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Abstract: Polarimetric synthetic aperture radar (PolSAR) image classification, a field crucial in remote
sensing, faces significant challenges due to the intricate expertise required for accurate annotation,
leading to susceptibility to labeling inaccuracies. Compounding this challenge are the constraints
posed by limited labeled samples and the perennial issue of class imbalance inherent in PolSAR image
classification. Our research objectives are to address these challenges by developing a novel label
correction mechanism, implementing self-distillation-based contrastive learning, and introducing
a sample rebalancing loss function. To address the quandary of noisy labels, we proffer a novel
label correction mechanism that capitalizes on inherent sample similarities to rectify erroneously
labeled instances. In parallel, to mitigate the limitation of sparsely labeled data, this study delves
into self-distillation-based contrastive learning, harnessing sample affinities for nuanced feature
extraction. Moreover, we introduce a sample rebalancing loss function that adjusts class weights
and augments data for small classes. Through extensive experiments on four benchmark PolSAR
images, our approach demonstrates its effectiveness in addressing label inaccuracies, limited samples,
and class imbalance. Through extensive experiments on four benchmark PolSAR images, our
research substantiates the robustness of our proposed methodology, particularly in rectifying label
discrepancies in contexts marked by sample paucity and imbalance. The empirical findings illuminate
the superior efficacy of our approach, positioning it at the forefront of state-of-the-art PolSAR
classification techniques.

Keywords: label correction; self-distillation contrastive learning; sample rebalancing; polarimetric
synthetic aperture radar (PolSAR) image classification

1. Introduction

Polarimetric synthetic aperture radar (PolSAR) is an advanced and important remote
sensing technique owing to its distinctive ability to transmit and receive electromagnetic
waves across various polarization modes [1]. This unique capability enables PolSAR to
provide richer information on the scattering properties of Earth’s surface. Consequently,
PolSAR image classification, which is oriented towards categorizing image pixels into
corresponding terrain classes, becomes instrumental for a spectrum of applications ranging
from sea monitoring and agriculture to geological mapping and strategic governmental
decisions [2]. PolSAR image classification has evolved, leading to diverse methodologies
categorized into three main types: (1) physical-scattering-mechanism-based methods [2–4],
(2) statistics-based methods [5,6], and (3) machine-learning-based methods [7–10]. Deep
learning, with its superior feature representation, has significantly advanced PolSAR image
classification [11].

However, PolSAR classification faces challenges, particularly noisy and sparse labels.
These distortions misguide the model to assimilate noise patterns instead of the authentic
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features. Limited annotations further challenge model accuracy and generalization. This
paper seeks to unravel the following conundrum: How to improve the accuracy and
robustness of the DNN-based PolSAR image classification method in a weak label scenario,
i.e., with noisy and sparse labels?

Addressing noisy labels has engendered the inception of two predominant method-
ologies [12–14]. The first strategy focuses on the identification and purgation of these
erroneous labels prior to model training [15,16]. This rectification can be accomplished
through manual scrutiny, clustering, or the deployment of outlier detection algorithms.
The alternative approach pivots towards the direct training of noise-robust models on
corrupted datasets [17,18]. This necessitates the modification of the conventional loss
function, accounting for the noisy labels. Ensemble learning, epitomized by methodologies
like bootstrapping [19], self-training [20], and co-teaching [21], emerges as a robust tool.
Such strategies harness the predictive prowess of an array of models, thereby refining
overarching performance.

The field of image processing has traditionally seen a surge of research focusing
on mitigating the challenges posed by noisy labels. In the specific domain of PolSAR
image classification, the investigation into noisy labels remains comparatively nascent.
Ni et al. [22] pioneered an insightful difference distribution diagram, articulating the intrin-
sic probability of a training sample being untainted. This probabilistic assessment paved
the way for distinguishing clean labels from their noisy counterparts. Further innovation
was heralded by Hou et al. [23] through their generative classification framework, adeptly
tackling both the predicaments of unfaithful limited labels and the perturbations intro-
duced by outliers in PolSAR pixels. Nevertheless, contemporary algorithms harbor intrinsic
limitations. In contexts enriched with labels, eliminating detected noisy labels might not
inflict significant harm. Yet, in scenarios marked by label paucity, such removal intensifies
the small-sample dilemma, leading to potential algorithmic performance deterioration.
Furthermore, an evident lacuna remains, as these methodologies overlook the potential
leverage that can be garnered from the inherent similarity between training samples, which
is quintessential for labeling.

To address these challenges, our research introduces a relabeling mechanism. This
endeavor is grounded in the pivotal assertion that the discriminative model features
extracted from neighboring samples with the same label play a vital role in driving the
relabeling mechanism’s efficacy.

Parallelly, the PolSAR image classification domain grapples with the issue of label
scarcity. With the progress of deep learning, many PolSAR image classification meth-
ods [24–28] have been proposed to alleviate this problem. Semisupervised learning [29–31]
ambitiously seeks to optimize classifier generalization, leveraging both labeled and un-
labeled data. Active learning [11,32], in its quest, adopts a selective approach to acquire
salient samples for labeling, aiming for maximized learning efficiency. Transfer learn-
ing [33,34], drawing from affluent source domains, endeavors to uplift the performance
in target domains characterized by data scarcity. Reinforcement learning [35,36], albeit
less prevalent in PolSAR terrains, adopts a unique perspective, emphasizing sequential
decision making and reward maximization.

Venturing into a distinct trajectory, self-supervised learning [20,24,25] exploits the
data’s inherent properties to formulate alternative guidance signals, often involving pre-
text tasks for model training. This paradigm notably circumvents the label reliance in
semisupervised learning, human intervention in active learning, domain-specific insights
in transfer learning, and environmental interactions in reinforcement learning. However,
self-supervised learning’s capability to harness the intrinsic label information positions it
advantageously, enabling nuanced feature extraction. Such prowess is manifested through
its “pseudolabel” generation, correlating closely with true labels, and thus fostering mean-
ingful data interpretations without extensive manual annotations [24].

Contrastive learning, as an important branch of self-supervised learning, while achiev-
ing commendable success in natural image classifications, remains scarcely explored within
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the domain of PolSAR images. TCSPANet, as delineated by [37], integrates a dual-stage
methodology: Initially, TCNet, rooted in contrastive learning, facilitates unsupervised
representation learning. Subsequently, a subpatch attention encoder (SPAE), structured
upon the transformer paradigm, models the context within patch samples. In a distinct
approach, Zhang et al. [26] introduced the PolSAR-specific contrastive learning network
(PCLNet). This network employs an unsupervised pretraining phase, anchored on in-
stance discrimination [38], to harness valuable representations from unlabeled PolSAR data.
Further, the self-supervised PolSAR representation learning (SSPRL) method [25] draws
inspiration from the accomplishments of BYOL [19]. It is pertinent to note the following
differences: TCSPANet operates through a bifurcated framework encompassing TCNet
and SPAE, PCLNet capitalizes on an instance-discrimination-based pretraining phase, and
SSPRL deploys a twin network structure alongside positive pairs, aiming for optimal
efficiency across varied domains.

DINO [39] distinguishes itself by leveraging an exponential moving average (EMA)
and central updates to fortify knowledge distillation. Unlike SSPRL, DINO uses EMA to
seamlessly integrate the parameters of the online network with its target counterpart, an
innovation that curtails parameter oscillation, thereby augmenting model stability. Within
the DINO architecture, the teacher model’s output serves to refine a center vector, which
subsequently modulates the teacher model’s results. This innovative step considerably
bolsters the training efficacy of the student model. Recognizing its potential, we meld
it into our framework, aiming to address the persistent issue of limited PolSAR-labeled
data availability.

A pivotal concern in real-world datasets is the unequal distribution of object types,
culminating in sample imbalance challenges. This imbalance frequently translates to
suboptimal performance for minority classes. To address this, our research introduces a
novel Self-Distillation-Based Correction Strategy (SDBCS), which integrates a label cor-
rection strategy, a sample rebalancing loss function, and data augmentation targeted for
minority classes, enhancing overall classification accuracy. Our research proffers three
pivotal contributions:

(1) We propose a new method using a feature distance matrix to correct label inaccuracies.
This matrix, derived from contrastive learning principles, helps identify and rectify
mislabeled samples by analyzing pixel similarities.

