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Abstract: With the increasing global focus on renewable energy, distributed rooftop photovoltaics
(PVs) are gradually becoming an important form of energy generation. Effective monitoring of
rooftop PV information can obtain their spatial distribution and installed capacity, which is the basis
used by management departments to formulate regulatory policies. Due to the time-consuming and
labor-intensive problems involved in manual monitoring, remote-sensing-based monitoring methods
are getting more attention. Currently, remote-sensing-based distributed rooftop PV monitoring
methods are mainly used as household rooftop PVs, and most of them use aerial or satellite images
with a resolution higher than 0.3 m; there is no research on industrial and commercial rooftop
PVs. This study focuses on the distributed industrial and commercial rooftop PV information
extraction method based on the Gaofen-7 satellite with a resolution of 0.65 m. First, the distributed
industrial and commercial rooftop PV dataset based on Gaofen-7 satellite and the optimized public
PV datasets were constructed. Second, an advanced MANet model was proposed. Compared to
MANet, the proposed model removed the downsample operation in the first stage of the encoder
and added an auxiliary branch containing the Atrous Spatial Pyramid Pooling (ASPP) module in
the decoder. Comparative experiments were conducted between the advanced MANet and state-
of-the-art semantic segmentation models. In the Gaofen-7 satellite PV dataset, the Intersection over
Union (IoU) of the advanced MANet in the test set was improved by 13.5%, 8.96%, 2.67%, 0.63%,
and 0.75% over Deeplabv3+, U2net-lite, U2net-full, Unet, and MANet. In order to further verify the
performance of the proposed model, experiments were conducted on optimized public PV datasets.
The IoU was improved by 3.18%, 3.78%, 3.29%, 4.98%, and 0.42%, demonstrating that it outperformed
the other models.

Keywords: distributed rooftop photovoltaics; industrial and commercial; Gaofen-7 satellite; semantic
segmentation

1. Introduction

Global problems, such as the greenhouse effect, ecological damage, and climate change,
that have been caused by the over-consumption of fossil energy have posed a serious threat
to the sustainable development of humankind. In this context, the establishment of a clean,
low-carbon energy system has become a global trend. With significant environmental,
economic, and social benefits, solar PVs provide a highly promising avenue for sustainable
energy conversion [1–3].

Centralized PV construction requires a large amount of land resources [4]. On the one
hand, land resources in urban areas are small, making them not suitable for centralized
PV installation. On the other hand, urban areas are densely populated and have a high
demand for electricity. This results in a mismatch between the construction of centralized
PVs and power energy demand [5]. Compared with centralized PVs, distributed rooftop
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PVs are generally built on the surface of buildings and can be flexibly installed according
to the characteristics of the building, significantly improving land utilization. At the same
time, distributed rooftop PVs are located on the user side, and users can generate and
consume electricity nearby, which greatly reduces the power loss during the transmission
process of the grids. Therefore, distributed rooftop PVs have become the main form of
utilizing solar energy in urban areas and have made rapid development in recent years.

The installed capacity and spatial distribution information of PVs are important basis
for management departments to formulate regulatory policies, which not only support the
dynamic updating of PV construction planning paths, but also provide a working basis for
tasks such as power generation assessment. With the increase in distributed rooftop PVs,
their spatial distribution is characterized by the scattered layout that includes many PVs.
Therefore, traditional approaches to obtain information on installed capacity and spatial
distribution of distributed rooftop PVs, like surveys and utility company interconnection
files, are both inefficient and costly in terms of time and labor [6].

Remote sensing, as a means of non-contact measurement, is capable of acquiring
a wide range of data in a short period of time. With the development and progress of
remote sensing technology, the resolution of satellite is also improving [7]. Multi-source,
high-resolution remote sensing images undoubtedly provide low-cost, high-efficiency
data support for the acquisition of PV information. PV information extraction based
on remote sensing has become the most widely used monitoring means. Acquiring PV
information based on remote sensing visual interpretation can achieve high accuracy, but
it also requires high time and labor costs. Therefore, more and more studies have been
paying attention to extracting PV information by means of computer vision. Xia et al.
used a combination of NDBI index and random forest to extract PV power plants in five
provinces of Northwest China [2]. Chen et al. used a combination of raw spectral features,
PV extraction features, terrain features, and classifiers, such as XGBoost, random forest,
and support vector machines to extract PV power plants in the Golmud region of China [8].
Wang et al. proposed a method of extracting PV power plants based on multi-invariant
feature combination using Landsat 8 OLI remote sensing images [9].

