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Abstract: Accurate climate data at fine spatial resolution are essential for scientific research and the
development and planning of crucial social systems, such as energy and agriculture. Among them,
sea surface temperature plays a critical role as the associated El Niño–Southern Oscillation (ENSO) is
considered a significant signal of the global interannual climate system. In this paper, we propose an
implicit neural representation-based interpolation method with temporal information (T_INRI) to
reconstruct climate data of high spatial resolution, with sea surface temperature as the research object.
Traditional deep learning models for generating high-resolution climate data are only applicable to
fixed-resolution enhancement scales. In contrast, the proposed T_INRI method is not limited to the
enhancement scale provided during the training process and its results indicate that it can enhance
low-resolution input by arbitrary scale. Additionally, we discuss the impact of temporal information
on the generation of high-resolution climate data, specifically, the influence of the month from which
the low-resolution sea surface temperature data are obtained. Our experimental results indicate that
T_INRI is advantageous over traditional interpolation methods under different enhancement scales,
and the temporal information can improve T_INRI performance for a different calendar month. We
also examined the potential capability of T_INRI in recovering missing grid value. These results
demonstrate that the proposed T_INRI is a promising method for generating high-resolution climate
data and has significant implications for climate research and related applications.

Keywords: deep learning; implicit neural representation; sea surface temperature; super-resolution;
satellite retrieval climate data; temporal information

1. Introduction

EI Niño–Southern Oscillation (ENSO) is the strongest signal of interannual variability
in the climate system. Research on ENSO is crucial for understanding the complex inter-
actions between the oceans, atmosphere, and climate, as well as for developing strategies
to mitigate the potential impacts of climate variability and change, because it not only
directly causes extreme weather events such as droughts in the tropical Pacific and its
surrounding areas but also indirectly affects the weather and climate in other parts of the
world through teleconnections, triggering meteorological disasters [1–3]. Currently, many
studies have been conducted to investigate the teleconnections of ENSO and its predictive
capabilities regarding other climate factors [4–7]. In recent years, related research has gone
beyond the use of scalar indices such as NINO 3.4 to characterize ENSO. The limitations
of scalar indices in capturing the full complexity of ENSO dynamics have spurred inter-
est in alternative methods for describing ENSO events. For example, some studies have
used empirical orthogonal functions of SST in the Pacific Ocean as indices, rather than
NINO3.4 [8]. Others have employed a non-homogeneous hidden Markov model (NHMM)
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to simulate the monthly scale tropical Pacific SST and defined five different hidden states
for each month [9,10].

Commonly used SST data are climate model outputs or satellite-derived data. The
accuracy and richness of information in these grid-type representations are controlled
by their resolution. Not only SST data, high-resolution (HR) climate data are of great
significance for climate simulations, agriculture, and other fields. Traditional methods
for obtaining HR climate data mainly rely on interpolation, such as bicubic and bilinear
interpolation [11]. These methods do not require training data but often result in over-
smoothed outcomes. With the development of deep learning techniques, an increasing
number of deep learning models have been applied to generate HR climate data and
address the issue of over-smooth in the process. For example, Vandal et al. [12] used
super-resolution convolutional neural networks (SRCNN) to generate HR rainfall data.
Ducournau et al. [13] also used SRCNN to increase the resolution of satellite-derived SST
data. Stengel et al. [14], based on SRGAN, enhanced the resolution of wind and solar data
by a factor of 50. Wang et al. [15] explored the applicability of SinGAN in generating HR
climate data. However, a common limitation of these models is that their enhancement
scales are fixed. Once trained, they can only be used for reconstructing HR data at a
pre-defined gridded structure, whereas climate analysis often requires HR data at arbitrary
locations over different scales.

To overcome this limitation, we propose to develop a new approach for continuous
HR data reconstruction based on the implicit neural representation (INP) method [16,17].
The idea is to represent an object as a multi-layer perceptron (MLP) that maps coordinates
to signals. It has been extensively used in 3D tasks, such as simulating 3D surfaces [18,19]
or structures [20,21]. INP is also widely used in research on image reconstruction [22–24].
One improvement to this approach is to use an encoder to construct a shared feature space
that can be used to represent every sample with an implicit representation [25,26]. For exam-
ple, Chen et al. [27] constructed a continuous image representation using implicit neural
representation to overcome the limitation of implicit sample-specific neural representation.