(2) We explore self-distillation learning to overcome the scarcity of labeled data in PolSAR.
This approach utilizes inherent sample similarities for discriminative representation
and achieves effective results, even with limited labels.

(3) Our strategy includes a rebalancing loss function and a data augmentation method for
minority classes, significantly improving classification accuracy for minority classes.

2. Literature Review
2.1. Noisy Label Correction

The challenge of noisy labels in deep learning has become particularly critical in
recent times. Models trained on noisy datasets can become susceptible to suboptimal
representations, causing degraded performance in subsequent tasks. Addressing the noisy
label issue, the research community has primarily focused on two solutions: (1) methods
that train noise-resilient models directly on corrupted datasets and (2) methods that detect
and rectify noisy labels before model training.

The former strategy involves modeling noise patterns directly, employing techniques
such as robust loss functions [40,41], and noise corrections via noise transition matrices [15].
For instance, Ma et al. [18] developed a loss function that augments the resilience of DNNs
against noisy labels. However, these methods often falter in the face of intricate noise
patterns. Conversely, the latter strategy, gaining traction in recent years, particularly
emphasizes sample selection. While some early approaches focused on curtailing the
influence of noisy samples by training on selected clean subsets [42,43], more contemporary
methods exploit semisupervised learning techniques [44]. Nonetheless, these techniques
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frequently rely on assumptions about noise patterns, which can be detrimental if real-world
noise deviates from these assumptions.

The intricacy of labeling PolSAR data, given the specialized expertise it demands,
cannot be underestimated. This involves conferring precise class labels to specific pixels or
regions within a PolSAR image, thereby setting the stage for frequent mislabeling. Such
mislabeling, i.e., noisy labels, will inevitably undermine model performance. Notably, the
differential distribution diagram delineated by [22] offered insights into clean sample prob-
abilities, assisting in discerning between clean and noisy labels. Hou et al. [23] tackled the
quandary of unreliable limited labels using a blended generative classification framework,
wherein both labeled and unlabeled pixels were harnessed to derive high-level features.

2.2. Label Scarcity Problem with Contrastive Learning

PolSAR image classification, powered by supervised CNNs, has shown notable success.
Yet, amassing large labeled datasets is both costly and time-intensive. Furthermore, limited
training data can lead to model overfitting and reduced generalization. Given these issues,
recent efforts, including label scarcity learning [45,46], aim to extract meaningful knowledge
from minimal labeled samples. Specifically, methods under label scarcity learning, such as
those cited, either harness learned optimization [47] or execute a feed-forward pass [48–50]
without weight modifications. However, the methods employing a feed-forward pass often
necessitate intricate inference protocols, reliance on RNN architectures, or task-specific
fine-tuning [51,52].

Remarkable advancements in unsupervised representation learning have been real-
ized via the advent of contrastive learning methodologies. By juxtaposing positive and
negative samples in a self-supervised fashion, these strategies seek to derive salient data
representations. For instance, the InstDisc [38] technique was the first to innovate a discrimi-
nation task, leveraging a memory bank to accumulate negative samples, thereby creating an
expansive and consistent dictionary. Meanwhile, methods like CPC v1 [53], CMC [54], and
MoCo v1 [55] have offered a multitude of contrasting and clustering tasks. Grill et al. [19]
introduced BYOL, which employs one view’s extracted feature to predict the feature of
another view from the same instance, utilizing a momentum-based moving average for
updating both encoder and representation. Yet, for all their success, contrastive learning
techniques still grapple with achieving pinnacle accuracy on certain downstream assign-
ments, particularly when benchmarked against supervised methods. Building upon prior
successes, DINO emerged as a proposed solution to address these challenges, showcasing
enhanced quality in learned representations. Notably, Caron et al. [39], drawing inspiration
from BYOL, introduced several innovative techniques to elevate the performance metrics
of self-supervised learning strategies.

Despite the evident potential of contrastive learning in generic image classification,
its application remains conspicuously underrepresented in PolSAR imagery. Noteworthy
explorations by Cui et al. [37] and Zhang et al. [25,26] have begun harnessing the merits of
methods such as SimCLR, InstDisc, and BYOL for self-supervised PolSAR representation
learning. These trailblazers proposed an avant-garde, self-supervised PolSAR representa-
tion learning paradigm, underscoring the potential synergy between contrastive learning
and PolSAR imagery, especially in scenarios punctuated by label paucity.

To summarize, despite the widespread use of deep learning in PolSAR image clas-
sification, its effectiveness heavily relies on extensive annotations. This study aims to
bridge the noticeable gap in applying contrastive learning within the PolSAR context. Our
work differentiates itself by introducing a label correction strategy that utilizes inherent
similarities among training samples to correct erroneous labels, which effectively solves
the dilemma of noisy labels. Furthermore, we integrate self-distillation-based contrastive
learning and a sample rebalancing loss function into an integrated framework, remarkably
improving the classification performance on the PolSAR dataset, which presents label
scarcity and class imbalance challenges.
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3. Methodology
3.1. Overview of Our Method

In the subsequent sections, we delineate our methodology, beginning with the estab-
lishment of pertinent notations, followed by an exposition of the proposed framework.
Given a PolSAR image, the PolSAR feature data are represented as X ∈ RH×W×D, where
H and W are the height and width of the PolSAR image, respectively, and D signifies the
dimension of the chosen raw feature vector. The objective of our approach is to allocate a
class label to each pixel in the image.

Figure 1 encapsulates the architecture of our proposed model, integrating modules for
self-distillation-based feature extraction, label correction, and classification. Our approach
commences with a finite set of randomly chosen pixels possessing noisy labels. In the
initial phase, a convolutional neural network (CNN) is trained employing self-distillation-
based deep representation learning. Following this, a global distance matrix is constructed,
facilitating the identification of pixels bearing the highest resemblance for each sample.
The labeling process then ensues, wherein labels are attributed based on the prevalence
of a particular label within each cohort of similar pixels. Conclusively, to address class
imbalances, a sample rebalancing loss function is introduced, which duly modulates the
weights designated to varying classes, thereby refining classification accuracy.

Figure 1. The proposed methodological pipeline encompasses three distinct modules: self-distillation-
based feature extraction, label correction, and classification.

3.2. Raw Feature Extraction

We initiate by procuring the unprocessed polarimetric attributes, serving as the foun-
dational input for our methodology. The resultant 6D feature set, symbolized as RF-i for i in
the range 1 to 6, is derived from the complex coherency polarimetric matrix T, constructed
using the Pauli basis of the PolSAR scattering matrix [56]. These attributes encapsulate
critical information about the scattering mechanisms and are crucial for effective PolSAR
image analysis.

As illustrated in Table 1, within this 6D feature set, RF-1 represents the total polarimet-
ric power, known as SPAN (SPAN = T11 + T22 + T33), expressed in decibel units. This feature
provides a baseline measure of the total reflected energy, fundamental in understanding
the overall scattering characteristics of the observed scene. RF-2 and RF-3 symbolize the
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normalized power ratios of T22 and T33, respectively. In the coherency matrix T, T22, and
T33 represent the power received in different polarization channels, such as horizontal–
horizontal (HH) or vertical–vertical (VV), depending on the orientation of the PolSAR
system. These elements are essential for analyzing the scattering behavior of different
surface types in PolSAR imagery. By normalizing these power values against the SPAN, we
obtain a relative measurement that is more robust to variations in absolute signal strength.
RF-4 to RF-6 denote the relative correlation coefficients linked to the cross-polarization
components T12, T13, and T23. These coefficients measure the degree of correlation between
different polarimetric channels, providing insights into the geometrical and dielectric prop-
erties of the scattering targets. They are particularly useful in distinguishing various surface
types and man-made structures, which often exhibit unique polarimetric signatures.

Table 1. Raw polarimetric features employed in the proposed method.