The above studies are based on traditional machine learning methods. These methods
are usually two-stage, with feature extraction followed by classification [10]. In this case,
the feature extraction stage requires human-designed features [11], while the classifier also
requires human selection and design. Traditional machine learning methods have limited
nonlinear mapping capabilities and have good results in dealing with targets with relatively
homogeneous backgrounds, such as centralized PVs [8,12]. However, when transferred
to deal with targets with complex backgrounds, such as distributed rooftop PVs, these
methods often fail to achieve better results.

Compared with traditional machine learning methods, deep learning methods in-
tegrate feature extraction and classification into one stage [10]. Meanwhile, deep neural
networks have stronger nonlinear mapping ability [13], which is more suitable for target
extraction in complex backgrounds. Due to the wide application of deep learning in the
field of natural images, many researchers started to use deep learning methods in the field
of remote sensing and made breakthroughs in PV information extraction. In the centralized
PV information extraction study, Du et al. used the Deeplabv3+ model with ResNeSt-50
as the backbone to extract centralized PV power stations within China [14]. Ge et al. com-
bined the EfficientNet-B5 scene classification and U2net semantic segmentation models to
extracted centralized PV power stations in Qinghai, Xinjiang, and Gansu provinces [15].
Wang et al. proposed the PVNet model for the extraction of regularly shaped PV panels in
centralized PV systems [16]. In the distributed rooftop PV information extraction study,
Jurakuziev et al. designed a network combining Unet and EfficientNetB7 [17] for infor-
mation extraction and power generation capacity estimation of distributed rooftop PVs
in Gangnam District, Seoul, South Korea [6]. Zhu et al. designed a modified Deeplabv3+
model based on the German Heilbronn remote sensing data. Attention and ASPP modules
were added on the basis of the Deeplabv3+ model, and the PointRend Network [18] was
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integrated to optimize the prediction boundary [19]. Camilo et al. used SegNet [20] to
extract distributed rooftop PVs based on remote sensing data from Fresno, California,
USA [21]. Wani et al. designed a lightweight distributed PV information extraction model
based on Duke California Solar array (DCSA). The model combined the structure of Mo-
bilenet [22] and Unet, which improved the extraction speed and ensured the accuracy of
the extraction [23]. In addition, since most of the distributed PVs are on the surface of
buildings, the study of extracting buildings is also useful for distributed PV extraction.
Guo et al. proposed SG-EPUNet to automatically update the existing building databases to
their current status with minimal manual intervention. In SG-EPUNet framework, EPUNet
was designed to extract building features robustly [24]. Liu et al. proposed MS-GeoNet
for building footprint extraction. The proposed architecture focused on multi-scale nested
characteristics and the spatial correlation between buildings and backgrounds, which
outperformed the Fully Convolutional DenseNets [25].

Currently, studies using deep learning to extract distributed rooftop PV information
focus on household rooftop PVs. Li et al. conducted experiments on the resolution selection
problem of remote sensing images for distributed rooftop PV information extraction [26].
Experimental results showed that 0.3 m was the threshold resolution for a PV segmentation
issue, and 1.2 m was the lowest limitation for PV segmentation. Actually, distributed
rooftop PV information can be divided into two categories, i.e., household rooftop PV
information and industrial and commercial rooftop PV information.

