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Abstract: The fast and accurate extraction of plastic greenhouses over large areas is important for
environmental and agricultural management. Traditional spectral index methods and object-based
methods can suffer from poor transferability or high computational costs. Current deep learning-
based algorithms are seldom specifically aimed at extracting plastic greenhouses at large scales.
To extract plastic greenhouses at large scales with high accuracy, this study proposed a new deep
learning-based network, U-FDS Net, specifically for plastic greenhouse extraction over large areas.
U-FDS Net combines full-scale dense connections and adaptive deep supervision and has strong
future fusion capabilities, allowing more accurate extraction results. To test the extraction accuracy,
this study compiled new greenhouse datasets covering Beijing and Shandong with a total number of
more than 12,000 image samples. The results showed that the proposed U-FDS net is particularly
suitable for complex backgrounds and reducing false positive conditions for nongreenhouse ground
objects, with the highest mIoU (mean intersection over union) an increase of ~2%. This study provides
a high-performance method for plastic greenhouse extraction to enable environmental management,
pollution control and agricultural plans.

Keywords: plastic greenhouse; remote sensing; deep learning; environmental management

1. Introduction

The rapid increase in global population has increased the demand for producing
food, vegetables and fruits on limited arable land [1,2]. Furthermore, this arable land
is gradually being threatened by urbanization and climate change [3]. Therefore, tradi-
tional production and planting methods cannot meet the demands of rapidly developing
societies [4], and a new type of agriculture facility (plastic greenhouses) is being widely
used. These so-called new agricultural facilities mainly refer to plastic greenhouses, which
are not limited by season. Through the artificial creation of microenvironments to grow
food crops [5] greenhouses can be used to increase agricultural production in complex
terrain environments, which greatly improves the utilization of agricultural resources.
The popularization of plastic greenhouses has promoted the development of agriculture
worldwide and is an important part of agricultural production [6]. However, while creating
societal well-being, greenhouses also introduce negative ecological and environmental
problems [7,8], such as water pollution, soil acidification and salinization, and biodiversity
degradation [9–12]. Therefore, quickly and accurately extracting the distribution, cov-
erage area and other information of plastic greenhouses is important for environmental
management and agricultural planning.

Several previous studies have proposed extracting plastic greenhouses by constructing
novel spectral indices [13–15] or object-based classification methods [16–18]. For exam-
ple, Yang, et al. [8] proposed a new greenhouse spectral index, RPGI, based on medium
spatial resolution remote sensing images. Zhang, et al. [19] proposed an advanced plastic
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greenhouse spectral index (APGI) based on Sentinel-2 images to map the distribution of
large-scale greenhouses. Other studies used object classification-based methods to extract
greenhouses. Wu, et al. [20] proposed a practical suburban greenhouse extraction algo-
rithm with Landsat-8 images and an object-based method, suggesting that the object-based
method could significantly improve accuracy. However, both methods have some limita-
tions. Specifically, the spectral index method is based on the premise that all greenhouses
have the same spectral characteristics, ignoring the “same objects with different spectrum”
properties between greenhouses and the “different objects with same spectrum” properties
between greenhouses and background objects. Therefore, the spectral index method is very
sensitive to noise and easily causes missed classifications and incorrect classifications in
practical applications. With changes in the phenological period and roof covering material,
such methods may be ineffective. While object-based methods rely on the selection of seg-
mentation parameters and require certain professional experience and prior knowledge. At
the same time, the ability to simultaneously extract features is limited, and generalization
is poor in complex scenes. Such methods consume considerable computer memory, cannot
process large-scale images in parallel and consume considerable time, which is especially
prominent in large-range applications [21].