Designation Description

RF-1 = 10log10(SPAN) Polarimetric total power in decibel
RF-2 = T22

SPAN Normalized ratio of power T22

RF-3 = T33
SPAN Normalized ratio of power T33

RF-4 = |T12|√
T11·T22

Relative correlation coefficient of T12

RF-5 = |T13|√
T11·T33

Relative correlation coefficient of T13

RF-6 = |T23|√
T22·T33

Relative correlation coefficient of T23

The necessity of this raw feature extraction process stems from its capability to con-
vert complex and multidimensional PolSAR data into a format that is interpretable and
applicable to machine learning algorithms. Features like T22 and T33 help in understanding
the scattering behavior of different surfaces, crucial for accurate image classification. The
feature extraction process thus translates PolSAR data into a form that machine learning
algorithms can more effectively process and analyze. The selection of these particular
features is informed by their established effectiveness in extracting meaningful information
from PolSAR data, as highlighted in the existing literature [57]. These features assist in
distinguishing different surface types and physical properties in the observed area, en-
hancing the classification accuracy. By employing these specific features, our approach not
only capitalizes on the intrinsic properties of PolSAR data but also significantly enhances
the potential for precise and robust classification outcomes. The scaling of RF-2 through
RF-6 to the interval [0, 1] ensures uniformity in feature magnitude, which aids the learning
algorithm in effectively processing and interpreting the data. This methodical approach to
feature extraction lays a solid foundation for the subsequent machine learning processes,
enabling our model to more accurately interpret and classify the intricate patterns inherent
in PolSAR imagery.

3.3. Self-Supervised Learning with Knowledge Distillation

As we navigate through the challenges instigated by noisy labels and a scant quan-
tity of labeled samples, we explore avant-garde techniques to bolster the discriminative
prowess of our model. The presence of label noise and limited labeled samples present
a dichotomy; while we require robustly discriminative features for label correction and
subsequent classification, using these labels directly for learning might culminate in procur-
ing misleading discriminative features. Enter contrastive learning, which offers a resolute
solution by gleaning more illuminative supervised signals from raw unlabeled PolSAR
data in an unsupervised fashion. To amplify the discriminative capacity of the model, we
enlist knowledge distillation methodologies. At its core, knowledge distillation conceives a
streamlined student model and hones it through the mentorship of a superior-performing
teacher model. The quintessence of this paradigm lies in transmitting knowledge from the
teacher to the student, optimizing performance.
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Our approach heralds a more kinetic interaction between teacher and student models.
This synergy is materialized by gauging the disparity between the outcomes of the student
and teacher models. This ushers in our feature extraction technique based on self-distillation
contrastive learning. In the subsequent sections, we delve deep into aspects encompassing
pretraining tasks, loss functions, and the architecture of the encoder and self-distillation
module.

3.3.1. Pretext Task and Loss Function

In traditional supervised learning, models are honed to discern the intricate relation-
ships between input data and their associated output labels, necessitating the availability
of class information. Diverging from this paradigm, we propose an approach grounded in
instance discrimination tasks. Within this framework, a neural network is self-supervised,
training itself on two distinct data augmentation views. This methodology capacitates the
network to concurrently project two variant views of an identical sample to a congruent rep-
resentation space while projecting views from distinct samples to separate representation
spaces. The inherent advantage is that the samples intrinsically act as their own supervisors,
obviating the need for manual labeling. This strategy paves the way for harnessing vast
repositories of unlabeled PolSAR images. Furthermore, by pretraining this network, we
establish a deep feature network that is transferable. The network exhibits strong discrimi-
native feature extraction capabilities, facilitating accurate label correction. Additionally, it
adeptly addresses the small-sample challenges often encountered in classification tasks.

Figure 1 illustrates our proposed self-distillation contrastive learning model tailored
for PolSAR data. This model is architecturally segmented into two networks: a student
network, gθs , and a teacher network, gθt , visually discernible through orange and green
modules, respectively. Both these networks, characterized by their respective parameters
θs and θt, are intrinsically structured into three foundational components: an encoder, a
projection head, and a predictor. Upon the sequential processing through these components,
each network computes a probability distribution over Q dimensions, respectively denoted
as Ps and Pt. Within the framework of our self-distillation contrastive learning approach,
the designed loss function plays a pivotal role. It serves to nudge the neural networks
into aligning similar instances in close proximity within the feature representation space,
while simultaneously pushing apart dissimilar instances. This strategic configuration
aids in fostering the extraction of robust discriminative features. A key element in this
mechanism is the temperature parameter, denoted as τs > 0, which dictates the acuteness
of the distribution contour of Ps as

Ps(x)(i) =
exp

(
gθs (x)(i)

τs

)
∑Q

k=1 exp
(

gθn (x)(k)
τs

) (1)

In a parallel fashion, the temperature parameter τt governs the sharpness of Pt. To
harmonize these distributions, we adopt a strategy of minimizing the cross-entropy loss
concerning the parameters θs of the student network, all the while maintaining the teacher
network gθt in a static state. The objective function can be formally expressed as

min
θs

H(Pt(x), Ps(x)) (2)

where the relationship H(a, b) = −a log b holds true. We generate a set of views, V, from
the PolSAR images, where views x1 and x2 are two randomly augmented views. Our
primary pursuit is encapsulated in the minimization of the loss, articulated as

min
θs

∑
x∈{x1,x2}

∑
x′∈Vx′ 6=x

H
(

P, P
(
x′
))

(3)
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To refine the parameters θs, we employ the stochastic gradient descent method, target-
ing the minimization of Equation (3).

3.3.2. Architecture of Encoder and Self-Distillation Module

In light of the aforementioned principles, we architected a network for self-distillation
contrastive learning. The encoder in our model incorporates the VGGNet-8 structure,
serving as a convolutional feature extractor designed for processing input images. It is
composed of three convolutional blocks, each containing two layers that use 3 × 3 convolu-
tional kernels, followed by a ReLU activation function and 2 × 2 max-pooling, effectively
capturing and processing image features. In parallel, the projection head transforms the
input feature vectors into a lower-dimensional space through dense layers, enabling the
learning of more compact yet abstract data representations while preserving crucial feature
information. Additionally, the predictor utilizes a fully connected layer to map these feature
vectors into Q dimensions. This dimensionality reduction is achieved using a softmax
activation function, which calculates the probability distribution across various classes,
ensuring an effective and efficient classification process.

During the training regime, neither network updates its parameters based on labeled
data. An input image, denoted as x, undergoes random augmentations to yield two distinct
variants, x1 and x2. Subsequently, these variants are independently channeled into both
the student and teacher networks. It is imperative to note that while these networks archi-
tecturally mirror each other, they possess unique parameters, thus fostering independent
learning and nuanced data comprehension. To achieve consistent representations, the
output of the teacher network is centralized by computing its mean over the entire batch,
subsequently normalizing these features across individual samples. Both networks yield an
M-dimensional feature vector, which undergoes further normalization via a temperature-
regulated softmax operation across its dimensions. The congruence between the feature
vectors from the student and teacher networks is ascertained using a cross-entropy loss.
This loss function measures the discrepancy between the predicted probability distributions
of the two networks. By striving to minimize this loss, we compel the networks to generate
analogous representations for equivalent input samples, thus enhancing the knowledge
transfer from the teacher to the student. It is paramount during training to restrict the flow
of gradients solely to the student network. To achieve this, we deploy a stop-gradient opera-
tor on the teacher network, ensuring its immunity from external updates and guaranteeing
that only the student network receives iterative refinements.

Our methodology presents a notable divergence from traditional knowledge distilla-
tion practices, especially in its approach to temperature scaling. Conventionally, the teacher
temperature parameter is held invariant throughout the training, serving to temper the
fluctuations in its output probabilities. In contrast, our approach harnesses a temperature
scheduling mechanism that methodically diminishes the temperature of the teacher model
as training advances. The initiation phase employs a heightened temperature to ensure a
robust training foundation, which is progressively tapered to bolster the distillation impact.
By refashioning the teacher model’s knowledge, manifested as soft targets or feature repre-
sentations, we aim to effectively shepherd the student’s learning trajectory. Furthermore,
we introduce a mechanism for updating the center vector based on the outputs of the
teacher model. This innovation not only enhances knowledge distillation but also marks a
distinction from traditional methodologies.

Unlike the conventional approach of initializing the teacher network by directly
copying the student network’s weights, our strategy crafts the teacher network based on
antecedent iterations of the student network. This process is refined using the nuances of the
exponential moving average, as demonstrated by the following rule: θt ← λθt + (1− λ)θs.