In recent years, the high demand for energy use and the large total roof areas have
made industrial and commercial rooftop PVs an important form for realizing the compre-
hensive utilization of PVs and accelerating the transformation of green energy development.
In contrast to household rooftop PVs, the larger area of industrial and commercial rooftop
PVs allows relatively accurate information to be extracted without the use of ultra-high
resolution remote sensing images. In addition, the operation mode of industrial and com-
mercial rooftop PVs has great flexibility. Together with the characteristic of large scale,
industrial and commercial rooftop PVs can achieve higher economic benefit than household
PVs. Therefore, the study of industrial and commercial rooftop PV information extraction
methods based on remote sensing images has an important value for application, and it is
also realistic in terms of the need to promote green energy strategies. However, current
researches on industrial and commercial PVs focus on economic benefit analysis [27,28]
and power generation prediction [29], and do not use remote sensing technology. There
are no studies on industrial and commercial rooftop PV extraction using remote sensing
images with a resolution lower than 0.3 m.

This paper focuses on the distributed industrial and commercial rooftop PV informa-
tion extraction method based on Gaofen-7 satellite with a resolution of 0.65 m. First, two
industrial and commercial rooftop PV datasets were constructed using Gaofen-7 satellite
images and the publicly available PV dataset, which provided data input for the training
of deep learning models; Second, we optimized the MANet model and proposed an ad-
vanced MANet. Compared to MANet, the advanced model removed the downsample
operation in the first stage of the encoder, which improved the model’s ability to extract
low-level spatial information [30]. The introduction of the ASPP-based auxiliary branch
improved the model’s ability to extract multi-scale information. In addition, the attention
mechanism ensured the model’s ability to extract high-level semantic information [30]. We
conducted comparative experiments and the results showed that the advanced MANet
model outperformed state-of-the-art models.

2. Materials and Methods
2.1. Materials
2.1.1. Study Area

Jiangsu Province was chosen for this study. Jiangsu Province has a land area of
107,200 square kilometers [31], accounting for 1.12 percent of the total area of China.
Figure 1 shows the geographical spatial location of Jiangsu Province. The total annual solar
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radiation in Jiangsu Province ranges from 4245 to 5017 MJ/m2, with more distribute in the
north and less in the south. The annual sunshine hours in the province range from 1816 to
2503 h, and its distribution also decreases from north to south [32]. In recent years, due to
the rapid growth of energy demand in Jiangsu Province, the government has committed to
realizing energy transformation by improving energy efficiency and promoting the use of
clean and renewable energy [33]. At present, Jiangsu Province ranks among the highest
in China in terms of the installed capacity of distributed PVs [34,35]. Figure 2 shows the
distributed PVs grid-connected data in Jiangsu Province. According to the statistics from
the National Energy Administration, the cumulative grid-connected capacity of Jiangsu
Province reached 27.652 MW, including 17.763 MW of new grid-connected capacity from
the distributed rooftop PVs. The data for the first quarter of 2023 showed that the new
grid-connected capacity of distributed rooftop PVs in Jiangsu Province reached 2.211 MW,
including 1.43 MW from the new grid-connected capacity of industrial and commercial
rooftop PVs. Therefore, distributed industrial and commercial rooftop PVs in Jiangsu
Province are well-developed and can provide rich data resources.
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2.1.2. Data Sources

The data used in this study were obtained from the Gaofen-7 satellite. Gaofen-7
is China’s first civil optical stereo mapping satellite with sub-meter resolution; it was
successfully launched on 3 November 2019. The Gaofen-7 satellite operates in a sun-
synchronous orbit with an orbital altitude of about 505 km [37] and a revisit cycle of 41 days.
It can effectively acquire 20 km wide front-view panchromatic stereoscopic images with
a 0.8 m resolution, rear-view panchromatic stereoscopic images with a 0.65 m resolution,
and multi-spectral images with a 2.6 m resolution [38]. Currently, the Gaofen-7 satellite is
mainly used for natural resource survey monitoring and global geo-information resource
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construction [39]. It also provides high-precision satellite remote sensing images for the
fields of urban and rural development as well as national survey statistics.

