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Abstract: Tree species identification is a critical component of forest resource monitoring, and timely
and accurate acquisition of tree species information is the basis for sustainable forest management
and resource assessment. Airborne hyperspectral images have rich spectral and spatial information
and can detect subtle differences among tree species. To fully utilize the advantages of hyperspectral
images, we propose a double-branch spatial–spectral joint network based on the SimAM attention
mechanism for tree species classification. This method achieved high classification accuracy on three
tree species datasets (93.31% OA value obtained in the TEF dataset, 95.7% in the Tiegang Reservoir
dataset, and 98.82% in the Xiongan New Area dataset). The network consists of three parts: spectral
branch, spatial branch, and feature fusion, and both branches make full use of the spatial–spectral
information of pixels to avoid the loss of information. In addition, the SimAM attention mechanism
is added to the feature fusion part of the network to refine the features to extract more critical features
for high-precision tree species classification. To validate the robustness of the proposed method, we
compared this method with other advanced classification methods through a series of experiments.
The results show that: (1) Compared with traditional machine learning methods (SVM, RF) and
other state-of-the-art deep learning methods, the proposed method achieved the highest classification
accuracy in all three tree datasets. (2) Combining spatial and spectral information and incorporating
the SimAM attention mechanism into the network can improve the classification accuracy of tree
species, and the classification performance of the double-branch network is better than that of the
single-branch network. (3) The proposed method obtains the highest accuracy under different training
sample proportions, and does not change significantly with different training sample proportions,
which are stable. This study demonstrates that high-precision tree species classification can be
achieved using airborne hyperspectral images and the methods proposed in this study, which have
great potential in investigating and monitoring forest resources.

Keywords: tree species classification; hyperspectral images; deep learning; spatial–spectral information;
attention mechanism

1. Introduction

Forests are the mainstay of terrestrial ecosystems and are essential in maintaining
ecological security and balance [1]. Conducting forest resource surveys and monitoring is
important for formulating forestry guidelines and policies, protecting and utilizing planned
forests, and constructing a sound ecological environment [2]. Among these, tree species
identification is one of the basic and key components of forest resources monitoring, which
plays a vital role in forest fire prevention [3], the monitoring of forest pests and diseases [4],
the extraction of forest change information [5], and the protection of biodiversity [6].
Traditional tree species identification mainly relies on manual field surveys to identify tree
species based on the external morphology of trees. Although this method has high accuracy,
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it has low accessibility, involves a difficult investigation, and involves high danger for plots
without traffic conditions [7]. Secondly, field survey is costly and time-consuming, which
makes it challenging to identify large-scale tree species in a short time.

The rapid development of remote sensing technology makes up for the deficiency
of manual survey methods, which can obtain large-area image data without touching
trees and realize the classification and identification of tree species in large regional scale
areas without causing damage to the forest ecological environment. In particular, the
hyperspectral sensor can simultaneously image the target region in tens to hundreds of
continuous and subdivided spectral bands, obtaining the spatial information of the surface
image as well as its spectral information, achieving the combination of spectra and image.
Compared with RGB and multispectral images, hyperspectral images have rich spectral
information and can detect subtle differences in the spectra of different vegetation, which
has significant advantages in forest tree species classification.

In recent years, deep learning methods based on neural network have become popular
with the development of computer hardware and algorithms. As an emerging research
direction in the field of machine learning, it utilizes deep neural network structures that can
automatically learn high-level abstract features and combine these features layer by layer
to achieve efficient and accurate data classification and prediction [8,9]. Compared with
traditional machine learning methods, deep learning has more robust self-adaptive and
generalization capabilities, can better handle large-scale complex data, and has achieved
great success in computer vision, natural language processing, speech recognition, and
other fields. In the field of remote sensing, deep learning technology has attracted extensive
attention from scholars, and many experts have utilized deep learning methods for tree
species classification and achieved good classification results [10–12]. Among them, the
convolutional neural network (CNN) has achieved remarkable results in computer vision,
such as image classification [13], object detection [14], and semantic segmentation [15]. Due
to its powerful feature extraction capability, the convolutional neural network has become
the most commonly used neural network in hyperspectral tree species classification [16–18].
The hyperspectral image classification methods based on CNN can be mainly divided into
three classes:

• Classification methods based on spectral features [19,20]. This method utilizes 1D-
CNN to extract features from the raw spectral information of pixels to complete
classification. Xi et al. [21] applied a 1D-CNN to tree species classification in OHS-1
hyperspectral images, and the results showed that the accuracy obtained using a 1D-
CNN (85.04%) was better than that of the Random Forest classification model (80.61%).
However, the 1D-CNN only considered the spectral information of the samples and
not their spatial information.

• Classification methods based on spatial features [22,23]. This method first performs
feature dimensionality reduction on hyperspectral images and then extracts spatial
information in a neighborhood centered on the pixel to be classified, using a 2D-CNN
to complete classification. Fricker et al. [24] performed PCA dimensionality reduction
on hyperspectral data, used a 2D-CNN to extract spatial features from the data after
dimensionality reduction, and classified seven dominant species and dead trees in a
mixed coniferous forest, achieving a classification accuracy of 87%. Although the 2D-
CNN utilizes the spatial information of pixels, it loses the original spectral information
in the dimensionality reduction process.

• Classification methods based on spatial–spectral features association. One way is to
use a 3D-CNN to simultaneously extract spectral and spatial features of pixels [25,26].
Zhang et al. [27] proposed an improved 3D convolutional neural network for tree
species classification, which uses the raw data of airborne hyperspectral images as
input without dimensionality reduction or feature selection and can extract spectral
and spatial features simultaneously, resulting in a tree species classification accuracy
of 93.14%. However, this method only uses the 3D convolutional structure, which can
easily lead to overfitting when the number of network parameters is large. Another
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way is to use different networks to extract spectral and spatial features separately,
and then combine the two features to complete classification [28–30]. For example,
Liang et al. [31] proposed a spectral–spatial paralleled convolutional neural network
to classify the forest tree species in the UAV HSI. The experimental results showed
that the SSPCNN produced competitive performance compared with other methods.
However, the network structure is relatively simple, and the classification effect is not
good in the context of complex forests.

In short, methods based on spectral or spatial features may lose certain information
and fail to take full advantage of hyperspectral images. Hyperspectral images contain
both spatial and rich spectral information, so classification methods based on spatial–
spectral feature association are more in line with hyperspectral characteristics. Compared
with a 3D-CNN, the double-branch network can design different forms of spectral and
spatial networks to extract features, which has more flexibility and a strong advantage
in hyperspectral tree species classification. In tree species classification, different spectral
features and spatial features have different abilities to distinguish tree species, and the
neural network should focus on the features that contribute significantly to the classification
results. Therefore, the accuracy of tree species classification can be improved by introducing
an attention mechanism to make the network focus on important features and suppress
unimportant features.