In this study, we introduce an interpolation method that integrates temporal informa-
tion based on implicit neural representation (T_INRI). By fusing deep learning models
with an interpolation technique, this method can produce HR climate data at arbitrary
scales. After the model’s training, our method is capable of not only enhancing the resolu-
tion based on the scales used during training but also enhancing the resolution of climate
data based on scales not seen in the training phase. While implicit neural representations
have proven successful in 3D and image tasks, their application in climate research has
yet to be explored. This paper addresses this gap by focusing on a specific use case: recon-
structing HR SST data from low-resolution (LR) samples. We consider the reconstruction
of HR SST data as a problem of estimating unknown values (HR sample positions) based
on known values (LR sample positions). Within the proposed interpolation approach, LR
SST samples undergo an encoding process to attain corresponding implicit neural repre-
sentations for each grid cell. These representations act as anchors for predicting the values
at positions in the HR result. The method establishes a relationship between the implicit
neural representations at these anchor sites and unknown positions, factoring in grid size,
central point coordinates, and other parameters. A decoder then infers the values at these
unknown positions, yielding a comprehensive HR climate data result. Additionally, we
incorporate temporal information, specifically the calendar month during which samples
are acquired. The model employs one-hot encoding to capture the sample’s calendar month
and leverages a learnable matrix to enhance its capability to process intricate temporal
information. Our results suggest that the proposed interpolation method outperforms
conventional interpolation methods at different enhancement scales. Compared to CNN-
based approaches for generating HR climate data, the proposed method’s advantage lies
in its flexibility. Comparisons between results with and without temporal information
underscore the merit of incorporating temporal information, as it elevates the quality of the
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generated HR SST data. Additionally, we explore the method’s potential to recover missing
data by setting the enchantment scale to 1.

The paper is organized as follows. Section 2 describes the data used in the study
and Section 3 introduces the details of the proposed T_INRI method and the network
setup. Section 4 discusses the results. Section 5 gives conclusions and discusses future
research directions.

2. Dataset

We use the GHRSST Level 4 MUR Global Foundation Sea Surface Temperature Anal-
ysis dataset (MUR SST) in our experiments [28]. MUR SST is one of the current highest-
resolution SST analysis datasets, providing global daily SST from 31 May 2002 to the
present. The spatial resolution of MUR SST is 0.01◦× 0.01◦, roughly at 1 km intervals. MUR
SST combines three types of satellite SST datasets: HR infrared SST data of about 1 km,
medium-resolution AVHRR (infrared) SST data of 4 to 8.8 km, and microwave SST data
with a sampling interval of 25 km [29]. In addition to these three satellite-derived data,
MUR also assimilates two types of in situ SST measurements to enhance the estimation of
the underlying temperature. Due to the computational burden of using the entire dataset,
we extracted the SST in the region 180◦W–90◦W and 5◦S–5◦N as the study area, as shown
in Figure 1. The training dataset used for model development comprises daily samples
spanning from 1 June 2002 to 31 December 2016. Each sample consists of 1002 × 9001 cells,
resulting in a total of 5398 samples, while the daily data from 1 January 2017 to 31 December
2022 with a total of 2188 samples serve as the validation dataset. For testing, in addition
to the MUR SST validation dataset described above, we also report results for the MUR
SST Monthly Mean dataset as an external validation. MUR SST Monthly Mean dataset
is created by NOAA NMFS SWFSC ERD based on the GHRSST Level 4 MUR SST daily
dataset mentioned above. It has the same spatial resolution as daily data. We use the same
study area as the one used for the MUR SST dataset. The MUR SST Monthly Mean dataset
is comprised of monthly samples spanning from 2003 to 2020.

Figure 1. Region of SST data retrieval for the study area.

3. Method
3.1. Overview of Proposed Method

The essence of obtaining HR climate data using an interpolation-based method is to
derive the climate values of HR grid cells based on the values of LR grid cells. Traditional
spatial interpolation methods are based on information from the original data domain.
For example, bicubic interpolation computes the value of an unknown grid cell by taking
the weighted average of the surrounding 16 grid cells. In our proposed method, instead
of directly interpolating from the original data domain, the interpolation occurs in the
implicit representation domain. Essentially, the model is comprised of two parts: building
implicit representation domain and interpolation. We first introduce the two deep learning
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models employed in this method and then provide a detailed description of the specific
steps within the proposed T_INRI method.