2.1.3. Datasets

Two datasets were used in this study. The first dataset was constructed based on
Gaofen-7 satellite images. The data sources were from the China Remote Sensing Satel-
lite Ground Station. Cloud-free Gaofen-7 images in Jiangsu Province were selected for
orthometric correction, and rear-view panchromatic stereoscopic images and multispectral
images were fused to obtain the basic data for model training. In this study, images were
acquired from April to October 2022. A total of 14 satellite images in the region of Jiangsu
Province were selected as data sources. The dataset consists of two parts. One part includes
the samples sized 256 × 256 pixels cropped from the GaoFen-7 satellite images, and the
other is the labels for the industrial and commercial rooftop PVs. QGIS was used to label a
total of 4109 industrial and commercial rooftop PVs. Since the obtained elements could
not be directly used as input to the model, this experiment used the sliding window to
generate the dataset. The sliding window size in this study was 256 × 256 pixels. Samples
and labels sized at 256 × 256 pixels were obtained through sliding on the GaoFen-7 images
and the corresponding annotations. Based on these elements, 6263 sample label pairs were
created. Since the dataset used in this study was not very large (below the 10,000 level),
the ratio of training, validation, and test sets for this study was 6:2:2. Figure 3 shows some
examples of sample label pairs in the dataset.
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The second dataset was constructed based on the publicly available PV dataset [40].
This dataset contains satellite and aerial images with spatial resolutions of 0.8, 0.3, and
0.1 m. The data sources used in this public dataset include Gaofen-2 images, Beijing-2
images, and Unmanned Aerial Vehicle (UAV) images. Since this dataset was not fine
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enough to label images of 1024 × 1024 pixels size, this study optimized the labels. In
addition, in order to increase the samples in the dataset, the 1024 × 1024 pixels images
were cropped into 256 × 256 pixels images. Figure 4 shows the optimization process for
the public dataset. Finally, samples containing industrial and commercial PVs in the public
dataset were selected. A total of 1096 sample label pairs were finally obtained.
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2.2. Methods

The technical framework of this study is shown in Figure 5. The study can be divided
into three parts, i.e., data preparation, semantic segmentation models test, and industrial
and commercial rooftop PV prediction based on trained models.
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frame indicates the main modules, and the solid line frame indicates the submodules. The red arrow
indicates the flow order between the main modules, the black arrow indicates the flow order between
the submodules, and the blue arrow indicates the improvement of the semantic segmentation model.
The green fields represents the semantic segmentation models, and the blue fields represents the
evaluation indicators.
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In the semantic segmentation models test stage, the state-of-the-art semantic segmen-
tation models, such as Unet, U2net, Deeplabv3+ and MANet, were used in the experiments.
By introducing the ASPP module as an auxiliary branch and removing the downsample
operation in the first stage of the encoder, we proposed an advanced MANet model. The
advanced MANet model was compared with state-of-the-art methods. The performance of
the models was evaluated by accuracy, recall, precision, F1-Score, and IoU metrics.

2.2.1. MANet

MANet is an encoder–decoder structured semantic segmentation network. The en-
coder part of this network uses a residual module to extract multi-scale features, and
the decoder part uses a deconvolution module to upsample the features. Meanwhile,
MANet adds spatial attention and channel attention modules to the skip connection part.
Through skip connection, the outputs of the encoder and decoder can be fused to obtain
features containing multi-scale information and attention information, which enables the
network to capture long-distance dependencies. For the spatial attention module, the
memory complexity of the traditional dot product operation is O(N2), which has a large
amount of calculation. MANet introduces the kernel attention mechanism. The memory
complexity of kernel attention is O(N), which reduces the computational complexity signif-
icantly. In addition, the attention module in MANet also achieves better performance than
Squeeze-and-Excitation Networks (SENet) [41], Convolutional Block Attention Module
(CBAM) [42].