In summary, tree species identification is essential for forest inventory, and remote
sensing technology has strong advantages in large-scale tree species identification. Since
airborne hyperspectral images have rich spectral and spatial information, which can detect
subtle differences between different tree species, we used hyperspectral images as the data
source. However, the classification methods based on spectral features do not consider
the spatial information of hyperspectral images, and the classification methods based on
spatial features will cause the loss of spectral information in the process of data dimension-
ality reduction. In addition, the neural network should focus on features that contribute
significantly to classification. In order to fully utilize the spatial–spectral information of
hyperspectral images, we design a double-branch network, i.e., a spectral branch and a
spatial branch. In the spectral branch, we utilize a 3D-CNN to extract spectral features
of pixels instead of a 1D-CNN, which avoids the loss of spatial information. In the spa-
tial branch, we use muti-scale convolution and a 2D-CNN to extract spatial features of
pixels. It is worth noting that we do not reduce the dimensionality of the original data,
but input all the spectral bands into the spatial branch, which avoids the loss of spec-
tral information in the process of dimensionality reduction. In both branches, we design
corresponding residual structure blocks to extract features better. To further utilize the
spatial–spectral information, we fuse the features obtained from the two branches through a
concatenation operation to obtain spatial–spectral features. In addition, the neural network
should focus on features that contribute significantly to classification. So, we introduce the
SimAM (Simple Parameter-Free Attention Module) mechanism into the network, which
is a parameter-free attention mechanism that can make the network focus on important
features without increasing the number of parameters of the network. Finally, the fully
connected layer is utilized to complete tree species classification.

Our main contributions can be summarized as follows:

1. To fully utilize the advantages of the airborne hyperspectral images, we propose a
double-branch spatial–spectral joint network based on the SimAM attention mech-
anism for tree species classification. The network consists of three parts: spectral
branch, spatial branch, and feature fusion. The spatial–spectral information of pix-
els is utilized in both spectral and spatial branches to extract features, and spa-
tial and spectral features are merged in the feature fusion stage. Moreover, the
SimAM attention mechanism is used to refine the features further to improve the
classification accuracy.

2. To verify the effectiveness of the proposed method, we conducted tree species clas-
sification experiments on three different tree species datasets, and the experimental
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results showed that the method proposed in this study performed the best and ob-
tained the highest tree species classification accuracy compared to other classification
methods. Furthermore, we further verified the importance of joint spatial–spectral
information and the SimAM attention mechanism through ablation experiments.
Finally, we analyzed the factors affecting the classification accuracy of tree species.

The rest of this article is organized as follows: Section 2 describes the related work.
Section 3 describes the three tree species datasets used in this study and the proposed
method in detail. Section 4 presents classification results. Section 5 discusses and analyzes
the classification of tree species from different perspectives. Finally, the manuscript presents
the conclusions and briefly describes the directions for future work.

2. Related Work
2.1. Tree Species Classification Based on Remote Sensing Technology

Recent advances in remote sensing technology hold much promise for the detailed
mapping of the spatiotemporal distribution and characteristics of tree species over wide ar-
eas. Many researchers have successfully utilized remote sensing technology for tree species
classification studies [32–34]. Park et al. [35] combined high-resolution RGB images (spatial
resolution of 7 cm) acquired using UAV with machine learning algorithms to monitor trees
and leaf phenology in Panama’s tropical forests. Grabska et al. [36] created nine different
subsets of variables from multi-temporal Sentinel-2 data and environmental terrain data
(elevation, slope, and slope direction) using a Random Forest-based variable importance
selection algorithm (VSURF) and Recursive Feature Elimination (RFE). They classified
the tree species using Random Forest, Support Vector Machine, and XGBoost algorithms,
respectively. The results showed that the Support Vector Machine classifier outperforms
the other two classifiers, obtaining the highest accuracy of 86.9%. Although RGB and
multispectral remote sensing data have been widely used in tree species classification, the
characteristics between some tree species (especially those of the same genus) are very
similar, making it difficult to classify them finely with these two data sources.

2.2. Classification Methods Based on Hyperspectral Images

While RGB and multispectral data were reported to have potential for tree species
mapping, the continuous spectral information contained in hyperspectral data seems even
more suitable to differentiate tree species with similar spectral properties. In previous
studies, tree species classification using hyperspectral data mainly adopted traditional
machine learning methods [37–39], such as Support Vector Machine, Random Forest, BP
neural network, etc. For example, Dalponte et al. [40] used hyperspectral data and three
classifiers (SVM, RF, and Maximum Likelihood method) to evaluate the accuracy of boreal
forest species classification at the pixel level and crown level, respectively. However,
traditional machine learning methods need to process and transform the raw data and
manually extract features with distinction, such as important bands, vegetation indices,
and texture features. The performance results of the methods largely depend on whether
the selected features are reasonable or not. However, feature selection often relies on
experience and is somewhat blind. In addition, the selected feature type depends on the
specific task and dataset, which needs to be decided according to the actual situation,
resulting in poor generalization ability. Wei et al. [41] proposed a fine classification method
based on multi-feature fusion and deep learning. In their research, the morphological
profiles, GLCM texture and endmember abundance features were leveraged to exploit
the spatial information of the hyperspectral imagery. Then, the spatial information was
fused with the original spectral information to generate classification results by using the
deep neural network with a conditional random field (DNN + CRF) model. Although this
method can yield good classification results, the spatial features are manually extracted
from the raw data, which consumes time.
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2.3. Attention Mechanism

As is known to all, the importance of every spectral channel and the area of the
input patch is different when the network extracts features. The attention mechanisms
can focus on the most informative part and decrease the weight of other regions. Many
researchers have introduced an attention mechanism into hyperspectral image classifica-
tion. Ma et al. [42] introduced the Convolutional Block Attention Module (CBAM) into
hyperspectral images classification and proposed a Double-Branch Multi-Attention mecha-
nism network (DBMA) for HSI classification. The experimental results demonstrated the
effectiveness of the attention mechanism in hyperspectral images classification. However,
current attention mechanisms often use additional sub-networks to generate attention
weights [43–45], increasing the number of parameters in the model. The hyperspectral
images have a massive amount of data compared to other remote sensing data sources.
Accordingly, the number of parameters in the network model is also huge. The parameter-
free attention mechanism does not introduce additional parameters to the network in
generating weights, which is more suitable for hyperspectral images classification.

3. Materials and Methodology
3.1. Dataset Introduction

To verify the robustness of the proposed method, we conducted tree species classifica-
tion experiments on three different hyperspectral datasets. The three study areas are located
in different spatial locations, and the datasets are acquired using various hyperspectral
sensors, with different spatial resolutions and different tree species categories. Next, the
three datasets are described in detail.

3.1.1. TEF Dataset

The Teakettle Experimental Forest (TEF) study area is located in northeastern Fresno,
California, USA (36◦59′51′′N, 119◦1′28′′W), near the southern Sierra Nevada Mountains,
as shown in Figure 1a. The TEF dataset was collected in 2017 by the National Ecological
Observatory Network (NEON) using the airborne remote sensing platform AOP. A south-
to-north flight strip, approximately 16 km long and 1 km wide, covering a portion of the
Teakettle Experimental Forest, was used for this study. The hyperspectral sensor covers
a wavelength range of 380–2510 nm with a spectral sampling interval of 5 nm, resulting
in 426 bands. Data acquisition using the remote sensing platform occurred at an altitude
of approximately 1000 m above the ground, resulting in an image spatial resolution of
1 m. After removing the empty band and the bands affected by water vapor absorption, the
remaining 388 bands were used for experiments. The hyperspectral data was preprocessed
by NEON at the time of dataset release, including radiometric calibration, geometric
correction, atmospheric correction, and orthometric correction. Field data was provided by
Geoffrey et al. [24], and includes seven dominant tree species and dead trees.