In recent years, with the development of artificial intelligence, deep learning has been
widely used in various fields of remote sensing and has achieved superior performance
compared with traditional methods in tasks such as fire detection [22], building segmenta-
tion [23], hyperspectral image classification [24,25] and other tasks [26,27]. Digital image
processing tasks are gradually changing from traditional machine learning algorithms such
as support vector machines [28] and random forests [29] to more advanced deep learning
algorithms such as deep forests [30]. Convolutional neural networks (CNNs) are the most
popular deep learning algorithms in the field of remote sensing [25,31]. Advanced CNNs,
such as fully convolutional neural networks [32], U-Net [33] and DeepLab [34], are widely
used in remote sensing image segmentation tasks. The development of deep learning
methods in recent years has provided an opportunity to employ CNNs to quickly and
accurately extract greenhouses [35,36]. Li, et al. [37] compared the performance of three
CNN algorithms (YOLO v3, Faster R-CNN and SSD) in greenhouse detection, showing that
YOLO v3 achieves the best results. Ma, et al. [38] proposed a dual-task detection framework
for greenhouses using ResNet-50 as the feature extraction backbone and compared it with
U-Net, achieving a gain of 0.347% in mIoU. Chen, et al. [39] used the U-Net network
to extract greenhouses based on Google Earth remote sensing images and obtained an
accurate result. Among them, U-Net has achieved success in many remote sensing image
analysis tasks because of its advantages of fast calculation and high accuracy [40].

Although Chen, et al. [39] demonstrated the feasibility of U-Net in plastic greenhouse
extraction, their study only used a simple transfer of the U-Net network and did not
improve its structure. It is worth noting that U-Net was originally proposed as a medical
image segmentation network, which is obviously different from the remote sensing of
plastic greenhouse images with complex and diverse background features. U-Net++ and
U-Net+++ redesigned the skip connection structure of U-Net to improve the extraction
results [41,42]. However, U-Net++ cannot explore information at full scale, while U-
Net+++ quickly forwards the high-resolution feature maps from the encoder to the decoder,
resulting in the direct fusion of feature maps with large differences at the semantic level.
Therefore, a network suitable for plastic greenhouse extraction needs a richer receptive
field, which can fully capture the semantic features of the objects to be extracted at full
scale. This study proposed a new full-scale densely connected adaptive deep supervision
network (U-FDS Net) specifically for plastic greenhouse extraction with high-resolution
remote sensing imaging over large areas.

The basic assumption of U-FDS Net is that exquisite semantic signals are progres-
sively diluted by full-scale dense hopping connections that reduce the difference between
encoders and decoders so that the network can learn semantic features from different gran-
ularity feature maps in a more delicate manner. Different information can be learned from
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feature maps of different scales and granularities, and rich spatial features can be explored
through shallow feature maps to capture the boundary information of greenhouses and
then distinguish them from roads with similar color and shape features in the background.
The advanced texture details of the ground objects are learned through the deep feature
map, and buildings similar in shape to a greenhouse can be distinguished. Each small
nested structure is followed by an adaptive deep supervision structure and concatenated
loss function at the end, which is helpful for the adaptive weighted fusion of branches
with feature maps of different scales and degrees of dilution to improve the segmentation
accuracy. Moreover, the shallow layers of the network can be trained more fully, and the
convergence speed of the model can be improved.

This study proposed a novel plastic greenhouse segmentation model, U-FDS Net, with
full-scale dense connections and an adaptive deep supervision structure, which can better
integrate global overall information and local detailed information, thereby improving
segmentation accuracy. We tested the proposed new model on two self-annotated green-
house datasets from different regions and at different scales. The results showed that the
U-FDS Net proposed in this study achieves the highest performance. Specifically, com-
pared to U-Net, U-Net++, U-Net+++, and Attention U-Net, the proposed method achieves
maximum accuracy improvements of ~1.6% and ~1.9% on the two datasets, respectively.
The structure of this paper is as follows: Section 2 presents our methods and details of the
self-annotated greenhouse dataset used for testing; Section 3 presents the experimental
results; Section 4 discusses our methods; and Section 5 presents the conclusions.

2. Materials and Methods
2.1. Network Structure

Figure 1 shows the overall structure of the U-FDS Net proposed in this study. On
the whole, it is a multi-nested encoder–decoder structure, and different nested structures
are closely connected by full-scale dense connections. Each small nested structure is
accompanied by a sequential increase in the number of downsampling and upsampling
operations and the gradual expansion of the receptive field to hierarchically learn different
levels of feature maps. Finally, it is an adaptive deep-supervised feature extraction structure
concatenated with a binary cross-entropy loss function after a weighted fusion of the deep
supervision results. Small nested structures can provide more accurate global positioning
results, while deeply nested structures can offer a precise basis for detail segmentation.
With the change in scale and the gradual dilution of the characteristic signal, the network
selects the feature maps that are easier to learn in a series of feature maps with different
scales and different granularities, and, finally, adaptive weighted fitting is performed to
achieve model pruning and improve segmentation accuracy.