2.2.2. Atrous Spatial Pyramid Pooling

Atrous Spatial Pyramid Pooling (ASPP) is a module proposed in Deeplabv2 [43]. The
core of ASPP is dilated convolution. Expanding the receptive field by traditional convolu-
tion leads to a significant loss of feature detail information. Dilated convolution expands
the receptive field while ensuring that there will be minimal loss of the boundary details
of the feature, which has been widely used in computer vision filed. By setting different
dilation rates, dilated convolutions with different receptive fields can be constructed. ASPP
uses multiple parallel dilated convolutional layers with different dilation rates to extract
feature information of different receptive fields, then fuses the features of each branch to
obtain multi-scale feature information.

2.2.3. Advanced MANet

MANet acquires output with the help of the last layer of decoder, which may cause
it to suffer from poor detail recognition. This study proposed an advanced MANet by
introducing the ASPP module and removing downsample operation in the first stage of the
encoder to deal with this problem. Compared to MANet, the innovation of this model is
that introducing an auxiliary decoding branch based on ASPP improves the model’s ability
to extract multi-scale information, and removing the downsample operation in the first
stage of the encoder improves the model’s ability to extract low-level spatial features. The
difference between the structure of MANet and advanced MANet are shown in Figure 6.

The backbone of the advanced MANet uses Resnet50 [44]. Skip connection adopts
a parallel structure of spatial attention and channel attention. The auxiliary decoder
branch takes the reconstructed features at different stages through the ASPP module,
upsamples the output features and performs concatenation to obtain the auxiliary multi-
scale reconstructed features that are fused with the multi-scale features of the main decoder
branch to get the final output. To verify the effectiveness of the proposed model, this study
carried out ablation experiments, which are shown in the Discussion section.
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2.2.4. Performance Evaluation

This study conducted comparative experiments between the proposed model and
state-of-the-art models. All models were trained based on the cross-entropy loss function.
The trained models made predictions based on the test set of the constructed dataset. The
results of the training models were validated by accuracy, recall, precision, F1-Score, and
IoU, which were all calculated based on the confusion matrix.

Table 1 shows the basic information of the confusion matrix. In the confusion matrix,
TP indicates that the ground truth is industrial and commercial rooftop PVs and the
predicted result is also industrial and commercial rooftop PVs; FP indicates that the ground
truth is background, while the predicted result is industrial and commercial rooftop PVs;
FN indicates that the ground truth is industrial and commercial rooftop PVs, while the
predicted result is background; TN indicates that the ground truth is background and the
predicted result is also background.

Table 1. Confusion Matrix.

Ground Truth
Positive Class Negative Class

Predicted Result
Positive Class True Positive (TP) False Positive (FP)

Negative Class False Negative (FN) True Negative (TN)

Accuracy is a metric that generally describes how the model performs across all classes.
It is calculated as the ratio between the number of correct predictions to the total number
of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Recall measures how many of the positive class samples present in the dataset are
correctly identified by the model.

Recall =
TP

TP + FN
(2)
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Precision measures how many of the positive predictions made by the model are correct.

Precision =
TP

TP + FP
(3)

F1 score is a metric that combines precision and recall scores using their harmonic mean.

F1 Score =
2 × Precision × Recall

Precision + Recall
=

TP
TP + 1

2 (FP + FN)
(4)

IoU is calculated by dividing the overlap between the predicted and ground truth
annotation by their union.

IoU =
target ∧ prediction
target ∨ prediction

=
TP

TP + FP + FN
(5)

Since this study is a binary classification task, i.e., it distinguishes between the areas of
the image that belong to industrial and commercial rooftop PVs and those which belong to
the background, the cross-entropy loss function is formulated as follows.

L =
1
N ∑

i
Li =

1
N ∑

i
(−[yi log(pi) + (1 − yi) log(1 − pi)]) (6)

yi denotes the label of the pixels, where 1 represents the industrial and commercial
rooftop PVs and 0 represents the background. pi denotes the probability that pixels i are
predicted to be industrial and commercial rooftop PVs.

2.2.5. Experimental Settings

In this study, the Pytorch framework was used to build the semantic segmentation
models. We trained the models on a server with one NVIDIA Tesla V100 graphics processing
unit (GPU) with 32 GB of GPU memory. In this experiment, we used Adam as the optimizer
and cross-entropy as the loss function. We set the initial learning rate to 0.01 and the weight
decay to 1 × 10−4. The input batch size was set to eight. The number workers was set to
eight and the epochs were set to 100.