The dataset was divided using a stratified random sampling method in this study.
Specifically, a fixed proportion of data from each category was selected as the training
and test sets. To avoid the chance of random selection in the dataset production process,
we adopted a 5-fold cross-validation method to obtain five datasets. In each experiment,
five datasets were trained and tested, respectively, and the average value was taken as the
final classification result. The specific number of training and test sets for each category in
the TEF dataset is shown in Table 1.

3.1.2. Tiegang Reservoir Dataset

The Tiegang Reservoir study area is located in the southeastern part of Baoan Dis-
trict, Shenzhen City, Guangdong Province, China (22◦36′30′′N, 113◦54′30′′E), as shown in
Figure 2a. The image was collected using an independently integrated UAV hyperspectral
system of the Chinese Academy of Surveying and Mapping. The hyperspectral sensor is a
push-broom scanner that records 112 bands in the 400–1000 nm spectral range with a spec-
tral resolution of 5 nm. The flight altitude was set to 100 m above ground level, resulting



Remote Sens. 2023, 15, 5679 6 of 27

in an image spatial resolution of 0.1 m. We performed pre-processing operations such as
outlier removal, radiometric calibration, geometric correction, atmospheric correction, and
image mosaic on the raw image. The hyperspectral image is shown in Figure 2b. Field data
was collected at the end of the flight process, and contained a total of seven tree species.
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Table 1. The number of training samples and test samples in the TEF dataset.

Code Scientific Name Abbreviation Train Samples Test Samples

1 Abies concolor abco 2323 593
2 Abies magnifica abma 742 113
3 Calocedrus decurrens cade 1452 403
4 Pinus jeffreyi pije 3654 924
5 Pinus lambertiana pila 2205 583
6 Quercus kelloggii quke 96 14
7 Pinus contorta pico 741 154
8 Dead tree dead 2745 796

Total 13,958 3580

Because the spatial resolution of the Tiegang Reservoir dataset is 0.1 m, and the number
of pixels is more compared to the TEF dataset, we did not use a 5-fold cross-validation
method to produce the dataset; instead, the training set and the test set were divided
according to the ratio of 1:1. The above operation was repeated five times, and its average
value was calculated as the final classification result. The specific number of training and
test sets for each category in the Tiegang reservoir dataset is shown in Table 2.

3.1.3. Xiongan New Area Dataset

The Xiongan New Area study area is located in the Matiwan Village, in the south-
eastern part of Xiongan New Area, Hebei Province, China (38◦56′40′′N, 116◦3′57′′E), as
shown in Figure 3a. The hyperspectral image was collected in October 2017 by the Institute
of Remote Sensing and Digital Earth and the Shanghai Institute of Technical Physics of
the Chinese Academy of Sciences. The hyperspectral sensor covers a wavelength range
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of 390-1000 nm, with a spectral sampling interval of approximately 2.4 nm, resulting in
256 bands. The data was collected using the airborne remote sensing platform at about
2000 m from the ground, resulting in an image spatial resolution of 0.5 m. The image
contains 3750 × 1580 pixels, as shown in Figure 3b. Through the field investigation of land
cover types, 20 categories were annotated, as shown in Figure 3c, including many tree
species, such as Pyrus sorotina, Acer negundo, Salix babylonica, etc.
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Table 2. The number of training samples and test samples in the TieGang Reservoir dataset.

Code Scientific Name Abbreviation Train Samples Test Samples

1 Glyptostrobus pensilis glpe 10,013 6581
2 Cinnamomum camphora cica 53,577 49,912
3 Eucalyptus robusta Smith euro 14006 7868
4 Ficus altissima fial 1783 3990
5 Platycladus orientalis plor 19,287 10,021
6 Ficus microcarpa fimi 10,226 6997
7 Castanopsis hystrix cahy 9627 14,518

Total 118,519 99,887

The Xiongan New Area dataset differs from the other two datasets. All trees are
artificial plantations, which are uniformly distributed, and the boundaries between different
tree species are clear. Considering the difficulty and high cost of sample acquisition in
practical remote sensing applications for forests, the tree species classification performance
of the network was explored with limited training samples. Specifically, we randomly
selected 0.5% of the data from each category as the training set and 5% of the data as the
test set. The objects of the study were various typical broadleaf tree species in northern
China, so the categories of non-tree objects were categorized as other. Similarly, the above
operation was repeated five times to avoid the chance of random selection, resulting in
five datasets. The five datasets were trained and tested in each experiment, and the average
value was taken as the final classification result. The specific number of training and test
sets for each category in the Xiongan New Area dataset is shown in Table 3.
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Table 3. The number of training samples and test samples in the Xiongan New Area dataset.

Code Scientific Name Abbreviation Train Samples Test Samples

1 Acer negundo acne 1128 11282
2 Salix babylonica saba 903 9038
3 Ulmus pumila ulpu 76 767
4 Sophora japonica soja 2377 23,779
5 Fraxinus chinensis frch 846 8467
6 Koelreuteria paniculata kopa 116 1165
7 Robinia pseudoacacia rops 28 280
8 Pyrus sorotina pyso 5132 51,325
9 Populus simonii posi 455 4553
10 Amygdalus persica ampe 327 3275
11 Other other 6987 69,915

Total 18,375 183,846

3.2. Methodology

The hyperspectral image data X ∈ RH×W×B (where H ×W and B denote the spatial
size of HSI and the number of spectral bands, respectively) are a three-dimensional struc-
ture, which contains spatial information and rich spectral information. To better classify
HSI pixels xi ∈ R1×1×B with spectral and spatial information, the HSI patch Xi ∈ RL×L×B

is cropped from X and input into the neural network to extract spatial–spectral features.
Here, the center pixel of Xi is xi, and L × L is patch size, chosen in this study to be
9 × 9. Moreover, to fully utilize the advantages of hyperspectral images, we proposed a
double-branch spatial–spectral joint network based on the SimAM attention mechanism
for tree species classification. The network structure is shown in Figure 4, and consists of
three parts: spectral branch, spatial branch, and feature fusion. Specifically, the spectral
branch mainly uses a 3D-CNN to extract the spectral features of pixels. The spatial branch
mainly uses a 2D-CNN to extract the spatial features of pixels. To make further use of the
spatial–spectral information of hyperspectral data, we fuse the features extracted from the
spectral branch with those extracted from the spatial branch, and introduce the SimAM
attention mechanism in the fusion stage. By assigning different weights to each part of the
feature map, important features are extracted, and unimportant features are suppressed,
thus improving the classification accuracy of tree species.
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3.2.1. Spectral Branch

When extracting the spectral features of pixels using a 1D-CNN, the spatial information
of the data will be lost, while a 3D-CNN extracts the spectral features along with their
spatial features, which can avoid the loss of spatial information. Therefore, in the spectral
branch, we utilize a 3D-CNN to extract the spectral features of pixels. The 3D convolution
operation is as in Equation (1):

vx,y,z
l,j = f (∑

m

Hl−1

∑
h=0

Wl−1

∑
w=0

Rl−1

∑
r=0

ωh,w,r
l,j,m v(x+h),(y+w),(z+r)

(l−1),m + bl,j) (1)

where, vx,y,z
l,j is the value at position (x, y, z) on the jth feature cube in the lth layer. Hl and

Wl denote the height and width of the 3D convolution kernel in the spatial dimension,
respectively, and Rl denotes the 3D convolution kernel in the spectral dimension. ωh,w,r

l,j,m
is the weight parameter at position (h, w, r) of the jth convolution kernel in the lth layer,
and the convolution kernel is connected to the mth feature cube in the (l − 1)th layer.
v(x+h),(y+w),(z+r)
(l−1),m is the value at position (x + h, y + w, z + r) on the mth feature cube in the

(l − 1)th layer. bl,j is the bias value. f (·) is the activation function; we chose the ReLU
activation function in this study.