3.2. Enhanced Deep Super-Resolution Network and Multilayer Perceptron

The proposed method integrates two distinct deep learning architectures. The first
architecture is from the enhanced deep super-resolution network (EDSR) [30], and we
use the initial segment before the upsampling layer, as depicted in Figure 2A. Within
our method, EDSR is constructed with a convolutional layer, succeeded by 16 residual
blocks. The addition of multiple residual blocks equips the network with the capability
to discern complex patterns from the training process. Each of these blocks consists of
convolutional layers, succeeded by a ReLU activation function. The essence of these
residual blocks is to ascertain the residual between the input and output, eschewing direct
output learning. This design implies that the network predominantly learns variations from
identity mapping, promoting training stability. We utilize this structure as an encoder to
transition the input data from its original data domain to an implicit representation domain.
Rather than modifying the spatial dimensions of the input, the encoder enhances the depth
at each location, yielding this implicit representation. The second architecture is a five-layer
multilayer perceptron (MLP), as depicted in Figure 2B. Each hidden layer processes inputs
from its preceding layer, undergoes a weighted summation, and produces outputs via the
ReLU activation function. In our design, the hidden layers possess a dimensionality of 256,
with the output layer dimensioned at 1. This MLP, in our method, functions as a decoder,
determining the value at a specific location based on relevant input information.

Figure 2. The main architecture of the network used in the proposed method: (A) a partial structure
of EDSR, serving as the encoder in the proposed interpolation method; (B) a multi-layered MLP,
functioning as the decoder in the proposed interpolation method.

3.3. Implicit Neural-Representation-Based Interpolation with Temporal Information
3.3.1. Implicit Neural-Representation-Based Interpolation

An implicit representation domain is achieved through the utilization of a convo-
lutional neural network-based encoder, which outputs the feature map and retains the
same size as the input sample. At each location in the input sample, the corresponding
feature vector constitutes the implicit representation of that location. Each grid cell can be
represented by its center position. We hypothesize that the value of each grid cell in the
sample can be obtained by inputting the grid cell’s implicit representation, coordinates,
and size into a decoder:

V = D∂(z, [p1, p2]) (1)

where z represents the implicit representation of the target position, and [p1, p2] represents
the coordinates of the center point of the grid. D∂ is the decoder, which is the MLP as
described in Section 3.2. We assume that the implicit representation is uniformly distributed
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in the feature map domain, so the value of the grid cell at an arbitrary location in the domain
can be obtained through the following function D:

vunknown = D(z∗, ∆d, [s1, s2], [x1, x2]) (2)

where z∗ is the implicit representation of the nearest known grid to the predicted unknown
grid, [s1, s2] represents the length and width of the unknown grid, [x1, x2] represents the
coordinates of the center of the unknown grid, and ∆d is the Euclidean distance between
the two grids, which is calculated by:

∆d =

√
(x1 − p1)

2 + (x2 − p2)
2 (3)

The model represents the length and width of the grid through s1 and s2, thus pro-
viding the information of grid size. We take grid size into consideration because grids of
different sizes might share the same central point. However, grids of varying sizes often
represent distinct values due to the differences in the areas they cover. By incorporating
information about grid size, we enhance the decoder’s ability to differentiate situations
with the same grid center but differing resolutions. For the HR climate data projection task,
the implicit representation of each grid cell in the LR input data can be obtained through
a shared encoder among all samples. Every grid cell with implicit representation in the
LR input can be used as an anchor point for generating the corresponding HR data. In
Figure 3, blue grid cells represent LR input data, and the values of red grid cells which
represent one grid cell of HR data can be obtained by the nearest anchor points Anchorbl
and Equation (2).

Figure 3. Relative position of unknown grid cell in HR data and anchors in LR input.

However, based on the First Law of Geography, the closer the points are in space, the
higher the probability they have similar feature values, and the farther the points are in
space, the lower the probability they have similar feature values. For any unknown grid cell,
we can compute its value in the latent feature domain based on its nearest grid cell at the
coarse resolution. However, this way remains limited as it ignores the valuable information
from other surrounding known grids. Furthermore, just using one nearest anchor point
can result in discontinuous patterns in the generated HR output because the anchor point
(i.e., the nearest grid cell) might abruptly shift from one to another when the target grid
cell moves gradually over space. The proposed method eliminates the discontinuity of the
result through the weighted average of interpolated results from multiple anchor points
around the unknown grid cell, where the weights are based on the distance between anchor
points and the target grid cell.