3. Results and Discussion
3.1. Results and Analysis

Different models were trained based on the above experimental configurations and
hyperparameters. The optimal model weights were selected based on the validation set
evaluation results and loaded into the corresponding models. The images in the test set
were predicted using the models loaded with training weights, and the prediction results
of different models on the test set were analyzed and discussed.

Table 2 shows the test results of different models based on the GaoFen-7 satellite PV
dataset. The bold number represents the maximum value of the indicator in the comparison
model. The results show that the advanced MANet model performed best in the test
set. The IoU, accuracy, F1-score, precision, and recall of the advanced MANet model are
91.67%, 99.53%, 0.9504, 95.41%, and 95.13%. The IoU is improved by 13.5%, 8.96%, 2.67%,
0.63%, and 0.75% over Deeplabv3+, U2net-lite, U2net-full, Unet, and MANet. The Recall is
improved by 7.86%, 5.51%, 1.31%, 0.72%, and 0.56%.
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Table 2. Test set evaluation results based on the GaoFen-7 satellite PV dataset.

Models IoU Accuracy F1-Score Precision Recall

Deeplabv3+ [45] 78.17 98.74 0.8558 86.07 87.27
U2net-lite [46] 82.71 99.08 0.8871 89.51 89.62
U2net-full [46] 89.00 99.37 0.9330 93.55 93.82

Unet [47] 91.04 99.51 0.9440 95.41 94.41
MANet [48] 90.92 99.52 0.9435 95.06 94.57

Advanced MANet 91.67 99.53 0.9504 95.41 95.13

Figure 7 shows the prediction results of the different models on the part of the data
in the test set. The results show that the boundaries of the advanced MANet predictions
are more complete and clearer, and the prediction results contain relatively less noise. This
reflects the fact that the advanced MANet extracts better features than the other models.

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

Images Ground Truth Deeplabv3+ U2net-lite U2net-full Unet  MANet Advanced MANet 

        
(a)        

        
(b)        

        
(c)        

        
(d)        

        
(e)        

Figure 7. Prediction results from the test set based on the GaoFen-7 satellite PV dataset. (a–e) repre-
sents five different Gaofen-7 images containing industrial and commercial rooftop PVs. 

In order to further verify the superiority of the advanced MANet, experiments ana-
lyzed the capabilities of different models in detail processing based on the GaoFen-7 sat-
ellite PV dataset. Figure 8 shows the results of different models predicting detailed infor-
mation on the part of the data in the test set. The red box shows the predictions of different 
models in local areas. The results show that the advanced MANet model is more accurate 
and complete in extracting the detail information of industrial and commercial rooftop 
PVs. This is because the first stage of encoder in the advanced MANet does not use the 
operation of downsampling, which enhances its ability to extract low-level spatial fea-
tures. Moreover, low-level spatial features contain more detailed information, which 
makes the advanced MANet better at handling detailed information [32]. 

  

Figure 7. Prediction results from the test set based on the GaoFen-7 satellite PV dataset.
(a–e) represents five different Gaofen-7 images containing industrial and commercial rooftop PVs.

In order to further verify the superiority of the advanced MANet, experiments an-
alyzed the capabilities of different models in detail processing based on the GaoFen-7
satellite PV dataset. Figure 8 shows the results of different models predicting detailed
information on the part of the data in the test set. The red box shows the predictions of
different models in local areas. The results show that the advanced MANet model is more
accurate and complete in extracting the detail information of industrial and commercial
rooftop PVs. This is because the first stage of encoder in the advanced MANet does not
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use the operation of downsampling, which enhances its ability to extract low-level spatial
features. Moreover, low-level spatial features contain more detailed information, which
makes the advanced MANet better at handling detailed information [32].
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Using the advanced MANet model, this study carried out the extraction of industrial
and commercial rooftop PVs in a large area. Figure 9 shows the results of extraction of
industrial and commercial rooftop PVs in a large area based on the advanced MANet model.
Green boxes indicate better recognized areas, in which small area misclassification exists.
Red boxes indicate poorly identified areas, in which large area misclassification exists. The
location of the red box is the area of agricultural greenhouses, which were misidentified
due to the similarity of the spectral characteristics between agricultural greenhouses and
industrial and commercial rooftop PVs.