The input data format for the spectral branch is (1, 9, 9, band), which contains all
pixels within a neighborhood size of 9 × 9 centered on the pixel to be classified. First, we
convolve the data using a 3D convolution kernel of size (1, 1, 7) to increase the number
of channels to 32. After that, we design two spectral residual blocks to extract features
further. The residual structure connects the convolutional layers through identity mapping,
which promotes a better backpropagation of the gradient and helps to solve the problem
of gradient vanishing and explosion [46]. Each spectral residual block consists of two 3D
convolutional layers. Meanwhile, in order to speed up the training and convergence of the
network and prevent model overfitting, we add a Batch Normalization (BN) layer after
each convolutional layer of the network to improve the model performance. Finally, we
utilize a 3D convolutional kernel of size (1, 1, kernel), where kernel denotes the number
of bands remaining after a series of convolutions, to obtain a spectral feature map of size
(128, 9, 9), denoted by Fspectral .



Remote Sens. 2023, 15, 5679 10 of 27

3.2.2. Spatial Branch

In the spatial branch, we utilize a 2D-CNN to extract the spatial features of hyper-
spectral images. A 2D-CNN mainly uses a 2D convolution kernel to perform convolution
operations on 2D data. The value mapx,y

l,j at position (x, y) on the jth feature map in the lth
layer is:

mapx,y
l,j = f (∑

m

Hl−1

∑
h=0

Wl−1

∑
w=0

ωh,w
l,j,mmap(x+h),(y+w)

(l−1),m + bl,j) (2)

where, Hl and Wl denote the height and width of the 2D convolution kernel, respectively.
ωh,w

l,j,m is the weight parameter at position (h, w) of the jth convolution kernel in the lth
layer, and the convolution kernel is connected to the mth feature map in the (l − 1)th
layer. map(x+h),(y+w)

(l−1),m is the value at position (x + h, y + w) on the mth feature map in the
(l − 1)th layer. bl,j is the bias value. f (·) is the activation function; similarly, we chose the
ReLU activation function in the spatial branch.

In previous studies, when researchers extracted spatial features of hyperspectral
images using a 2D-CNN, they first processed the raw data using a dimensionality reduction
algorithm (e.g., PCA algorithm), and then used the neural network for classification.
However, in the process of performing feature dimensionality reduction, the spectral
information of the data will be lost. To avoid the loss of information, instead of performing
dimensionality reduction on the data, we input all of the original spectral bands of the
pixels into the network. Hence, the input data format of the spatial branch is (band, 9,
9). In the spatial branch, we first extract the multi-scale spatial features of the data using
multi-scale convolution (the convolution kernels are 1 × 1, 3 × 3, and 5 × 5, respectively).
The number of output channels is 32, and three sets of feature maps with sizes of (32,
9, 9) are obtained, respectively. Then, the three sets of features are combined to form a
muti-scale feature map used as input to the subsequent convolutional layers, as shown in
Equation (3).

Fmuti = Concat(F1×1, F3×3, F5×5) (3)

where, Fmuti denotes the muti-scale feature map. F1×1, F3×3, and F5×5 denote the feature
maps obtained after different scales of convolutional layers, respectively.

After multi-scale convolution, we utilize a 2D convolution with a kernel size of (1, 1)
for the multi-scale feature map, and the number of output channels is set to 32 to reduce the
number of parameters. Similarly, in the spatial branch, we also design two spatial residual
blocks with a convolution kernel size of (3, 3). Finally, after a convolutional layer with
kernel size (1, 1), a spatial feature map with size (128, 9, 9) is obtained, denoted by Fspatial .

3.2.3. Feature Fusion

After the raw data goes through the spectral branch and the spatial branch, the spectral
features Fspectral and the spatial features Fspatial of size (128, 9, 9) are obtained, respectively.
We combine these two features to utilize the spatial–spectral information of the data further.
Since the spectral and spatial features are in different domains, the concatenate operation is
chosen instead of the addition operation so that the two features can be kept independent.
The features are merged to form spatial–spectral features Fspatial−spectral of size (256, 9, 9).

Fspatial−spectral = Concat
(

Fspectral , Fspatial

)
(4)

All features in the feature Fspatial−spectral have the same weight. However, different
spatial locations and channels have different distinguishing abilities for tree species. In
order to extract features with stronger discriminative ability, we introduce the SimAM
attention mechanism into the network to weight the feature maps. The SimAM attention
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mechanism can find the weight of each neuron in the feature maps by minimizing an
energy function [47]. The energy function of the ith neuron ti is shown in Equation (5).

e∗i =
4
(
σ̂2 + λ

)
(ti − µ̂)2 + 2σ̂2 + 2λ

(5)

where, µ̂ = 1
M ∑M

i=1 xi and σ̂2 = 1
M ∑M

i=1 (x i − µ̂)2 denote the mean and variance of all
neurons on the channel, respectively. M represents the number of neurons per channel as
H ×W. λ denotes the regularization term.

The lower the energy e∗i , the greater the difference between the target neuron ti and
the surrounding neurons, i.e., the more important the neuron. Therefore, the weight of each
neuron on the feature maps can be obtained by 1/e∗i . Then, the feature maps enhanced
using the attention mechanism can be expressed by Equation (6).

∼
F = sigmoid

(
1
E

)⊙
F (6)

where the sigmoid activation function is designed to restrict too large of a value in E.
⊙

denotes Hadamard product.
The SimAM attention mechanism does not introduce additional parameters into the

weight generation process. It belongs to parameter-free attention, which reduces the
number of model parameters compared to other attention mechanisms. Furthermore, in
order to aggregate the features further, we use a 2D convolution with kernel size (1, 1)
before and after the attention mechanism, respectively. Then, the features are subject to
globally averaged pooling, and finally complete the tree species classification through the
fully connected layer and the softmax function.

In summary, the network proposed in this study makes full use of the advantages of
hyperspectral images. First, the input data of the spectral branch is not only the spectral
information of the pixel to be classified, but also contains the spectral information of other
pixels in its neighborhood range, which avoids the loss of spatial information. Second, in
the spatial branch, we do not reduce the dimensionality of the original data, but input all
the spectral bands into the spatial branch, which avoids the loss of spectral information
in the process of dimensionality reduction. Finally, we further combine the spectral and
spatial information using a double-branch network structure.

3.3. Comparison Methods

To demonstrate the superiority and effectiveness of the proposed method in this study,
we compare it with traditional machine learning methods such as SVM and RF, and other
state-of-the-art deep learning methods such as 3D-CNN, DBMA, DBDA, ConvNeXt and
SSFTT. Next, the compared methods are briefly described separately.

1. SVM: Support Vector Machine. A support vector machine with a radial basis function
was used in this study, and the input features were important bands, vegetation index,
the first three principal components after PCA dimensionality reduction, and eight
spatial texture features corresponding to each principal component.