As training ensues, we adopt a λ value that commences at 0.996 and ascends, tracing
a cosine trajectory until it culminates at unity. Consequently, in the nascent stages, the
teacher network’s parameters gravitate swiftly toward their student counterparts. Yet, as
the training journey evolves, this adaptation pace decelerates, culminating in a poised
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equilibrium. This meticulously crafted strategy strikes a harmonious balance between
maintaining the stability of the teacher network and optimizing its directive potency
on the student network’s representations. To encapsulate, our proposed self-distillation
contrastive learning method undergoes cyclical refinements, capitalizing on variances
between views to adeptly mediate the knowledge transference between the student and
teacher constructs. The outcome of this innovative methodology is the adept extraction of
discerningly potent features, leading to a marked enhancement in model proficiency.

4. Enhancing Classification Accuracy

In this section, we address two pivotal aspects of classification accuracy: label cor-
rection and addressing class imbalance. The label correction module corrects mislabeled
instances, while our class imbalance strategy ensures a fair representation of all classes.
This dual approach is crucial for the precise categorization of PolSAR data, where both label
quality and balanced class representation significantly impact the classifier’s performance.

As illustrated in Figure 2, our proposed label correction strategy capitalizes on the
inherent affinities among training samples to amend erroneously assigned labels. Within
this strategy, the backbone network of a contrastive learning framework is employed to
distill features and create a comprehensive distance matrix encompassing all training
samples. For each pixel, we then identify its top-K nearest samples, based on the predefined
distance metric. The label that exhibits the highest frequency among these nearest samples
is then designated to the pixel under consideration. This approach adeptly harnesses
representational affinities to ameliorate the classification of incorrectly labeled instances.

Figure 2. The label correction procedure can be delineated as depicted in this figure. Initially, a global
distance matrix is constructed to discern pixels demonstrating the paramount similarity to individual
samples. Subsequent to this step, the label for each pixel is determined based on the predominant
label within its associated cluster of similar pixels.

Consider a scenario wherein a sample, erroneously labeled under a non-Stembean cate-
gory, requires rectification, given that its ground truth designation is Stembean. Assuming a
top-K threshold of 6, the six proximal samples in the feature space relative to this label are
selected. The distribution among these reveals 1 Grass label, 5 Stembean labels, and no other
categories. As a result, the Stembean category emerges with a probability of 0.83, surpassing
the stipulated threshold for label correction. Consequently, the label is rectified to Stembean.

To better understand the pseudocode of our label correction algorithm presented in
Algorithm 1, it is essential to define some key variables used within it. The total pixel count
is denoted as N, calculated as H ×W, where H and W represent the height and width,
respectively. We denoted the set of labeled pixel pairs as L = {(x1,t1),(x2,t2), . . . ,(xn,tn)},
where X and Y represent the data and label parts of L, respectively, and n is significantly
smaller than N. Within this context, M denotes the total number of classes. The label of each
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sample xi corresponding to the one-hot label vector yi is expressed as li = argj[yi(j) = 1] ∈
{1, . . . , M}. The objective of our approach is to allocate a class label yi to each pixel i, where
i ∈ {1, 2, . . . , n}. Algorithm 1 delineates the pseudocode of our advanced label correction
algorithm, which intakes both original features and augmented image labels. The primary
objective of this module is to redress noisy labels. Its foundational architecture, denoted as
f , is sculpted through self-distillation rooted in contrastive learning. For brevity, we define
fi as the representational feature of the sample xi. p fi

is the projection head derived from p f ,
which exemplifies the encoder’s prowess in capturing intricate, high-dimensional features.
Additionally, p f is employed to construct a K-Nearest Neighbors Classifier (KNNC) kq,

with kqi
∆
= kq

(
p fi

)
representing its predictive vector.

Algorithm 1: Label Correction Algorithm.

1 Input:
(X ,Y)
n represents the size of the training set
Sample relabelling threshold θs
Max epochs E
p f represents the feature extractor
YE is a list of elements denoted by Ye

2 Output:
The clean label of Y

1: Data augmentation on small classes:
2: for i = 1 to n then
3: Extract feature
4: end for
5: for i = 1 to n then
6: for j = 1 to n then
7: Calculate similarity between each representation: Equation (4)
8: end for
9: for e = 1 to E then

10: for i = 1 to n then
11: Measure of consistency ci: Equation (6)
12: if ci < θs then
13: lr

i is likely to be wrong
14: else
15: yr

i ← lr
i

16: end if
17: YEi = yr

i
18: end for
19: for j = 1 to E then

20: Yj = Maxj
n
∑

i=1
YEj

21: end for

The affinity between the representations p fi
and p f j

of samples xi and xj is articulated
as sij, where both i and j iterate from 1 to n. The cosine similarity is computed as

sij =
p f

T
i p f j∥∥∥p fi

∥∥∥
2

∥∥∥p f j

∥∥∥
2

(4)
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This remains our measure of choice. The index set for the S-nearest neighbors of
sample xi in X , predicated on this similarity, is denoted as Ni. For every sample xi, the
normalized label distribution is computed as

k′qi
=

1
S ∑

n∈Ni

yr
n (5)

A subsequent balanced version, kqi ∈ RM, adjusts for the label distribution π =
N
∑

i=1
yir

inherent to the dataset, with kqi = π−1k′qi
, where π−1 comprises the inverse of π’s entries,

compensating for potential sample selection biases arising from class imbalances.
For each specific sample, we ascertain instances manifesting maximal similarity using

their respective distance metrics, and based on these proximate samples, we proceed to
refine the associated labels. For every pixel, the foremost top-K nearest samples delineated
by the designated distance metric are identified. We introduce a consistency metric, repre-
sented as ci, which gauges the congruence between sample label lr

i = arg max jyr
i (j) and

the prediction sourced from KNNC:

ci =
kqi

(
lr
i
)

maxjkqi(j)
(6)

This metric is derived by dividing the value of the distribution kqi corresponding to
the label lr

i by its predominant peak max jkqi(j). A pronounced ci value for a given sample
xi insinuates a consensus among its neighboring samples in favor of its prevailing label
lr
i , suggesting its likely accuracy. Applying a threshold θs to ci, a pristine subset (Xc,Y r

c )
is derived. By default, we utilize θs = 0.65, implying that a sample xi is deemed pristine
when the consensus, as reflected in kqi, among its neighbors corroborates its extant label yr

i .
In light of limited labeling, we propose a data augmentation strategy that capitalizes

on the original features and labeled image pairs. Specifically, our approach adopts an offline
data augmentation technique tailored for underrepresented or minor-category samples,
ensuring that transformations are conducted on the training data prior to their introduction
into the label correction module. Historically, popular data augmentation methodologies
have included translation, image flipping, rotation, and cropping, as corroborated by Her-
nandez et al. [58] and Wong et al. [59]. In alignment with these practices, we implement five
cardinal data augmentation operations, represented as AUG-i (where i ∈ 1, . . . , 4): AUG-1
denotes horizontal flipping, AUG-2 implies a 90° clockwise rotation, AUG-3 indicates a
180° clockwise rotation, and AUG-4 pertains to a 270° clockwise rotation. Subsequently,
each training image patch pair, (xi, yi) ∈ (X ,Y), where i ∈ 1, 2, . . . , n, is extended into
a series of eight image patch pairs. These include (xi, yi), (xR90

i , yi), (xR180
i , yi), (xR270

i , yi),
(xF

i , yi), (xFR90
i , yi), (xFR180

i , yi), and (xFR270
i , yi). The subsequent seven pairs in this se-

quence correspond to transformations driven by the operations AUG-1 through AUG-4.
With the refined labels in place, the primary objective of the classification module

is the categorization of PolSAR data. A projection head is utilized within this module,
projecting the representations gleaned from the network onto a dimensionality defined by
the class number. This is mathematically represented as

di(~x) =
exp

(
~WT

i ~x +~bi

)
M
∑

j=1
exp

(
~WT

j ~x +~bj

) (7)

Here,~x is the output of the projection head, with ~WT
• and~b• representing the associated

weight and bias, respectively. Furthermore, to effectively confront sample imbalance,
we introduce a rebalancing loss, denoted as LCACE, encapsulated in Equation (5). The
foundational loss function employed is the categorical cross-entropy [60], LCCE. The
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derivation of LCACE necessitates averaging two error magnitudes, both of which are scaled
by the categorical weight W.

LCACE = −W × [LCCE(~y, y)], (8)

Here, W is formulated as [ 1
N1

, 1
N2

, . . . , 1
NM

]T . In this equation, −→y symbolizes the
predicted label, y stands for the ground truth label, and Nk represents the count of labels in
the kth class.