Based on the advanced MANet, this study also conducted experiment on the optimized
public PV dataset. Table 3 shows the test results of different models based on optimized
public PV dataset. The bold number represents the maximum value of the indicator in
the comparison model. The results show that the advanced MANet model performs best
in the test set. The IoU, accuracy, F1-score, precision, and recall of the advanced MANet
model are 99.16%, 99.80%, 0.9958, 99.57%, and 99.58%. The IoU is improved by 3.18%,
3.78%, 3.29%, 4.98%, and 0.42% over Deeplabv3+, U2net-lite, U2net-full, Unet, and MANet.
Recall is improved by 1.54%, 2.12%, 1.96%, 2.6%, and 0.23%. Figure 10 shows the prediction
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results of the different models on the part of the data in the test set. The results show that
the boundaries of the advanced MANet predictions are more complete and clearer.
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Table 3. Test set evaluation results based on optimized public PV dataset.

Models IoU Accuracy F1-Score Precision Recall

Deeplabv3+ 95.98 98.93 0.9786 97.74 98.07
U2net-lite 95.38 98.80 0.9751 97.67 97.46
U2net-full 95.87 98.96 0.9780 98.05 97.62

Unet 94.18 98.35 0.9689 96.96 96.98
MANet 98.74 99.67 0.9936 99.37 99.35

Advanced MANet 99.16 99.80 0.9958 99.57 99.58

3.2. Discussion

To validate the effectiveness of the advanced MANet, ablation experiments were
conducted in this study. Table 4 shows the results of the ablation experiments based on
the GaoFen-7 satellite PV dataset. The bold number represents the maximum value of
the indicator in the comparison model. ND indicates that no downsample operation was
performed in the first stage of the encoder. The results of the ablation experiments show
that the model performance improved with the addition of ASPP compared to MANet.
After removing the downsample operation in the first stage of the encoder based on the
model with ASPP branch, the model performance also improved.

Table 4. Ablation experiments results based on the GaoFen-7 satellite PV dataset.

Models IoU Accuracy F1-Score Precision Recall

MANet 91.36 99.63 0.9581 95.52 95.03
MANet +

ASPP 92.12 99.64 0.9550 95.87 95.60

MANet +
ASPP + ND 93.54 99.71 0.9630 96.81 96.31
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To demonstrate the probability of achieving superior results with the advanced MANet,
hypothesis testing was conducted. A total of 1140 samples was randomly selected from the
Gaofen-7 industrial and commercial rooftop PV dataset. MANet and advanced MANet
were used to predict these 1140 samples, and the IoU, F1-score, precision, accuracy, and
recall were calculated respectively. Table 5 shows the group statistical results.

The independent sample t-test was conducted based on the group statistical results.
Table 6 shows the results of the independent samples t-test. It can be seen that the two-tailed
significance of IoU, F1-score, precision, and recall are all less than 0.05, but the two-tailed
significance of accuracy is greater than 0.05. Therefore, MANet and Advance MANet are
significantly different in IoU, F1-Score, precision, and recall, but the difference in accuracy
is not significant. This might occur because the background class is also participating in
the calculation of accuracy. A large proportion of images are the background classes, and
the model has a high accuracy for identifying background class. Therefore, accuracy is
generally relatively high, which results in relatively small differences in accuracy among
MANet and advanced MANet.
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Table 5. Group statistical results.