2. RF: Random Forest. The parameter n_estimators was set to 500, and the input features
were consistent with those of the SVM.

3. 3D-CNN: Three-Dimensional Convolutional Neural Network. The specific network
architecture is described in Zhang et al. [27]. The method is based on the 3D-CNN,
and the input data size is 1 × 9 × 9 × bands, where “band” represents the number of
spectral bands, and 9 denotes patch size.

4. DBMA: Double-Branch Multi-Attention Mechanism Network. The specific network
architecture is described in Ma et al. [42]. The method is based on a double-branch
network structure, dense blocks and the CBAM attention mechanism, and the input
data size is consistent with a 3D-CNN.
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5. DBDA: Double-Branch Dual-Attention Mechanism Network. The specific network
architecture is described in Li et al. [48]. The method is based on a double-branch
network structure, dense blocks and the DANet attention mechanism, and the input
data size is consistent with a 3D-CNN.

6. ConvNeXt: A pure ConvNet model. The specific network architecture is described in
Liu et al. [49]. The method is based on the ideas of ResNet and Swin Transformer, and
the input data size is band × 9 × 9.

7. SSFTT: Spectral–Spatial Feature Tokenization Transformer. The specific network
architecture is described in Sun et al. [50]. The method is based on the 3D-CNN and
Transformer Encoder. The input data size is 1 × 30 × 13 × 13, where 30 denotes the
first thirty principal components after PCA dimensionality reduction, and 13 denotes
patch size.

To fairly compare the classification performance of each deep learning method, we
set the same training parameters. In particular, the batch size is set to 128, and the Adam
optimizer is adopted. The learning rate is set to 0.0001, and we train each model for
50 epochs.

All methods were implemented in Python 3.6. SVM and RF were implemented based
on the scikit-learn library, and deep learning methods were implemented based on the
Pytorch 1.9.1 open-source deep learning framework. The operating platform configuration
consisted of two Intel(R) Xeon(R) Gold 5218R @2.10GHz CPU (Intel Corporation, Santa
Clara, CA, USA) and an NVIDIA GeForce RTX 3080 GPU (NVIDIA Corporation, Santa
Clara, CA, USA).

4. Experiments
4.1. The Classification Results of the TEF Dataset

The classification results of the TEF dataset using different methods are shown in
Table 4. It can be observed that all deep learning-based methods achieve higher classi-
fication accuracy compared to the traditional machine learning methods (SVM and RF).
The SVM method achieved the lowest classification accuracy with an OA value of only
44.65%. Compared with other classification methods, the method proposed in this study
achieved the highest classification accuracy, with an OA value of 93.31%, an AA value of
90.89%, and a Kappa coefficient of 0.9183. Except for Pinus lambertiana and Quercus kelloggii,
the highest classification accuracy of other tree species was obtained using the proposed
method. The highest classification accuracy (99.43%) for Pinus lambertiana was obtained
using the DBDA method. The proposed method achieved the second-highest classification
accuracy for Pinus lambertiana, with a classification accuracy of 98.87%, and the difference
between these two methods was only 0.56%. Among all the tree species, the classification
accuracy of Abies magnifica and Quercus kelloggii was relatively low, with most below 60%.
Abies concolor and Abies magnifica both belong to the genus abies of the pine family, and
their spectral information is similar. Additionally, as known from Table 1, the number
of Abies magnifica pixels used for training was 718, only one-third of the number of Abies
concolor pixels (2330). These two factors caused the mixed classification between the two
tree species, which led to the lower classification accuracy of Abies magnifica. The number
of Quercus kelloggii pixels used for training was only 96, and the serious shortage of training
samples may be the main reason for its low classification accuracy. The proposed method
achieved classification accuracy above 80% for both of these tree species, indicating that the
method can obtain good classification results in the case of sample imbalance and limited
training samples.

The hyperspectral image was predicted using the proposed method, and the classifi-
cation map of the study area is shown in Figure 5. From the classification map, it can be
observed that the most prevalent tree species in the study area are Abies concolor, Pinus
jeffreyi, and Pinus contorta. Specifically, Abies concolor is mainly distributed in the northern
(Figure 5b) and southern (Figure 5f) regions of the study area. Pinus jeffreyi is distributed in
the northern (blue-colored area in Figure 5), central (Figure 5c), and southern (Figure 5e)
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regions of the study area. Pinus contorta is mainly distributed in the central region of the
study area, as shown in Figure 5c,d.

Table 4. The classification results of different methods used on the TEF dataset.

Species SVM RF 3D-CNN DBMA DBDA ConvNeXt SSFTT Our

abco 39.12% 66.12% 73.33% 79.03% 87.07% 78.83% 82.20% 88.40%
abma 7.11% 14.91% 25.29% 51.26% 85.24% 64.90% 76.14% 88.08%
cade 20.02% 60.09% 78.38% 86.46% 92.30% 89.42% 90.21% 93.76%
pije 48.04% 82.34% 84.73% 94.08% 96.13% 95.15% 96.05% 97.40%
pila 34.23% 83.10% 85.65% 93.07% 99.43% 93.63% 95.26% 98.87%

quke 12.68% 42.11% 53.12% 48.62% 76.72% 84.63% 68.51% 80.17%
pico 14.64% 47.07% 70.58% 82.19% 89.47% 87.96% 89.34% 90.94%
dead 83.30% 86.63% 85.33% 85.01% 87.59% 86.71% 85.40% 89.53%

OA 44.65% 73.18% 78.89% 86.18% 92.16% 88.13% 89.52% 93.31%
AA 32.39% 60.30% 69.55% 77.47% 89.24% 85.15% 85.39% 90.89%

Kappa 0.3158 0.6675 0.7418 0.8307 0.9043 0.8551 0.8721 0.9183
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Figure 5. Classification maps of the proposed method used on the TEF dataset. Images (a–f) are
partial enlargements of the tree species distribution. (a) Mixed forests of Abies concolor, Abies magnifica,
and Pinus jeffreyi; (b) Abies concolor; (c) mixed forests of Abies concolor, Pinus jeffreyi, and Pinus contorta;
(d) mixed forests of Abies magnifica, Pinus contorta, and dead tree; (e) mixed forests of Abies concolor,
Calocedrus decurrens, and Pinus jeffreyi; (f) mixed forests of Abies concolor and Calocedrus decurrens.

4.2. The Classification Results of the Tiegang Reservoir Dataset

The classification results of the Tiegang Reservoir dataset using different methods are
shown in Table 5. Similarly, we observed that all deep learning-based methods achieve
higher classification accuracy than traditional machine learning methods. This is because
SVM and RF classifiers use shallow features of the dataset, which makes it difficult to
distinguish complex classification objects such as tree species with similar spectral infor-
mation, whereas deep learning methods automatically learn nonlinear high-level features
from the training set, which provides a strong advantage in classifying hyperspectral tree
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species. Compared with other deep learning neural networks, the proposed method makes
full use of the spectral and spatial information of hyperspectral images and minimizes the
loss of information. The optimal accuracy of tree species classification was obtained using
the proposed method with an OA value of 95.7%, an AA value of 88.16%, and a Kappa
coefficient of 0.9389. Among all tree species, Ficus altissima species obtained the lowest
classification accuracy, all were below 30%. The proposed method obtained the highest
classification accuracy, but only of 24.4%. Compared with other tree species, fewer Ficus
altissima samples were used for training, and the severe shortage in sample size is the most
important reason for its lower classification accuracy.