2.1.1. Full-Scale Dense Connection

Full-scale dense connections proposed in U-FDS Net can narrow the large-span se-
mantic gap between the encoder and decoder, improve their connectivity, help restore
fine-grained details of the target object, and fully explore features at different scales and
different degrees of dilution. To ensure maximum information flow between layers in
the network, we interconnect the gradually abstracted feature maps to strengthen the
interaction between multilevel semantic information. To maintain the feed-forward nature
of information, we make each layer of the network obtain input from the previous layers
of different scales, perform channel integration and feature fusion on all the obtained
information, and then take their own feature information as output to the subsequent layer.
Figure 2 shows the detailed full-scale densely connected structure, taking the cascaded
result F33 and feature map X33 in row 3, column 3 as an example.
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Figure 1. U-FDS Net structure diagram. On the far left is a downsampling coding structure based
on max pooling. To the right of the encoder is a series of full-scale densely connected structures,
where i indices the downsampling layer along the encoder, j represents the j-th column in each
row, Fi j represents the cascaded result of the i-th row and the j-column obtained by the fusion of
full-scale dense connections, and Xi j represents the feature map stack of the cascaded result of the
corresponding position after two convolutions. The top of the network is the deeply supervised
result of each nested structure. The network assigns weights to each branch by itself during training,
and finally, pixel-level addition and fusion are performed according to the iterative weights to obtain
the final result.

U-FDS Net first unifies the input original image into a feature map X11 with 64 chan-
nels through two convolution operations, followed by downsampling based on max pool-
ing, each time reducing the resolution by half (will not lead to information loss). Through
downsampling, the coding results in the first column that is closest to the semantic level of
the original image are obtained, and then all the feedforward feature maps that provide
input to F33 are sequentially obtained. We perform channel concatenation (concat) on
the feature maps of different granularity levels in each row to obtain channel integration
results of different scales and then perform different levels of scaling operations on the
feature streams that are different from the scales of the feature maps to be fused. The down-
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sampling operation used here is max pooling. The unified scale feature map stacks from
different scales and different granularities are obtained by up- and downsampling. To filter
out redundant information and control the size of the model, we perform a convolution on
each of these feature maps to unify the number of channels and connect BatchNorm (BN)
after the convolution layer to avoid the vanishing gradient problem in the process of deep
network training and accelerate the convergence speed. Next, U-FDS Net aggregates the
processed results to obtain the concatenated result F33 and then performs feature extraction
and channel unification through two convolution operations to obtain the final result X33
in the third row and third column. To express the nonlinear relationship between input
and output in different feature maps, we connect the BN layer of each of two continuous
convolution operations in U-FDS Net with the nonsaturating activation function ReLU
( f (x) = max(0, x)).
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To better represent the feedforward input source of each decoding feature layer in
the full-scale dense connections and the detailed network structure of U-FDS Net, all the
feature map stacks represented by Xi,j can be calculated as

Xi,j =


H(In) , i = 1, j = 1

H
(

D
(
Xi−1,j

))
, i 6= 1, j = 1

H
([

C
(

U2m−i
(
[Xm,n]

i+j−m
n=1

))i+j−1

m=i+1
, C
(
[Xi,n]

i−1
n=1

)
, C
(

D2i−m
(
[Xm,n]

i+j−m−1
n=1

))i−1

m=1

])
, else

(1)

where In represents the input original data, H(·) represents the feature aggregation mecha-
nism implemented by convolution, BN, and ReLU operations, C(·) represents a convolution
and BN operation, Uk(·) and Dk(·) represent k up- and downsampling, respectively, and
[·] represents concatenation. According to the formula, each new result to be decoded
accepts Xi,j at all previous locations as its input data source to achieve multiscale and
multi-granular feature reuse.
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2.1.2. Adaptive Deep Supervision Block