Performance Model Numbers Mean Std.
Deviation

Std. Error
Means

IoU
Advanced

Manet 1140 88.58 0.2220 0.0066

Manet 1140 85.82 0.2433 0.0072

F1-score
Advanced

Manet 1140 0.9147 0.2130 0.0063

Manet 1140 0.8933 0.2349 0.0070

Precision
Advanced

Manet 1140 92.27 0.2082 0.0062

Manet 1140 90.31 0.2301 0.0068

Accuracy
Advanced

Manet 1140 99.39 0.0246 0.0007

Manet 1140 99.31 0.0246 0.0007

Recall
Advanced

Manet 1140 91.70 0.2100 0.0062

Manet 1140 89.58 0.2359 0.0070

Table 6. Independent samples t-test results.

Performance Hypothesis T Df Sig. (2-Tailed)

IoU
Equal variances

assumed 2.83 2278 0.005

Equal variances
not assumed 2.83 2259 0.005

F1-score
Equal variances

assumed 2.27 2278 0.023

Equal variances
not assumed 2.27 2257 0.023

Precision
Equal variances

assumed 2.13 2278 0.033

Equal variances
not assumed 2.13 2256 0.033

Accuracy
Equal variances

assumed 0.78 2278 0.436

Equal variances
not assumed 0.78 2278 0.436

Recall
Equal variances

assumed 2.26 2278 0.024

Equal variances
not assumed 2.26 2248 0.024

In addition, an experiment was conducted to analyze the applicability of the model at
different resolutions. A downsample operation was performed on the 0.65 m resolution
Gaofen-7 images of the test set to obtain data from 1.3 m resolution and 2.6 m resolution
images. The 2.6 m resolution multi-spectral image data before sharpening fusion was also
used in the experiment. The different models obtained from the training based on 0.65 m
resolution Gaofen-7 images were predicted for 1.3 m and 2.6 m resolution image data.
Figure 11 shows the predicted results at different resolutions with trained models based on
0.65 m resolution Gaofen-7 satellite dataset. The results show that, when the resolution is
reduced from 0.65 m to 1.3 m, the difference in the prediction is not very obvious. However,
when the resolution is reduced to 2.6 m, the prediction will become very poor, especially
for multi-spectral images. Compared to other models, the advanced MANet is still able to
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identify a relatively large number of PV regions after the resolution is reduced to 2.6 m,
proving the superiority of the proposed model.
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4. Conclusions

In the context of the rapid development of distributed PVs, the shortcomings of tra-
ditional PV monitoring methods have become increasingly apparent. As a result, there is
increased interest in remote-sensing-based means of monitoring PVs. Currently, distributed
rooftop PV monitoring methods are based on satellite or aerial images with resolution
higher than 0.3 m. As an important part of distributed rooftop PVs, industrial and com-
mercial rooftop PVs have a great potential for development. Therefore, this paper studies
the industrial and commercial rooftop PV information extraction method based on 0.65 m
Gaofen-7 satellite images. This study constructed two distributed industrial and commer-
cial rooftop PV datasets based on Gaofen-7 images and the publicly available PV dataset.
The advanced MANet model was proposed by removing the downsample operation in the
first stage of the encoder and adding an auxiliary branch containing the ASPP module in
the decoder. Based on the constructed datasets, comparative experiments were conducted
between the advanced MANet model and state-of-the-art semantic segmentation models,
such as Unet, Deeplabv3+, U2net, and MANet. The experimental results show that the
advanced MANet model has better performance for industrial and commercial rooftop PV
information extraction. The following aspects of the study need to be improved. First, the
dataset based on the Gaofen-7 satellite uses only the RGB three-band, which does not fully
utilize the data from the Gaofen-7 RGB and near-infrared four-band. In the future, four-
band data will be introduced for experiments. Second, due to the similarity of the spectral
characteristics of industrial and commercial rooftop PVs and agricultural greenhouses,
the model can easily misidentify agricultural greenhouses as industrial and commercial
rooftop PVs. This may be caused by the small size of the training dataset. In the future,
the commercial and industrial rooftop PV dataset can be expanded to enhance the model’s
ability to extract PV features. Third, the use of the advanced MANet has only been studied
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in some areas of Jiangsu Province to date. In the future, the examination can be extended to
the whole province.
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