Table 5. The classification results of different methods used on the TieGang Reservoir dataset.

Species SVM RF 3D-CNN DBMA DBDA ConvNeXt SSFTT Our

glpe 25.59% 76.77% 77.06% 83.39% 98.32% 91.08% 99.21% 98.54%
cica 83.56% 94.27% 96.07% 95.34% 97.99% 98.22% 97.72% 98.34%
euro 65.06% 89.10% 96.88% 96.90% 96.92% 97.18% 96.84% 97.65%
fial 2.48% 4.30% 14.25% 11.92% 19.09% 4.41% 19.14% 24.40%
plor 63.29% 86.59% 96.02% 94.66% 98.79% 92.45% 98.08% 99.58%
fimi 35.20% 66.10% 89.54% 91.07% 98.05% 84.05% 97.86% 98.97%
cahy 50.16% 86.82% 96.49% 98.60% 98.73% 98.01% 98.44% 99.64%

OA 64.77% 85.29% 91.21% 91.45% 94.97% 92.32% 94.76% 95.7%
AA 46.48% 71.99% 80.9% 81.70% 86.84% 80.77% 86.75% 88.16%

Kappa 0.4709 0.7874 0.875 0.8791 0.9284 0.8900 0.9255 0.9389

The tree species prediction maps of the Tiegang Reservoir study area that were gen-
erated using deep learning methods are shown in Figure 6. From the classification maps,
it can be observed that the distribution of different tree species is relatively concentrated,
mainly in the form of pure forests. The areas of tree species predicted using the different
methods are generally consistent. The classification maps obtained using the 3D-CNN
and DBMA have more noise than other classification methods. The main dominant tree
species in the study area are Cinnamomum camphora, Glyptostrobus pensilis, and Platycladus
orientalis. Cinnamomum camphora is the most widely distributed tree species in the study
area, with distribution across various regions. Glyptostrobus pensilis is mainly distributed
in the southern region of the study area, closer to the reservoir. Platycladus orientalis is
primarily distributed in the northwest region of the study area.

4.3. The Classification Results for the Xiongan New Area Dataset

The results of classifying the Xiongan New Area dataset using different methods are
shown in Table 6. Similar to the results obtained from the TEF and Tiegang Reservoir
datasets, all deep learning-based methods obtained higher classification accuracy than
traditional machine learning methods. The proposed method achieved optimal accuracy
compared to other deep learning methods, with an OA value of 98.82%, an AA value of
98.04%, and a Kappa coefficient of 0.9843, which far exceeded the classification performance
of other methods. Among all tree species, the classification accuracy of Robinia pseudoacacia
was the lowest, in which RF and DBDA methods could not separate Robinia pseudoacacia
from other tree species, with a classification accuracy of 0.00%, and the classification
accuracy of other classification methods was also lower than 30%. This was because the
number of training samples for Robinia pseudoacacia was relatively small compared to other
categories. As can be seen from Table 3, only 28 Robinia pseudoacacia samples were used
for training, which makes it difficult for the classifier to learn distinguishable features.
However, under the conditions of unbalanced samples and limited training samples, the
proposed method can perform well in distinguishing Robinia pseudoacacia from other tree
species, with a classification accuracy of 95.29%, which proves the robustness of the method.
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Images (a–f) are the classification maps obtained using different methods.

Table 6. The classification results of different methods used on the Xiongan New Area dataset.

Species SVM RF 3D-CNN DBMA DBDA ConvNeXt SSFTT Our

acne 55.27% 62.28% 76.54% 87.58% 84.32% 90.13% 96.06% 98.64%
saba 53.58% 66.58% 74.93% 93.40% 93.86% 94.19% 98.02% 99.04%
ulpu 17.58% 45.44% 75.83% 89.31% 78.59% 94.26% 97.26% 99.43%
soja 62.91% 61.12% 80.93% 94.91% 91.10% 94.34% 99.04% 98.99%
frch 45.29% 41.97% 78.05% 94.45% 97.99% 93.81% 98.81% 99.49%
kopa 63.77% 76.99% 82.63% 95.93% 95.45% 93.39% 99.83% 99.88%
rops 1.30% 0.00% 1.43% 27.57% 0.00% 12.86% 66.43% 95.29%
pyso 72.37% 84.98% 85.80% 93.25% 95.84% 95.64% 98.39% 98.86%
posi 30.66% 43.27% 61.52% 81.66% 86.51% 81.75% 89.46% 93.33%

ampe 26.83% 35.35% 53.42% 84.06% 81.40% 87.85% 95.66% 96.43%
other 79.04% 85.61% 90.55% 95.22% 95.07% 96.73% 98.19% 99.11%

OA 68.22% 75.59% 84.15% 93.38% 93.52% 94.76% 97.94% 98.82%
AA 46.24% 54.87% 69.24% 85.21% 81.83% 84.99% 94.29% 98.04%

Kappa 0.5768 0.6699 0.7886 0.9119 0.9137 0.9301 0.9727 0.9843

The ground truth map and the classification maps, obtained using various methods,
for the Xiongan New Area dataset are shown in Figure 7. Although each classifier can
distinguish the boundaries between tree species well, different degrees of “salt and pepper”
noise phenomenon exist. The “salt and pepper” noise in the classification map (Figure 7b)
obtained using SVM is the most serious. The method proposed in this study not only
uses the spectral information, but also makes full use of the spatial information of pixels.
Compared to other methods, the phenomenon of “salt and pepper” noise is significantly
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improved, and the classification map (Figure 7i) is basically consistent with the ground
truth map.
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The first image (a) represents the ground truth map; images (b–i) are the classification maps obtained
via different methods.

5. Discussion
5.1. The Importance of Joint Spatial–Spectral Features

In this study, a series of comparative experiments were conducted to discuss the
importance of combining spatial–spectral information in the classification of spectral branch,
spatial branch, and double-branch network structures.

In the spectral branch, the 3D convolution operation was changed to a 1D convolu-
tion operation, the input data was changed to the spectral information of the pixels to
be classified, excluding the spectral information of their neighboring pixels, and other
operations remained unchanged. Specifically, only the spectral information of pixels to be
classified was considered in the spectral branch, and no spatial information was included.
The spectral branch was to classify the tree species on the three datasets. For the TEF
dataset, when the input of the spectral branch was only the spectral information of pixels
to be classified (“Spectral single” in Figure 8), the OA value was 84.92%, and the AA value
was 76.96%. However, when the spectral information of other pixels in the neighborhood
was added (“Spectral” in Figure 8), the obtained OA value increased to 91.82% (an improve-
ment of 6.9 percentage points), and the AA value increased to 87.87% (an improvement of
10.91 percentage points). Similar results were obtained for the Tiegang Reservoir and the
Xiongan New Area datasets, with improvements in OA of 0.33% and 6.74%, respectively,
when the spatial information was added to the spectral branch. The above experiments
demonstrate the advantage of joint spatial–spectral information in the spectral branch. An
individual tree generally occupies multiple pixels in airborne hyperspectral images with
high spatial resolution. Therefore, the spectral information of pixels to be classified cannot
be considered only when extracting features using the spectral branch, ignoring its spatial
dependence with neighboring pixels. Reasonable use of the neighborhood information of
pixels is helpful in improving the classification accuracy.
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Figure 8. Experiments of spatial–spectral joint classification on the TEF dataset. “Spectral single”
represents that only spectral information is used in Spectral Branch; “Spectral” represents that spatial–
spectral information is used in Spectral Branch; “Spatial PCA” represents that only spatial information
is used in Spatial Branch; “Spatial” represents that spatial–spectral information is used in Spatial
Branch; “Our” represents the method proposed in this study.