5. Experimental Results

In this section, we provide a rigorous evaluation of our proposed method on four
PolSAR datasets, both from quantitative and qualitative perspectives. We initially detail the
experimental datasets and our chosen parameter settings in Section 5.1. In Section 5.2, an
ablation study is presented to highlight the significance of the four pivotal components of
our method: self-distillation backbone, noise label correction approach, sample rebalancing
loss function, and augmented dataset.

For clarity, we elucidate that the classification average accuracy (AA) for a class is
the proportion of accurately classified pixels for that class to the total pixels of the class,
whereas the overall accuracy (OA) refers to the proportion of all correctly classified pixels
in the entire image to the overall pixels in the image. Data with the highest accuracy are
highlighted in bold for emphasis.

5.1. Experimental Data and Parameter Setting

Figure 3 offers visual insights, and Table 2 presents a summary of the PolSAR images
employed in our experiments. The first dataset is composed of L-band four-look PolSAR
data, captured by the NASA/JPL AIRSAR system over the Flevoland region, the Nether-
lands, in August 1989, whose PauliRGB image is portrayed in Figure 3(a1). Spanning an
area of 750 × 1024 pixels, it offers a resolution of 6.6 m in the slant range and 12.1 m in the
azimuth direction. The dataset delineates 15 distinct land cover classes, as illustrated in
Figure 3(a2), with color codings that represent the legend of the ground truth map. The
number of pixels for each class is listed as below: Water (12,671), Barley (7156), Peas (9111),
Stembean (6103), Beet (10,050), Forest (14,822), Bare soil (3078), Grass (6269), Rapeseed (12,690),
Lucerne (9477), Wheat 1 (17,283), Wheat 2 (10,591), Wheat 3 (21,300), Building (476), and Potato
(15,292). For model training, a random subset comprising 1% of the labeled samples is
utilized. We then proceed to extract image patches of dimensions 12 × 12 × 6, where
12 × 12 signifies the window size and 6 represents the channel count.

Table 2. Summary of PolSAR datasets.

Dataset Size Spatial Resolution (m) Bands Classes

Flevoland (Dataset 1) 750 × 1024 6.6 × 12.1 L-band 15

Oberpfaffenhofen 1300 × 1200 1.5 × 1.8 L-band 3

Flevoland (Dataset 2) 1020 × 1024 6 × 12 L-band 14

San Francisco 1800 × 1380 3 to 100 C-band 5

Our second dataset, as illustrated in Figure 3(b1), comprises an E-SAR L-band image,
which covers a 1300 × 1200 pixel area in the Oberpfaffenhofen region, Germany. This
dataset includes several distinct land categories, with the number of pixels for each as
follows: Build-up areas (333,955), Wood Land (265,516), and Open Area (760,769). Its diver-
sity renders it apt for gauging the robustness of our method in varied landscapes. The
ground truth class labels and their associated color legends for this area are delineated in
Figure 3(b2), serving as a benchmark for our model’s predictions and enabling classification
accuracy quantification.
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Figure 3. In this study, a series of experimental images were employed to rigorously assess the efficacy
of our proposed method. The selected images encompass the following: Flevoland area dataset 1: (a1)
A PauliRGB depiction of the region. (a2) The associated ground truth class labels, supplemented by
their corresponding color codes. Oberpfaffenhofen Area Data Set: (b1) The PauliRGB representation
of the aforementioned area. (b2) Ground truth class labels, paired with their relevant color codes.
Flevoland area dataset 2: (c1) Another distinct PauliRGB portrayal from the Flevoland region. (c2) Its
affiliated ground truth class labels, along with the matching color codes. San Francisco Area Data Set:
(d1) The PauliRGB visualization of this iconic urban landscape. (d2) The ground truth class labels,
harmonized with their specified color codes.

Figure 3(c1) showcases the third dataset: an L-band AIRSAR image captured over
the Flevoland region in 1991. This dataset, spanning dimensions of 1020 × 1024 pixels, is
indispensable for discerning the radar responses of different land cover types and aug-
menting our grasp of PolSAR data interpretation. Figure 3(c2) manifests the corresponding
ground truth labels and color codings. This dataset, encapsulating 14 classes, is referred
to as Flevoland area dataset 2 in Section 5. This dataset includes a diverse range of land
types, with the number of pixels for each being Potato (21,539), Fruit (4062), Oats (1394),
Beet (10,795), Barley (24,543), Onions (2130), Wheat (26,277), Beans (1082), Peas (2160), Maize
(1290), Flax (4301), Rapeseed (28,235), Grass (4204), and Bare Soil (2952) pixels.

The fourth dataset entails a 25-look Radarsat-2 image of the San Francisco region
from 2008, with a size of 1800 × 1380 pixels. This dataset features five classes, with
the number of pixels for each being Sea (841,489), Vegetation (236,715), Urban 1 (80,616),
Urban 2 (348,056), and Urban 3 (282,975). Figure 3(d1) renders the PauliRGB image, while
Figure 3(d2) displays the ground truth class labels. Notably, in Figure 3(d2), void regions
are apparent, symbolizing unlabeled classes or interclass boundaries. These void zones are
excluded from experimental consideration and analysis.

The optimization algorithm was parameterized with a learning rate (τ) set at 0.001,
complemented by a momentum parameter of 0.9. During training, we utilized a batch size
of 128. For all experiments, we initialized with a noisy label rate of 20%. All experiments
were orchestrated within the TensorFlow framework, leveraging a Dell Z690 workstation
equipped with a GeForce RTX 3090 GPU and a memory capacity of 64 GB.

5.2. Ablation Study

The proposed method, predicated on the robust self-distillation mechanism for correct-
ing noisy labels, was rigorously tested on various prominent PolSAR images, as delineated
in earlier sections. This study bifurcates into three critical experimental segments, each
elucidating distinctive facets of the model’s capabilities. Initially, the research accentuates
the advantages of harnessing self-distillation for feature extraction, particularly when
maneuvering high-dimensional vector distance computations in PolSAR imagery. For this
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purpose, two contrasting experimentations were devised: one incorporating contrastive
learning and the other omitting it. To testify the effectiveness of each component of our
proposed SDBCS, we conducted four groups of experiments as follows: We start with
VGGNet-8 as our baseline, which trains directly on noisy-labeled samples. We then exam-
ine the influence of our label correction module with the VGGNet-8+CS model. Advancing
further, SDVGGNet-8+CS enriches the previous model by adding self-distillation-based
contrastive learning, aiming for enhanced feature extraction. The penultimate step in
our experimental series, SDVGGNet-8+CS+Aug, integrates data augmentation into the
SDVGGNet-8+CS framework to further improve the model’s resilience to noisy data and
enhance generalization. The culmination of our experimental series, the SDBCS frame-
work, incorporates data augmentation and balanced loss into SDVGGNet-8+CS, specifically
designed to overcome class imbalance and enhance the model’s classification efficacy.

We leverage the Oberpfaffenhofen dataset to verify the efficacy of our method. Table 3
elucidates the foundational methodology, wherein a VGGNet-8 neural network was trained
directly on the dataset, inclusive of the noise-labeled samples, sans any modification. This
primary approach served as a litmus test for gauging model performance. Resultant
accuracies across various classes were as follows: Build-up at 65.69%, Wood Land at 68.55%,
and Open Area at 84.87%. Consequently, the OA was pegged at 76.98%, with an AA of
73.04%. The Precision, which indicates the accuracy of positive predictions, was recorded
at 73.09%. The F1-Score, which balances precision and recall, was 73.05%, indicating a
moderate balance in the model’s ability to correctly identify classes and its robustness in
terms of recall. The Kappa statistic, measuring agreement beyond chance, stood at 60.96%,
suggesting a fair level of agreement. The Mean IoU, crucial for assessing the model’s
performance in segmenting classes, was 58.34%.

Table 3. OA values (%) of Oberpfaffenhofen area data for our proposed method.