To more reasonably fuse the features captured by the network, an adaptive deep
supervision structure is used at the end of each nested structure. All feature maps are
fused before outputting, as shown in Figure 3. For the fusion methods of the results of each
branch, we propose the idea of making the network learn the weights of each branch by
itself for different data because, for data samples with different feature distributions, the
proportions of different depth branches in the final result are often different.
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Adaptive deep supervision in U-FDS Net is similar to a branch-oriented implicit soft-
attention deep supervision mechanism. We add a differentiable coefficient in front of the
deep supervised feature map, which can be adjusted automatically according to the gradient
backhaul so that the network can assign its own attention to each branch during training.
Within each nested structure is an end-to-end classification problem, while each nested
structure is more like a regression problem. During training, the network gradually adjusts
the weights assigned to each classifier through multiple iterations and finally fits the best
representation relationship between each deep supervision result and the ground truth.

In addition, we provide two other deep supervision schemes for U-FDS Net to change
the backhaul gradient flow of the deep network; that is, an adaptive deep-supervised
auxiliary classifier is also added to the right branch of U-FDS Net. The step-by-step
upsampling scheme (Figure 4) can reduce the image distortion problem caused by the
direct upsampling of the underlying ultrasmall resolution feature map to high resolution,
while the far-hop upsampling scheme (Figure 5) can lead to faster gradient backhaul.
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2.1.3. Lightweight Full-Scale Feature Aggregation Networks

Based on U-FDS Net, we design other lightweight networks with fewer parameters
for ablation experiments. It is worth noting that the depth of each network is controlled by
the number of CBR structures, which are all set to 2 in this experiment.

Narrow-U-FDS Net: This has the exact same structure as U-FDS Net and greatly
reduces the network width on this basis.

En-U-FDS Net: A network structure that gradually expands the difference between
the decoder and the encoder (Figure 4), which cancels the dense connection on the basis of
U-FDS Net. This structure tends to reuse the features close to the encoder many times, and
the features from the encoder will not be quickly forwarded directly to the decoder but will
slowly enlarge the difference with the input source with increasing network depth.

De-U-FDS Net: A network structure that gradually progresses the difference between
the encoder and the decoder (Figure 5), similar to En-U-FDS Net, also without dense
connections. The difference is that this structure tends to use the features on the decoder
side, and as the network depth deepens, the features of the encoder are progressively
advanced to the decoder multiple times.

The formula expressions of En-U-FDS Net and De-U-FDS Net are shown in
Equations (2) and (3), respectively:

En-U-FDS Net:

Xi,j =


H(In) , i = 1, j = 1

H
(

D
(
Xi−1,j

))
, i 6= 1, j = 1

H
([

C
(

U2k−i
(

Xk,i+j−k

))i+j−1

k=i+1
, C(Xi,1), C

(
D2i−k

(Xk,1)
)i−1

k=1

])
, else

(2)

De-U-FDS Net:

Xi,j =


H(In) , i = 1, j = 1

H
(

D
(
Xi−1,j

))
, i 6= 1, j = 1

H
([

C
(

U2k−i
(

Xk,i+j−k

))i+j−1

k=i+1
, C
(
Xi,j−1

)
, C
(

D2i−k
(

Xk,i+j−k−1

))i−1

k=1

])
, else

(3)

2.2. Self-Annotated Dataset of Plastic Greenhouses

In this study, plastic greenhouse image data from Google Earth remote sensing images
with a spatial resolution of 0.95 m for Shandong Province and Beijing are annotated and
used. The obtained satellite data is a 24-bit image based on the red (R), green (G), and blue
(B) 3 bands. It has features of high resolution and can be directly downloaded and used
through various open-source methods without requiring any preprocessing. Shandong
Province is located at 114◦19′E–122◦43′E, 34◦22′N–38◦23′N, with a total area of 157,800 km2,
and is an important vegetable supply base in China. The experimental data were randomly
selected from various cities in Shandong Province, cropped into small-sized image blocks of
512× 512 after annotation, and randomly divided into a training set, validation set, and test
set at a ratio of 8:1:1. Beijing is located at 115◦25′E–117◦30′E and 39◦26′N–41◦03′N, with a
total area of 16,400 km2, and is the capital of China. This dataset consists of 256× 256 small-
sized image patches in Beijing, and the dataset is also divided at a ratio of 8:1:1. This process
can be quickly implemented through Python programming. Upon testing, the entire process
was completed on a desktop computer (Intel(R) Core(TM) i7-10750H CPU @ 2.60 GHz,
2933 MHz ddr4 Random Access Memory, and Solid State Drives) in approximately 8 min.
Table 1 gives detailed information on the self-annotated plastic greenhouse datasets of the
two study areas, and Figure 6 shows a schematic diagram of the study area.
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Table 1. Information on the self-annotated plastic greenhouse dataset.