When using spatial information to classify hyperspectral tree species, the conventional
method is first to reduce the dimension of the hyperspectral image, and then extract the
spatial information of pixels from the data after dimensionality reduction to classify tree
species. Following this approach, the input data of the spatial branch was modified to
be the first three principal components data after PCA dimensionality reduction, and
other operations remained unchanged. Specifically, the spatial information of pixels was
mainly utilized in the spatial branch for classification. For the TEF dataset, when the
input data of the spatial branch was the data after PCA dimensionality reduction (“Spatial
PCA” in Figure 8), the obtained OA value was only 69.64%, and the AA value was 53.17%.
However, when all of the original band information was selected to be input into the spatial
branch (“Spatial” in Figure 8), the obtained OA value increased to 89.45% (an improvement
of 19.81 percentage points), and the AA value increased to 84.74% (an improvement of
31.57 percentage points). Similar results were obtained with the other two datasets. When
the input data of the spatial branch was the original band information, the OA values
were improved by 25.06% and 7.65%, respectively, and the classification performance
was better than the data after PCA reduction. During the process of PCA dimensionality
reduction in hyperspectral data, although the spatial information of pixels will be retained,
a certain amount of spectral information will be lost in the dimensionality reduction process.
In contrast, the proposed method selects all of the original band information to be put
into the network in the spatial branch, avoiding the loss of spectral information. The
above experiments demonstrate the advantage of joint spatial–spectral information in the
spatial branch.

Although the spectral branch and the spatial branch in this study both make use of the
spatial–spectral information of hyperspectral data, the focus of feature extraction for the
spectral branch and the spatial branch is different; the spectral branch focuses on extracting
spectral features using a 3D-CNN (with convolution kernel of (1, 1, 7)) and the spatial
branch focuses on extracting spatial features using a 2D-CNN (with convolution kernel
of (3, 3)). Using only a single branch may not be able to utilize the advantages of the
hyperspectral image fully. Therefore, a double-branch network was designed to fuse the
two branches for tree species classification, which further utilizes spatial–spectral informa-
tion. Taking the TEF dataset as an example, the proposed method achieved classification
accuracy with an OA value of 93.31% and an AA value of 90.89%. Compared to the spectral
branch (“Spectral” in Figure 8), there was an improvement of 1.49 percentage points in OA
and 3.02 percentage points in AA. Compared to the spatial branch (“Spatial” in Figure 8),
there was an improvement of 3.86 percentage points in OA and 6.15 percentage points
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in AA. Similar results were obtained for the other two tree species datasets. For the Tie-
gang Reservoir dataset, the proposed method outperforms the spectral branch (“Spectral”
in Figure 9) by 0.82 percentage points and the spatial branch (“Spatial” in Figure 9) by
1.61 percentage points in terms of OA value. For the Xiongan New Area dataset, the pro-
posed method outperforms the spectral branch (“Spectral” in Figure 10) by 1.48 percentage
points and the spatial branch (“Spatial” in Figure 10) by 2.77 percentage points in terms
of OA value. The above experiments demonstrate the advantages of the double-branch
network in hyperspectral tree species classification. These findings are consistent with the
experimental results obtained by Ma et al. [42] and Li et al. [48]. In practical tree species
classification applications, due to the complexity and similarity of tree canopy structure,
it is difficult to obtain ideal tree species classification results by simply using the spectral
information or spatial structure of trees. The method proposed in this study fully utilizes
the spectral and spatial information of trees, which is conducive to improving the accuracy
of tree species classification in hyperspectral images.
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Figure 9. Experiments of spatial–spectral joint classification on the Tiegang Reservoir dataset. “Spec-
tral single” represents that only spectral information is used in Spectral Branch; “Spectral” represents
that spatial–spectral information is used in Spectral Branch; “Spatial PCA” represents that only spatial
information is used in Spatial Branch; “Spatial” represents that spatial–spectral information is used
in Spatial Branch; “Our” represents the method proposed in this study.
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5.2. The Effectiveness of the SimAM Attention Mechanism

In order to analyze the effect of the SimAM attention mechanism on tree species
classification, the ablation experiment of the attention mechanism was conducted, that is,
the classification results of tree species with and without the attention mechanism network
were compared. The comparison results of the three datasets are shown in Table 7. For
the TEF dataset, the inclusion of the SimAM attention mechanism in the network resulted
in an improvement of 1.29 percentage points in OA and 2.29 percentage points in AA.
Similarly, the OA values obtained in the Tiegang Reservoir and the Xiongan New Area
datasets improved by 0.6% and 1.04%, respectively. These results prove the effectiveness
of introducing the SimAM attention mechanism into our proposed method. The attention
mechanism can extract important features by assigning different weights to each part of
the feature maps, thus effectively improving the classification accuracy of tree species.

Table 7. Ablation experiment results of the SimAM attention mechanism.

Dataset Name Method OA Value AA Value Kappa Value

TEF dataset
No Attention 92.02% 88.6% 0.9025

Attention 93.31% 90.89% 0.9183

Tiegang Reservoir dataset No Attention 95.1% 87.35% 0.9303
Attention 95.7% 88.16% 0.9389

Xiongan New Area dataset No Attention 97.78% 94.31% 0.9705
Attention 98.82% 98.04% 0.9843

5.3. The Influence of Shallow Features on Tree Species Classification

In this study, we used the neural network to extract deep features of data for tree
species classification. However, in previous studies, many scholars used artificially ex-
tracted shallow features for classification. Figure 11 illustrates the shallow feature dif-
ferences between the various tree species. As in NDVI, there are significant differences
between the “Dead tree” category and other tree species. So, whether adding shallow
features (Vegetation Index, PCA principal component, etc.) to the neural network will
improve the classification results needs to be further verified. Therefore, we designed two
different schemes. One way is to add shallow features to the head of the neural network,
as shown in Figure 12a. First, the shallow features are extracted within a neighborhood
(9× 9) of pixels, then they are merged with the corresponding raw spatial–spectral informa-
tion, and finally, the merged features are inputted into the neural network for classification.
Another way is to add shallow features at the end of the neural networks, as shown in
Figure 12b. First, the raw spatial–spectral information of pixels is inputted into the network
to generate corresponding deep features, then the shallow features of pixels are merged
with the extracted deep features, and finally, the two features are further fused through the
fully connected layer to complete the classification.