Method Build-up Wood Land Open Area OA AA

VGGNet-8 65.69 68.55 84.87 76.98 73.04
VGGNet-8+CS 63.89 76.28 87.02 79.25 75.73

SDVGGNet-8+CS 72.94 91.13 88.22 85.04 84.10
SDVGGNet-8+CS+Aug 81.07 92.19 87.48 86.82 86.91

SDBCS 79.08 89.12 92.38 88.48 86.86

Method Precision F1-Score Kappa Mean IoU

VGGNet-8 73.09 73.05 60.96 58.34
VGGNet-8+CS 75.15 75.37 64.85 61.30

SDVGGNet-8+CS 81.57 82.58 75.08 70.91
SDVGGNet-8+CS+Aug 84.02 85.25 78.23 74.84

SDBCS 85.87 86.35 80.58 76.49

5.2.1. Noisy Label Correction

To elevate the established baseline, we incorporated a correction mechanism into the
VGGNet-8 model. For confident label determination, an intricate global distance matrix
encompassing all pixels was constructed. The objective was to discern the most congruent
pixels for each sample and subsequently adopt the predominant label within its pixel
cohort. Each training sample was aligned to the label of the nearest k training data points.
After computing the feature distance, the samples were sorted based on proximity. This
strategy was devised to counteract the detriments of noisy labels and bolster classification
accuracy. Despite inevitable trade-offs, the method showcased an upswing in performance.
The achieved accuracies were Build-up at 63.89%, Wood Land at 76.28%, and Open Area at
87.02%. OA increased to 79.25%, with an AA of 75.73%. Additionally, precision improved
to 75.15%, F1-Score to 75.37%, Kappa to 64.85%, and Mean IoU to 61.30%.
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5.2.2. Self-Distillation Feature Extraction

The model’s performance was further augmented by embedding a self-distillation
technique, thereby enabling the model to introspectively refine from its own predictions.
This adaptation yielded notable enhancements, with the accuracies for Build-up, Wood Land,
and Open Area classes registering at 72.94%, 91.13%, and 88.22%, respectively. The OA
marked an impressive 85.04%, culminating in an AA of 84.10%. Precision increased to
81.57%, F1-Score to 82.58%, Kappa to 75.08%, and Mean IoU to 70.91%.

In the realm of PolSAR data analysis, initial steps involve feature extraction from
PolSAR data using VGGNet-8 and self-distillation methodologies. A supplementary set,
termed VGGNet-8, was introduced for a comparative evaluation, which essentially trains
without noise labels. These methodologies illuminate intricate relationships within the data,
rendering high-dimensional features that encapsulate pivotal backscattering properties of
PolSAR data. The subsequent phase emphasizes dimensionality mitigation.

Efficient dimensionality reduction is pivotal for interpreting high-dimensional data.
One salient technique in this domain is t-distributed Stochastic Neighbor Embedding (t-
SNE) [61], a sophisticated nonlinear algorithm grounded in neighborhood graphs, tailored
to preserve the data’s intrinsic local structure. This is achieved by t-SNE’s transformation of
interpoint distances into congruent probability distributions spanning various dimensions.
Leveraging t-SNE, we embarked on visualizing both raw and quantized feature spaces.
Given its design as an unsupervised algorithm tailored for dimensionality reduction and
3D data projection, t-SNE demonstrates exceptional prowess in rendering visualizations of
intricate, high-dimensional datasets, thereby enhancing the interpretation of PolSAR data.
The utility of t-SNE is further accentuated when amalgamated with visual aids like scatter
plots and pseudocolor images, facilitating a lucid conveyance of intricate data relationships
and patterns.

Figure 4 presents a detailed visual exposition of the spatial and polarimetric attributes
across three preselected regions from the Oberpfaffenhofen dataset. The visualization
unmistakably illustrates a clear delineation of three terrain typologies within the three-
dimensional space charted by t-SNE. In particular, Figure 4a,d underscores the aptitude of
the feature extraction network, shining light on its innate ability to capture and epitomize
the quintessential characteristics of terrain surfaces. A deeper foray into Figure 4b,c
provides a comparative purview against Figure 4a. Significantly, Figure 4c, harmonized
with the self-distillation paradigm, exhibits heightened alignment with the ground truth,
especially in the positionings pertaining to the three distinct categories.

In parallel with our assessment of Figure 4d, a detailed comparative analysis is pre-
sented in Figure 4e,f, bringing forth salient observations. Notably, Figure 4f, emblematic
of the self-distillation-based method, highlights a pronounced aggregation in the central
positions associated with various categories. This stands in stark contrast to the more
scattered distribution observed within the VGGNet-8 influenced outcomes, as delineated
in Figure 4e. Collectively, these observations underscore the superior discriminative capac-
ity of the self-distillation approach, adeptly capturing inherent class distinctiveness and
intricate intercategory dynamics. This fortifies the assertion of its pivotal role in elevating
feature representation in the analyzed PolSAR dataset.
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Figure 4. The presented figures showcase t-SNE plots derived from the Oberpfaffenhofen images.
For enhanced visualization fidelity, the dataset is judiciously bifurcated into two subsets according
to their sample proportions. Specifically, subsets (a–c) constitute 0.5% of the overarching samples,
whereas subsets (d–f) account for 1%. In terms of methodological delineation, subsets (a,d) resonate
with the features from the VGGNet-8 backbone trained devoid of noise labels, and subsets (b,e)
are aligned with the VGGNet-8 training approach. Conclusively, subsets (c,f) are emblematic of
the feature extraction facilitated through the self-distillation-based paradigm. Such a structured
presentation aids in an in-depth comparison and assessment of the respective methodologies across
varied sample sizes.

5.2.3. Data Augmentation and Balanced Loss

We further refined the SDVGGNet-8+CS model by integrating data augmentation,
resulting in the SDVGGNet-8+CS+Aug configuration. This intermediate step was crucial
in assessing the incremental benefits brought by data augmentation to the self-distillation
process. The SDVGGNet-8+CS+Aug model demonstrated a significant improvement in
dealing with noisy data and generalization capabilities, as evidenced by the following
accuracies: Build-up at 81.07%, Wood Land at 92.19%, and Open Area at 87.48%. The OA
and AA were recorded at 86.82% and 86.91%, respectively. Additionally, the model saw
improvements in Precision (84.02%), F1-Score (85.25%), Kappa (78.23%), and Mean IoU
(74.84%). These advancements highlight the method’s impact in not only improving
accuracy but also precision, consistency, and segmentation effectiveness.

As illustrated in Table 4, we explored different loss functions in order to find a robust
option. The studied loss functions include LCCE [60], Label Smoothing Categorical Cross-
Entropy Loss [62] (LSCCE), Focal Loss [63] (L f ocal), and our proposed LCACE.

It is evident that both LSCCE and L f ocal demonstrate promising results under certain
parameter settings. However, it is crucial to note that slight changes in their parameters can
lead to significant drops in classification performance. For instance, when the ε parameter
in LSCCE changes from 0.3 to 0.2, there is a notable decrease in OA by 2.11%. Similarly,
in Focal Loss, a change in the γ parameter from 1.8 to 2.0 results in a reduction in OA by
2.17%. This sensitivity to parameter adjustments indicates that both LSCCE and Focal Loss
may not be robust across different categories or datasets, as their effectiveness heavily relies
on fine-tuning specific parameters.
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In contrast, our LCACE, meticulously designed to overcome the limitations of existing
methods, demonstrated remarkable results. Significantly, LCACE stands out due to its
parameter-free design, eliminating the need for meticulous parameter tuning that plagues
other loss functions. This unique feature enhances its robustness, making it exceptionally
suitable for a wide range of PolSAR datasets. It achieved impressive classification accuracies
and showcased enhanced Precision (85.87%), F1-Score (86.35%), Kappa (80.58%), and Mean
IoU (76.49%). The absence of parameters in LCACE not only simplifies its application but
also ensures consistent performance across various scenarios in PolSAR datasets.

In conclusion, this investigative endeavor presents a holistic exploration of innovative
methodologies tailored for optimizing neural-network-centric classifiers within the remote
sensing land cover classification domain. The empirical findings highlight the paramount
importance of bespoke strategies, especially when confronting challenges like label noise
and constrained data availability. The integration of self-distillation, data augmentation,
and balanced loss within the SDBCS framework emerges as a testament to this. Such
revelations not only augment our contemporary understanding of effective strategies
within this discipline but also establish an empirical benchmark, poised to guide and
inspire subsequent research trajectories in analogous domains.

Table 4. Performance comparison of different loss functions with SDVGGNet-8+CS+Aug architecture
on Oberpfaffenhofen area data, utilizing 0.05% of ground truth labels as the training set.