Region Size Training Evaluation Test Total

Shandong 512 × 512 4849 606 606 6061
Beijing 256 × 256 5472 684 684 6840
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Figure 6. Schematic diagram of the study area and the basic shape of a plastic greenhouse in the
study area. (a,b) are the different shapes of the greenhouse in the high-resolution remote sensing
image, and (c) is a close-up view of a plastic greenhouse.

To make plastic greenhouse labels as accurate as possible, by analyzing their distribu-
tion and shape, it is found that there are mainly four types of plastic greenhouses in the
study area, as shown in Figure 7.
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Figure 7. Main plastic greenhouse types and their labels in the study area. Among them, (a) is a white
plastic greenhouse distributed near residential areas; (b) is a light green densely distributed plastic
greenhouse; (c) is a green-covered plastic greenhouse; and (d) is a black-covered plastic greenhouse
because the top is covered with a shading cloth.

2.3. Experiments

Figure 8 shows the main technical process of extracting plastic greenhouses with three
parts: data preparation, algorithm verification and result prediction. In the data preparation
part, the downloaded high-resolution remote sensing images were manually annotated
by visual interpretation, and the labels were stored in the form of binary grayscale images
and were cropped and divided into datasets, as described in Section 2.2. In the algorithm
verification part, we use the mean intersection over union (mIoU: %) as the evaluation
index to measure the accuracy of each model, filter out the best accuracy weight file of each
model according to the verification set, and conduct the accuracy evaluation on the test set.
The calculation formula of the mIoU depends on the two-class confusion matrix, and its
calculation formula is shown in Equation (4). The specific expression form of the confusion
matrix is shown in Table 2. In the result prediction part, we input the original image and
the trained weight file into a sliding window segmentation and geographic coordinates
add (WSCA) module to complete the prediction of the result.
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Table 2. Binary confusion matrix.

Confusion Matrix
Predict

True False

Real
True TP (True positive) FN (False negative)
False FP (False positive) TN (True negative)

The equipment hardware of this experiment is an NVIDIA Tesla V100-SXM2 graphics
processing unit (GPU) with 32 GB video random access memory (VRAM), and the stream
processing unit reaches 5120. The O1-level Apex automatic mixed precision training is
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used, the optimizer is Adam, the learning rate decay method is cosine annealing, and the
batch size of each model is set to the maximum integer multiple of 2 allowed by the VRAM.

The meanings of TP, FN, FP, and TN in the binary confusion matrix used in this
experiment are as follows:

a. TP: true positive, i.e., the real category of a sample is greenhouse, and the model
prediction result is also greenhouse;

b. FN: false negative, i.e., the real category of a sample is greenhouse, but the model
prediction result is background;

c. FP: false positive, i.e., the real category of a sample is background, but the model
prediction result is greenhouse;

d. TN: true negative, i.e., the real class of a sample is background, and the model
prediction result is background.

mIoU =
1
2

(
TP

TP + FN + FP
+

TN
TN + FN + FP

)
(4)

3. Results and Analysis

In this study, four typical and widely used networks (U-Net, U-Net++, U-Net+++,
and Attention U-Net) were selected as the control group to compare with the En-U-FDS
Net, De-U-FDS Net, Narrow-U-FDS Net and U-FDS Net proposed in this study. Table 3
shows the number of parameters and segmentation accuracy of different models in the two
greenhouse self-annotated datasets, in which the blue font is the result with the highest
accuracy in the control group; the red font is the highest accuracy result in each dataset;
and the purple font is the accuracy result of Narrow-U-FDS Net with only a very small
number of parameters. A histogram of each accuracy result is shown in Figure 9.
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Table 3. The number of parameters and segmentation results of each model.

