deeper > 0.4 m). However, we should
emphasize that even in transparent water conditions, shallower depths would push the
theoretical and practical bottom mapping limitations of the technology. It is common
that an ALB can map depths exceeding 40 m, and SDB is effective up to 20 m in ideal
environmental conditions, and both technologies have proven their effectiveness. However,
we intended to fill the gap in the literature that these technologies are not novel, but they
have theoretical and practical limitations, particularly in dynamic estuaries and oceanic
environments.
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UTM E Universal Transverse Mercator–Easting (m)
UTM N Universal Transverse Mercator–Northing (m)
Avg. NTU Average measured turbidity in nephelometric turbidity unit
Secchi Observed Secchi disk depth (m)
Kd Diffuse attenuation coefficient
VB Water bottom is visible to the observer
WP Waypoint location marked for a sonar measurement (observer-triggered

measurement)
Avg. sonar depth Average depth of all sonar measurements in a 1 m radius (automatically

derived)
CL0 Lidar vector data, Class 0, surface, NIR + green wavelength.
CL7 Lidar vector data, Class 7, bottom, green wavelength, standard bathymetric

algorithm
CL10 Lidar vector data, Class 10, bottom, green wavelength, enhanced bathymetric

algorithm
N/A Not Applicable



Remote Sens. 2023, 15, 5754 19 of 23

Appendix A

Table A1. Turbidity and Sonar Depth Measurements.
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2017-05-01 681,989.95 2,891,306.11 0.60 0.70 0.61 0.64 VB N/A 1.49 1.13 1.06 N/A

3 2017-05-01 682,546.59 2,891,234.73 2.21 2.49 2.81 2.50 VB N/A 1.85 1.83 1.08 2.16

4 2017-05-01 681,723.88 2,891,259.92 2.10 2.02 2.01 2.04 VB N/A 1.26 1.29 1.34 1.53

5 2017-05-01 680,939.15 2,891,230.51 2.38 2.99 2.79 2.72 VB N/A 1.38 1.38 1.42 1.50

6 2017-05-01 681,101.49 2,890,944.68 1.60 1.81 1.99 1.80 VB N/A 1.35 1.38 1.40 1.47

7 2017-05-01 681,434.53 2,890,731.42 1.90 2.16 2.24 2.10 VB N/A 1.38 1.30 1.23 1.41

8 2017-05-01 681,985.00 2,890,432.00 2.82 3.70 4.55 3.69 VB N/A 1.33 1.33 1.37 1.47

9 2017-05-01 682,282.75 2,890,039.69 2.81 3.18 3.26 3.08 VB N/A N/A 1.27 1.34 1.59

10 2017-05-01 681,075.64 2,889,328.48 1.75 1.52 1.99 1.75 VB N/A 1.19 1.22 1.11 1.40

11 2017-05-01 680,624.58 2,888,914.09 3.36 3.62 4.10 3.69 VB N/A 1.28 1.33 0.05 N/A

12 2017-05-01 680,311.53 2,889,005.78 4.64 5.26 5.68 5.19 VB N/A 1.45 1.44 1.44 1.63

13

2

2017-05-05 678,831.78 2,894,403.48 1.31 1.51 1.59 1.47 VB N/A 1.28 1.25 1.37 N/A

14 2017-05-05 678,364.02 2,894,849.48 1.34 1.82 1.81 1.66 VB N/A 1.19 1.21 1.35 1.38

15 2017-05-05 677,943.08 2,895,043.14 2.79 2.93 3.39 3.04 VB N/A 1.23 1.23 1.13 N/A

16 2017-05-05 677,471.31 2,895,420.79 3.66 7.90 8.02 6.53 VB N/A 1.40 1.40 1.49 1.63

17 2017-05-05 677,293.56 2,895,990.83 3.78 11.50 12.20 9.16 VB N/A 1.26 1.42 N/A 1.85

18 2017-05-05 676,829.28 2,896,189.47 15.90 17.30 19.30 17.50 0.6 2.67 1.61 1.63 N/A 2.17

19 2017-05-05 677,032.68 2,897,036.17 10.20 15.50 16.40 14.03 0.7 2.29 1.52 1.53 N/A 1.97

20 2017-05-05 677,611.28 2,897,369.09 7.57 9.04 11.00 9.20 0.85 1.88 1.38 1.35 1.54 1.22

21 2017-05-05 677,341.54 2,898,209.33 4.27 4.95 5.52 4.91 VB N/A 1.45 1.41 1.67 1.72

22 2017-05-05 676,915.17 2,897,588.56 8.69 11.50 12.30 10.83 0.7 2.29 1.57 1.54 1.27 1.59

23 2017-05-05 677,020.09 2,896,493.08 10.50 12.80 12.70 12.00 0.9 1.78 1.57 1.57 N/A 2.58

24 2017-05-05 676,501.32 2,895,309.69 14.00 18.90 19.70 17.53 0.8 2.00 1.66 1.67 N/A N/A

25 2017-05-05 677,336.30 2,894,813.24 3.85 3.43 3.90 3.73 VB N/A 1.42 1.42 1.51 1.73

26

3

2017-05-12 672,597.73 2,888,097.92 11.10 15.70 16.70 14.50 0.7 2.29 1.83 1.79 N/A 1.96

27 2017-05-12 673,745.52 2,887,921.14 11.10 17.10 21.70 16.63 0.7 2.29 1.97 1.97 N/A 2.04

28 2017-05-12 674,964.06 2,887,817.43 9.48 13.50 16.10 13.03 0.7 2.29 1.90 1.90 N/A N/A

29 2017-05-12 676,179.75 2,887,926.15 8.91 11.90 12.10 10.97 0.85 1.88 2.13 2.15 N/A N/A

30 2017-05-12 676,968.38 2,888,786.30 3.12 4.00 5.05 4.06 1.3 1.23 1.52 1.51 1.25 1.45

31 2017-05-12 675,270.36 2,888,720.85 9.03 15.80 19.00 14.61 0.7 2.29 1.92 1.94 N/A N/A

32 2017-05-12 674,052.80 2,888,881.79 10.80 13.40 13.20 12.47 0.8 2.00 2.02 2.01 N/A 1.86

33 2017-05-12 674,961.02 2,889,283.61 15.20 15.00 16.50 15.57 0.75 2.13 2.06 2.02 N/A N/A

34 2017-05-12 676,290.01 2,889,264.61 5.44 8.22 9.33 7.66 1 1.60 1.90 1.89 N/A 2.61

35 2017-05-12 676,841.89 2,889,261.02 1.80 2.80 3.09 2.56 VB N/A 1.59 1.55 1.33 1.51

36 2017-05-12 677,419.18 2,889,228.25 2.47 3.33 4.08 3.29 VB N/A 1.59 1.54 1.33 1.48
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Appendix B. Lidar Bathymetry Waveform Classes
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