Loss Function Build-up Wood Land Open Area OA AA

LCCE 81.07 92.19 87.48 86.82 86.91
LSCCE ε(0.2) 81.42 92.94 87.58 87.11 87.31
LSCCE ε(0.3) 80.97 91.15 92.16 89.22 88.09
LSCCE ε(0.5) 81.82 92.23 87.75 87.17 87.27

L f ocal γ(2.0) α(0.37) 81.10 90.82 88.02 86.87 86.65
L f ocal γ(2.0) α(0.50) 81.10 91.26 87.97 86.93 86.78
L f ocal γ(1.8) α(0.50) 75.87 90.93 94.27 89.10 87.02

LCACE 79.08 89.12 92.38 88.48 86.86

Loss Function Precision F1-Score Kappa Mean IoU

LCCE 84.02 85.25 78.23 74.84
LSCCE ε = 0.2 84.17 85.50 78.73 75.17
LSCCE ε = 0.3 86.39 87.18 81.92 77.73
LSCCE ε = 0.5 84.24 85.52 78.82 75.21

L f ocal γ(2.0) α(0.37) 84.13 85.21 78.25 74.78
L f ocal γ(2.0) α(0.50) 84.09 85.23 78.39 74.84
L f ocal γ(1.8) α(0.50) 86.53 86.69 81.51 77.06

LCACE 85.87 86.35 80.58 76.49

6. Discussion

In this section, we provide a rigorous evaluation of our proposed method on four
PolSAR datasets, both from quantitative and qualitative perspectives. Section 6.1 delves
into a sensitivity analysis, assessing the robustness of the proposed SDBCS framework on
the Oberpfaffenhofen dataset. Section 6.2 furnishes a comparison between our proposed
method and four contemporary state-of-the-art competitors employing deep learning
techniques, namely Sel-CL [64], SSR [65], PASGS [22], and Auto-PASGS [22].

6.1. Sensitivity Analysis

To elucidate the robustness of the proposed method across varying proportions of
training data, this section meticulously evaluates the SDBCS framework on the Oberp-
faffenhofen dataset. This dataset served as a canvas for a rigorous appraisal of the land
cover classification efficacy of SDBCS, with the Average Correction Rate (ACR) as the
evaluation metric. Table 5 presents the corrected label rate for three principal land cover
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classes—Build-up area, Wood Land, and Open Area—across 0.05%, 0.1%, and 0.2% data
proportions.

Table 5. Comparative analysis of the performance of SDBCS on varying proportions of the Oberpfaf-
fenhofen dataset (Corrected label rates %).

0.05%
Build-up WoodLand OpenArea ACR

Initial 81.82 79.84 79.13 80.01
Sel-CL 83.96 81.45 84.01 83.53

SSR 83.95 82.26 83.74 83.53
SDBCS 85.56 93.55 88.35 88.53

0.1%
Build-up WoodLand OpenArea ACR

Initial 80.39 78.24 80.43 80.01
Sel-CL 85.36 82.05 83.83 83.90

SSR 85.64 82.06 81.11 82.50
SDBCS 83.15 96.18 84.78 86.54

0.2%
Build-up WoodLand OpenArea ACR

Initial 81.40 78.23 79.96 80.00
Sel-CL 82.98 90.37 80.96 83.27

SSR 83.55 88.63 80.89 83.05
SDBCS 83.69 97.69 84.29 86.69

In juxtaposition with Sel-CL and SSR, the supremacy of SDBCS was consistently
evident. It is noteworthy that, particularly in the Build-up area class, SDBCS was adept at
maintaining commendable classification accuracy, even with limited data, underscoring
its potent capacity for generalization relative to other methods. A salient aspect of the
study was the discernible prowess of SDBCS in classifying the Wood Land segment, even
when confronted with constrained data volumes. For the Open Area category, SDBCS’s
consistency in distinguishing between diverse land cover types was evident, signifying its
resilience and robustness in comparison with alternative methodologies.

SDBCS’s consistently superior performance, relative to Sel-CL and SSR, across cate-
gories and proportions, accentuates the method’s robustness and efficiency. Its capacity
to sustain high accuracy, especially evident in the Wood Land category, underscores its
potential for precise classification even in resource-constrained scenarios.

6.2. Results And Comparisons

Figure 5 provides a visual representation of the efficacy of each method across the
Flevoland area dataset 1, Oberpfaffenhofen dataset, Flevoland area dataset 2, and San
Francisco dataset. Following this visual exploration, an intricate analysis aligned with the
associated tables is provided. Table 6 furnishes an exhaustive evaluation of the experimental
outcomes from the Flevoland area dataset 1. Our SDBCS method is benchmarked against
the prevalent state-of-the-art techniques: Sel-CL, SSR, PASGS, and Auto-PASGS. The core of
this evaluation revolves around classification accuracy across diverse land cover categories,
elucidating the subtle yet pivotal advantages proffered by SDBCS.
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Figure 5. The figures presented offer a comprehensive visualization of the following: (a1–a5) class
label predictions for the Flevoland area dataset 1, as forecasted by Sel-CL [64], SSR [65], PASGS [22],
Auto-PASGS [22], and SDBCS. Subsequently, (b1–b5) showcases outcomes from the Oberpfaffenhofen
dataset, (c1–c5) presents findings associated with the Flevoland area dataset 2, and, lastly, the San
Francisco area dataset is elucidated in (d1–d5). Such systematic representation facilitates an insightful
comparison and evaluation across the diverse methodologies and datasets.
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Table 6. Classification performances (%) of Flevoland area dataset 1 for the proposed method.

Method Stembeans Peas Forest Lucerne Wheat Beet

Sel-CL 85.94 85.35 89.88 93.76 90.08 83.23
SSR 87.87 87.25 89.01 93.66 93.31 80.74

PASGS 93.77 94.66 99.26 93.01 93.82 86.85
Auto-PASGS 96.03 92.32 97.39 95.03 96.38 89.27

SDBCS 93.48 85.62 97.23 91.53 96.88 79.91

Method Potatoes Bare Soil Grass Rapeseed Barley Wheat 2

Sel-CL 81.48 82.09 71.01 60.42 94.49 69.82
SSR 84.33 84.73 66.56 57.22 92.27 64.69

PASGS 92.52 81.03 70.87 70.55 95.08 81.72
Auto-PASGS 95.57 34.19 80.85 75.31 95.40 78.01

SDBCS 94.29 99.94 88.53 84.00 99.68 92.03

Method Wheat 3 Water Building OA AA Precision

Sel-CL 95.01 87.59 72.68 84.81 82.86 79.94
SSR 94.23 76.51 71.63 83.37 81.61 79.04

PASGS 95.65 90.56 40.76 89.74 85.34 84.21
Auto-PASGS 83.92 95.58 59.24 88.88 84.30 89.93

SDBCS 97.52 83.14 84.24 91.87 91.21 88.89

Method F1-Score Kappa Mean IoU

Sel-CL 80.43 83.36 69.46
SSR 79.34 81.67 67.57

PASGS 84.52 88.83 75.78
Auto-PASGS 85.61 87.86 76.50

SDBCS 89.47 91.13 81.64

Dissecting individual land cover classes reveals the consistent preeminence of SD-
BCS. As a case in point, within the Stembeans category, SDBCS registers a commendable
accuracy of 93.48%, surpassing Sel-CL and SSR, which have accuracies of 85.94% and
87.87%, respectively. Further, SDBCS achieves accuracies of 99.68% for Barley and 84.00%
for Rapeseed, outperforming its competitors. This performance accentuates the capability of
SDBCS to address intricate and multifaceted land cover types. Aggregating results across
all classes, SDBCS achieves a commendable OA of 91.87%, overshadowing Sel-CL (84.81%),
SSR (83.37%), PASGS (89.74%), and Auto-PASGS (88.88%). SDBCS not only excels in overall
accuracy but also demonstrates superior performance in other metrics. It attains the highest
Precision (88.89%), F1-Score (89.47%), Kappa (91.13%), and Mean IoU (81.64%).

These empirical findings highlight SDBCS’s paramount stance in land cover classifica-
tion, particularly amidst noise-induced challenges. Its unwavering performance across a
range of land cover categories substantiates its potential to enhance the accuracy of land
cover classification in remote sensing.