Model Params
Dataset

Shandong Beijing

U-Net 12.77 M 88.9266 92.4881
U-Net++ 44.99 M 89.3119 92.7878

U-Net+++ 25.72 M 90.1137 93.0096
Attention U-Net 38.25 M 89.3293 93.7484
En-U-FDS Net 37.36 M 90.0888 94.0418
De-U-FDS Net 37.36 M 90.1263 94.0531

Narrow-U-FDS Net 10.67 M 90.1381 94.1244
U-FDS Net 42.65 M 90.5190 94.3499

According to Table 3 and Figure 9, we can see that the proposed U-FDS Net achieved
the highest segmentation accuracy for both datasets. For the large-scale Shandong dataset,
our U-FDS Net achieves performance gains of approximately 1.6% and 0.4% compared to
the traditional U-Net and the highest-accuracy U-Net+++ in the control group, respectively.
For the small-scale Beijing dataset, U-FDS Net achieves a performance gain of approxi-
mately 1.9% and 0.6% compared to the traditional U-Net and the most accurate attention
U-Net in the control group, respectively.

Based on the U-FDS Net architecture, the narrow U-FDS Net, which has greatly
reduced the network width, has a significant lightweight advantage compared to other
models in terms of the number of parameters, and the segmentation accuracy has also
been improved. The number of parameters of our reduced network model is only 10.67 M,
which is less than that of U-Net. At the same time, it brings approximately 1.2% and 1.6%
accuracy improvement over U-Net on the two datasets, respectively, which indicates that
the performance gain brought by our architecture comes from the improvement of the
architecture, not just due to the increase in the number of parameters. A larger number of
parameters further improves segmentation accuracy but at the cost of a significant increase
in the required GPU VRAM. U-FDS Net can easily control the model size by changing its
width and depth to be mounted on consumer GPUs.

The effects of different models on greenhouse extraction are shown in Figure 10.
Figure 10a–c demonstrate the cases where ground objects are very similar to plastic green-
houses but at smaller scales. Our proposed U-FDS Net could determine false positive
misclassifications. In Figure 10d, greenhouses are scattered around residential areas and
are also easily confused with surrounding objects. The models proposed in this study
achieved better performance than the control group, which we believe is due to the stronger
overall perception capability of our model, which can explore feature signals of different
dilution levels on a full scale, gradually abstract feature maps and perform information
integration. Figure 10e shows a situation of densely distributed plastic greenhouses where
factory buildings are similar to greenhouses in color, shape and scale, which can also easily
cause false positive misclassifications. For such images, the model needs to be able to grasp
the spatial information and detailed texture features of the ground objects at the same
time. U-FDS Net with a full-scale dense connection structure shows significant advantages.
Figure 10f also shows a case of densely distributed plastic greenhouses but with residential
areas nearby. The detailed semantics of the image are not well learned by the model of
the control group, and our model can obtain more accurate segmentation due to its more
delicate perception ability.
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Figure 10. The results of different models. Among them, (a,b) are instances where there are no
greenhouses at all, (c,d) are instances where only a few greenhouses exist, and (e,f) are instances
where greenhouses are densely distributed; the first row is the original remote sensing images, the
second row is the corresponding labels, and then each row corresponds to the greenhouse detection
results of each model.

4. Discussion
4.1. Advantages

The U-FDS Net proposed in this study is a novel full-scale feature fusion greenhouse
extraction deep learning-based method with an advanced architecture of deep supervision
and attention mechanisms. As a deep learning approach, it possesses better transferability
and feature extraction capabilities compared to traditional remote sensing methods. For
example, the spectral index method is often plagued by poor transferability and requires
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robust professional knowledge. Extracting greenhouses by constructing spectral indices
can work well in a small region but may not be applicable in changing seasons and with
differences in greenhouse covering materials in different regions when extracting green-
houses over large areas. Using an object-based classification method takes considerable
time because the computational cost is high and it can only extract the shallow features of
ground objects, which makes it difficult to meet large-scale application needs, while deep
learning methods can explore deep, high-level features and benefit from efficient parallel
computing on GPU devices.