We used the input features of traditional machine learning methods (SVM and RF) as
shallow features and conducted experiments on three datasets. The classification results
obtained are shown in Figure 13. In the three datasets, whether at the head or end of the
networks, adding shallow features did not significantly improve the classification accuracy
and even showed a decrease. The result is consistent with the findings of Nezami et al. [51],
who added Canopy Height Model (CHM) features to the networks for classification and
showed that adding CHM did not improve the classification accuracy in most cases. The
reason for this phenomenon may be that the relevant information needed to separate the
tree species is already contained by deep features, while shallow features are low-level
features of images. If too many shallow features are added to the neural networks, it will
interfere with the neural network’s learning of the higher-level features, thus affecting the
classification accuracy. Combining shallow features with spectral features from hyperspec-
tral data as inputs to the neural network may also lead to feature redundancy and increase
the number of model parameters, resulting in overfitting of the model and negatively
affecting the performance of the neural networks.
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Figure 11. Boxplots of shallow features (The labels in the abscissa are abbreviations of tree species
name, the scientific names are given in Table 1, and the different colors correspond to the different
tree species). (a) NDVI: Normalized Difference Vegetation Index. (b) PC1: First principal component
after PCA dimensionality reduction. (c) Mean: Mean texture features corresponding to the first
principal component.
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5.4. T-SNE Visualization

The T-distributed Stochastic Neighbor Embedding (T-SNE) algorithm is currently one
of the most commonly employed techniques for data dimensionality reduction and visual-
ization, which can reduce high-dimensional data to two-dimensional or three-dimensional
data for visualization, and then can intuitively show the effect of tree species classification.
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In this study, the T-SNE algorithm was used to visualize the features extracted by the
neural network. The visualization results obtained from the three datasets are shown in
Figures 14–16. For the TEF dataset, it can be seen that the features extracted using the
3D-CNN method are more dispersed, and there is more mixing between the categories
compared to other classification methods, which leads to lower classification accuracy.
The phenomenon of spectral variability within the same object occurs during the imaging
process of targets by hyperspectral sensors due to factors such as the influence of tree
growth environment and individual tree position. For instance, Calocedrus decurrens and
Pinus contorta are divided into multiple clusters in DBMA and DBDA. Although these two
methods achieve high overall classification accuracy, they cannot solve the phenomenon
of spectral variability within the same object. The ConvNeXt and the proposed method
alleviate this phenomenon to some extent, in which the trees of the same class are basically
grouped into a cluster. The boundaries between each category of ConvNeXt are clear, but
the mixing phenomenon between various categories is more serious, such as the mixing
between Abies concolor and Abies magnifica, Pinus jeffreyi, and Pinus lambertiana. From the
visualization results of the method proposed in this study, it can be seen that the boundaries
between the categories are clear, and there is less mixing between the categories, which
explains why the method achieves the highest accuracy. The visualization effects obtained
from the Tiegang reservoir and the Xiongan New Area datasets are similar to those obtained
from the TEF dataset, that is, the proposed method performs best in T-SNE visualization
compared with other methods, with clear classification boundaries among tree species and
fewer misclassified pixels.
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5.5. Robustness Assessment

Deep learning is a data-driven algorithm that relies on high-quality labeled datasets.
The number or proportion of training samples is one of the important factors affecting
classification accuracy. In this study, deep learning methods were trained with different
proportions of training samples to verify the robustness of the proposed method. Specifi-
cally, the ratios of training sets and test sets selected for the TEF and the Tiegang Reservoir
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datasets were 2:8, 4:6, 5:5, 6:4, and 8:2, respectively. The training sets selected for the
Xiongan New Area dataset were 0.1%, 0.5%, 1%, 2%, and 5% of the entire sample set,
respectively, and the test set was unified into 5% of the sample set. The classification results
obtained are shown in Figure 17.
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It can be observed that different proportions of training samples yield different classi-
fication results. As expected in this study, in most cases, the performance of the network
model improves as the proportion of training samples increases. The performance gap
between different models will decrease with the increase in the proportion of training sam-
ples. The most obvious is the Xiongan New Area dataset. When the proportion of training
samples is 0.1%, the performance gap between the 3D-CNN and the proposed method is as
high as 28.53 percentage points. However, as the proportion of training samples reaches
5%, the performance gap narrows to 3.67 percentage points. In addition, the proposed
method achieves the highest accuracy with different proportions of training samples in
all three datasets. In the Xiongan New Area dataset, the classification accuracy obtained
using the proposed method is as high as 99.97% when the proportion of training samples is
5%. Compared with other methods, the classification performance of the method in this
study is more stable under different proportions of training samples, and the classification
accuracy does not change drastically with different proportions of training samples, which
indicates that the model is robust to changes in the training data.

The proposed method exhibits commendable performance even with limited training
samples. Specifically, the classification accuracy obtained using the proposed method on
the TEF dataset and the Tiegang Reservoir dataset is 88.83% and 91.79%, respectively, when
the ratio of the training set to the test set is 2:8. For the Xiongan New Area dataset, when the
proportion of the training set is 0.1% of the sample set, the classification accuracy obtained
is 95.49%, which is much better than the performance of other models. During the actual
collection of tree species samples, obtaining a large number of samples is challenging due to
factors such as the complexity and limited accessibility of forest areas. The difficulties and
high costs associated with sample acquisition make it impractical to gather a substantial
dataset. However, the proposed method achieves a high classification performance even
with limited training samples, thereby saving time and reducing costs. This approach
proves to be suitable for scenarios with limited sample availability.

6. Conclusions

In this study, we combine the ideas of the attention mechanism and double-branch
network structure to propose a double-branch spatial–spectral joint deep learning network
for airborne hyperspectral tree species classification. Compared with other classification
methods, the network shows better robustness in three tree species datasets. Experimental
results are shown the following:

1. In hyperspectral tree species classification, deep learning methods are better than
traditional machine learning methods (SVM and RF) in distinguishing tree species,
and the method proposed in this study achieved the highest classification accuracy
in all three study areas. The OA value, AA value, and Kappa coefficient in the TEF
dataset were 93.31%, 90.89%, and 0.9183, respectively. The OA value, AA value, and
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Kappa coefficient in the Tiegang reservoir dataset were 95.7%, 88.16%, and 0.9389,
respectively. The OA value, AA value, and Kappa coefficient in the Xiongan New
Area dataset were 98.82%, 98.04%, and 0.9843, respectively.

2. Using only the spectral or spatial information of pixels cannot fully utilize the advan-
tages of hyperspectral images, and the combined spectral and spatial information
can help to improve the accuracy of tree species classification. The double-branch
network structure is better than the single-branch network in terms of tree species
classification performance. Furthermore, the SimAM attention mechanism can make
the network pay more attention to important features and then improve the network
classification performance, which proves the effectiveness of the SimAM attention
mechanism in high-precision tree species classification in forest areas.

3. The proposed method performs best in T-SNE visualization, with clear classifica-
tion boundaries between tree species and fewer misclassified pixels. The method
obtains the highest accuracy under different training sample proportions, and good
classification performance can be obtained even under the lowest training sample
proportions. Moreover, the classification accuracy does not change drastically with
different training sample proportions, which are somewhat stable.

The proposed network fully utilizes the spectral and spatial information of hyperspec-
tral images to realize the high-precision classification of forest tree species, which has a
broad application prospect in forest resources investigation. However, the method has
limitations in limited samples classification and crown level classification. In the future,
we will investigate semi-supervised classification algorithms to solve the case of few-shot
samples based on this method. In addition, trees have unique properties, the same tree con-
tains multiple pixels in high-resolution images from airborne or unmanned aerial vehicles
(UAV). Therefore, tree species classification at the crown level may help to improve the
classification results. In subsequent experiments, we will conduct tree species classification
studies based on the crown level.
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