Table 7 illustrates the performance metrics of various agricultural land cover classifi-
cation methodologies applied to the 1% Flevoland area dataset 2. SDBCS emerges as the
superior method, outstripping competitors across several categories. It achieves stellar
accuracy rates, exemplified by Potatoes (98.33%) and Beet (94.95%), underscoring its finesse
in discerning pivotal agricultural variants. Its proficiency further extends to nuanced cate-
gories like Oats (92.47%) and Barley (81.80%). When compared with methods like Sel-CL,
SSR, PASGS, and Auto-PASGS, SDBCS’s superiority in accuracy remains evident. This
exemplary performance, even in formidable land cover classes like Bare Soil (94.17%) and
Rapeseed (96.70%), reinforces SDBCS’s promise in remote sensing agricultural land cover
classification. Additionally, SDBCS demonstrates robust performance in Precision (83.33%),
F1-Score (85.88%), Kappa (90.47%), and Mean IoU (76.64%).

Table 8 sheds light on the performance assessment of multiple methodologies, includ-
ing Sel-CL, SSR, PASGS, Auto-PASGS, and our proposed SDBCS, applied to the 0.05% San
Francisco area dataset. This dataset focuses on diverse land cover classifications, including
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Sea, Vegetation, and three urban categories. The results in the table accentuate SDBCS’s
commendable adaptability, especially under sample-limited circumstances. While methods
like Sel-CL and SSR display varying accuracies, Auto-PASGS manifests an intriguing trend,
exhibiting a high accuracy for one category but faltering in others. SDBCS leads with the
highest Precision (87.24%), F1-Score (88.09%), Kappa (88.50%), and Mean IoU (79.22%)
SDBCS, however, consistently exhibits robustness across distinct land cover types, further
cementing its efficacy in challenging classification scenarios.

Table 7. Classification performances (%) of the Flevoland area dataset 2 for the proposed method.

Method Potatoes Fruit Oats Beet Barley Onions

Sel-CL 87.93 90.10 73.60 91.56 82.98 42.39
SSR 85.10 89.96 64.56 92.02 84.97 59.81

PASGS 97.33 89.19 85.08 93.09 93.04 29.53
Auto-PASGS 99.57 98.01 88.95 91.18 96.33 40.47

SDBCS 98.33 89.36 92.47 94.95 81.80 75.77

Method Wheat Beans Peas Maize Flax Rapeseed

Sel-CL 86.57 70.89 91.20 72.25 94.12 89.87
SSR 86.45 71.90 81.99 66.59 88.17 85.19

PASGS 92.14 78.28 97.36 63.88 91.86 94.05
Auto-PASGS 80.48 22.09 100 90.47 93.75 96.15

SDBCS 91.89 72.83 99.95 83.80 92.84 96.70

Method Grass Bare Soil OA AA Precision F1-Score

Sel-CL 85.01 95.05 86.69 82.39 71.05 75.17
SSR 79.76 91.73 85.19 80.59 69.65 73.53

PASGS 75.95 91.67 91.64 83.75 83.84 82.50
Auto-PASGS 74.43 94.68 91.01 83.33 85.75 82.58

SDBCS 88.25 94.17 91.87 89.51 83.33 85.88

Method Kappa Mean IoU

Sel-CL 84.49 62.85
SSR 82.76 60.75

PASGS 90.16 73.32
Auto-PASGS 89.42 74.02

SDBCS 90.47 76.64

Table 8. Classification performances (%) of San Francisco area data for the proposed method.

Method Sea Vegetation Urban 2 Urban 3 Urban 1 OA AA

Sel-CL 91.13 78.43 75.30 82.28 81.38 84.53 81.70

SSR 91.22 75.89 75.49 81.83 81.86 84.23 81.26

PASGS 99.89 88.14 82.57 66.61 84.5 89.01 84.34

Auto-PASGS 99.70 86.98 90.54 53.40 88.42 88.41 83.81

SDBCS 99.75 86.53 80.96 86.57 93.84 92.00 89.53

Method Precision F1-Score Kappa Mean IoU

Sel-CL 76.63 78.60 78.19 65.74
SSR 76.14 78.14 77.76 65.14

PASGS 84.18 83.87 84.07 73.13
Auto-PASGS 83.66 82.29 83.25 71.35

SDBCS 87.24 88.09 88.50 79.22

Table 9 provides an analytical performance overview of diverse methodologies on the
0.05% Oberpfaffenhofen area dataset. Our model, SDBCS, consistently excels, outpacing
counterparts in pivotal categories. Illustratively, in the Build-up category, SDBCS achieves
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an accuracy of 79.08%, superseding Sel-CL’s 69.32%. In the Wood Land category, SDBCS’s
accuracy peaks at 89.12%, transcending SSR’s 78.47%. Notably, in the OA metric, SDBCS’s
performance at 88.48% distinctly eclipses Sel-CL’s 84.55% and SSR’s 82.63%. SDBCS’s
prowess becomes manifest in the AA metric, with an accuracy of 86.86%, surpassing both
SSR’s 77.99% and PASGS’s 78.70%. Furthermore, the superiority of SDBCS is underlined
by its leading Precision of 85.88%, F1-Score of 86.35%, Kappa of 80.58%, and Mean IoU
of 76.49%.

In summation, these empirical outcomes robustly underscore the innate capability of
SDBCS to adeptly navigate challenges engendered by noisy labels, restricted sample sizes,
and a gamut of land cover classifications. The intrinsic proficiency of SDBCS in rectifying
label inaccuracies and capitalizing on limited annotations underscores its pivotal role in
the evolutionary trajectory of research within remote sensing, with a particular emphasis
on land cover classification endeavors.

Table 9. Classification performances (%) of Oberpfaffenhofen area data for the proposed method.

Method Build-up Wood Land Open Area OA AA Precision

Sel-CL 69.32 79.14 93.13 84.55 80.53 81.46

SSR 62.66 78.47 92.84 82.63 77.99 79.42

PASGS 61.20 79.55 95.36 83.89 78.70 80.42

Auto-PASGS 59.24 75.99 95.87 82.99 77.03 79.73

SDBCS 79.08 89.12 92.38 88.48 86.86 85.88

Method F1-Score Kappa Mean IoU

Sel-CL 80.96 73.51 68.83
SSR 78.57 70.00 65.73

PASGS 79.29 72.07 66.88
Auto-PASGS 78.10 70.27 65.40

SDBCS 86.35 80.58 76.49

6.3. Limitations and Enhancements

In Table 3, when the VGGNet-8 model was enhanced with our label correction module,
there was a drop in prediction accuracy for the built-up land type. This decline can be
linked to the unique properties of built-up areas in the Oberpfaffenhofen dataset, which
are characterized by complex spatial structures and varied spectral signatures. The label
correction process involves aligning each training sample with the label of its nearest k
training data points based on feature distance. However, due to the spectral resemblance of
some built-up areas to other land types, mislabeling may occur. This challenge is intrinsic
to handling complex urban environments in remote sensing imagery.

While our method effectively addresses noisy labels, its performance might be in-
fluenced by the quality of the feature representations. If the feature extraction process
fails to adequately distinguish between different classes, the label correction might not be
as effective.

To improve the performance in boundary areas and in general, we could consider
integrating additional context-aware mechanisms. For instance, incorporating attention
mechanisms could enable the model to focus on more relevant features, thereby improv-
ing the accuracy of the label correction, especially in complex regions. Another potential
enhancement is to use multiscale feature representations. This approach could help in cap-
turing both fine-grained details and broader contextual information, thereby improving the
model’s ability to handle diverse and challenging scenarios, including boundary regions.

7. Conclusions

Confronting the complexities of PolSAR image classification, our study introduces a
novel label correction approach, designed for managing noisy labels, and leverages unsu-
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pervised contrastive learning to enhance polarimetric representation ability and further
classification accuracy in label scarcity scenarios. The innovative label correction tech-
nique we developed employs similarities among training samples with a feature distance
matrix derived from contrastive learning, which identifies and rectifies mislabeled sam-
ples, thereby addressing the noisy label issue. In addition, by adopting self-supervised
representation learning, we significantly enhance the model’s robustness and accuracy,
especially in the context of limited labels in PolSAR image classification. Our method
also includes strategic rebalancing and data augmentation techniques to tackle the class
imbalance problem, improving the classification accuracy of minority classes. Extensive
evaluations on four benchmark datasets have proven the effectiveness and superiority of
the proposed method. To sum up, our approach effectively improves the accuracy and
robustness of DNN-based PolSAR image classification methods in noisy and sparse label
scenarios, addressing the initial challenges we set out to overcome.
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