Compared with the traditional or state-of-the-art network model, U-FDS Net’s novel
architecture design can achieve higher segmentation accuracy by learning semantic features
of different scales and granularities more fully when dealing with a variety of complex
scenarios. Specifically, employing an encoder–decoder structure has become a common
paradigm for deploying complex operations in remote sensing semantic segmentation tasks,
yet research on network architectures remains in its early stages. Taking EGENet [43] as an
example, although it demonstrated the advantage of initiating feature extraction at higher-
resolution levels for dense small targets, then, how can further improvement be achieved
upon this foundation? Considering that the semantic depth carried by a single encoder–
decoder is fixed, U-FDS Net explores the utilization of multiple nested sub-encoder–decoder
forms. This can be seen as a higher-order form of a single encoder–decoder, where shallow
fine-grained semantics guide deeper high-level features. These features have both global
overall information and local detailed information. According to the global information,
the most significant appearance performance of the greenhouse can be learned, while the
local information provides more details that distinguish the greenhouse from other features.
The combination of these two pieces of information reduces false positive misclassifications
and provides a more accurate basis for the greenhouse segmentation task. This architectural
concept can be applied to other image segmentation tasks; for example, on the Kvasir-
SEG public dataset (https://datasets.simula.no/downloads/kvasir-seg.zip, accessed on
10 December 2023), U-FDS Net also achieves the highest mIoU. On the other hand, we
strive for low cost, simplicity and practicality. U-FDS Net can achieve higher accuracy with
fewer parameters. It does not rely on the user to have robust professional knowledge and
only needs to adjust parameters for GPU and TPU hardware with different VRAM and
computing power, and it can meet most application scenarios.

4.2. Limitations and Future Perspectives

The U-FDS Net proposed in this study is a fully convolutional image segmentation
network. The original intention of our design is to select a relatively common and efficient
network structure in the existing research and improve it based on greenhouse data to
pursue its accuracy improvement without consuming too much time. However, U-FDS
Net does not use self-attention, such as the Swin Transformer [44] and TransUNet [45].
We tested the inference consumption of a single 256 × 256 RGB image on an NVIDIA
Tesla V100-SXM2 GPU. The FLOPs, Params and inference time of TransUNet are 32.23 G,
88.91 M and 43.95 ms, respectively, while those of U-FDS Net are 333.31 G, 42.65 M and
27.27 ms, respectively, indicating that the former may have higher GPU VRAM and memory
bandwidth requirements in practical applications. The introduction of a transformer
structure module in the future may further improve the accuracy of such image-processing
tasks, but this may come at the cost of a longer inference speed and higher hardware
requirements. On the other hand, we also recommend leveraging multi-source data for
performance gains. Specifically, the samples used in this study are 24-bit RGB images
with limited perceptual capabilities. Incorporating additional data or bands, such as multi-
spectral data sensitive to greenhouses, could further advance the performance boundaries
of greenhouse segmentation tasks.

https://datasets.simula.no/downloads/kvasir-seg.zip
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5. Conclusions

Plastic greenhouses are an important part of contemporary facility agriculture. Quickly
and accurately extracting plastic greenhouses is important for environmental protection
and sustainable development. To accurately monitor the distribution of plastic greenhouses,
this paper proposed a new deep learning-based algorithm, named U-FDS Net, combining
full-scale dense connections and adaptive deep supervision. This new algorithm aims
to more rationally fuse the information obtained from the global, fit exclusive feature
representation relationships for different remote sensing images and improve greenhouse
extraction accuracy. We tested our model on two high-resolution self-annotated greenhouse
datasets at different scales in different study areas. The results show that, compared to
U-Net, U-Net++, U-Net+++ and Attention U-Net, our method achieves the best extraction
accuracy on both datasets, with performance gains of 0.405–1.592% and 0.602–1.862% in
terms of mIoU, respectively, and significantly improves false positive misclassification
in greenhouses. Our method enables rapid identification of the spatial distribution of
greenhouses, providing technical support for accurate estimation of agricultural output
and locating potential environmental pollution caused by greenhouses.
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