We consider the four points around the unknown grid as anchor points. As seen in
Figure 3, they are located at points Anchortl , Anchortr, Anchorbl , and Anchorbr, respectively,
on the upper left, upper right, lower left, and lower right of the unknown grid cell. T_INRI
first obtains the interpolation results vunknowni

based on each anchor point for the unknown
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grid through Equation (2). Then, the final prediction value of the unknown grid is obtained
by weighing the average of the four results according to the inverse distance.

vunknown = ∑i∈(br,bl,tr,tl) Wi ∗ vunknown_i (4)

Wi =

1
di

∑i∈(br,bl,tr,tl)
1
di

(5)

where di represents the distance between the center of the unknown grid cell and each of
the four anchor points.

3.3.2. Temporal Information Embedding

The process of getting HR data from the LR counterpart is commonly considered to be
an ill-posed problem, as one LR pattern can correspond to multiple different HR patterns,
and the model’s training process tries to average all plausible solutions. In this LR to HR
projection process, additional information is considered to be useful, as it helps the model
choose the most appropriate HR pattern among all plausible solutions. For example, in
the case of climate data such as sea surface temperature, temporal information, i.e., the
time period the sample was taken from, can be utilized. Climate variables may exhibit a
relatively uniform spatial distribution at one time period and a non-uniform distribution
at another time period, and these two different HR data may correspond to the same
LR sample. Adding temporal labels helps the model lock onto the most appropriate HR
solution. In our research, the calendar month from which an SST sample was taken was
considered as temporal information. Our hypothesis is that HR SST samples from different
months (e.g., January and July) can correspond to the same LR sample. By providing the LR
sample’s calendar month information, the model can more robustly find the corresponding
HR pattern by using implicit neural representation.

In order to handle temporal information, the calendar month of each sample is first
encoded as a 12-dimensional one-hot vector. The vector consists of 0 s in all cells with only
one cell with a value of 1 uniquely identifying the calendar month of the sample. This
one-hot vector is then projected into a 12 dimensional embedding space by multiplying it
with a learned parameter matrix Wp as follows:

Tlabel = Wp × t (6)

where Tlabel ∈ R12×1 is a vector representing the temporal information of a sample,
Wp ∈ R12×12 is a learnable matrix, and t ∈ R12×1 is a one-hot vector. The updated version
of Equation (2) is as follows:

vunknown = D(z∗, ∆d, [s1, s2], [x1, x2], Tlabel) (7)

3.4. Training and Setup

In this section, we discuss the training procedure of T_INIRI. Figure 4 shows how
T_INIRI works and its training steps. Our main goal during training is to estimate the
parameters of the encoder and the MLP using our training data. For each LR input, the
encoder provides an implicit representation for every grid in the LR sample. For every
unknown grid in the HR data, our method looks for the four closest known points used
as anchors. Using the MLP, we then figure out the value of this unknown grid. After
repeating this for every unknown grid in the HR, we get the HR result for the given LR
input. As previously discussed, we expect the model to be used to obtain HR data at any
enhancement factor after training.
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Figure 4. Workflow and training steps of the proposed interpolation method.

The training process of the model employs self-supervised learning. For each HR
input sample, the enhancement factor k is randomly selected from a uniform distribution
from 1 to 5. We follow the previous research on the encoder and use a 48× 48 patch as the
input size for the encoder during the training process. This way, for the HR input sample,
the model first cuts out a 48k× 48k size patch. The patch is divided into separate grid cells
as unknown cells. Each grid cell contains the grid value as the ground truth, the length
and width of the grid as the grid size, the center point coordinates of the grid as the target
coordinates, and the temporal information of the grid (for the grid cells on the same sample,
their temporal information is consistent). The 48k × 48k size patch is down-scaled to a
48× 48 LR data by a factor of k using nearest neighbor interpolation. The LR data are then
input into the encoder to obtain a feature map with size (64× 48× 48), where 64 is the
length of implicit representation. After we get the implicit representation for each known
grid in the LR input, the proposed method searches for the nearest four anchors for each
target coordinate based on the feature map. The proposed method calculates the value of
the target grid for each of the four anchors and then takes the IDW-weighted average to
get the final target grid value. After searching and computing for every unknown grid in
the HR sample, our method combines the results of all these unknown grids to form the
generated HR result. This result is then compared with the ground truth to calculate the
loss. Based on this loss, the parameters of both the encoder and the MLP are updated.

We use Charbonnier Loss as the loss function for the optimization [31,32]. The batch
size used in our experiment is 16. The training is performed for a total of 1000 epochs, with
the initial learning rate set to 0.0001. The learning rate is adjusted after every 200 epochs,
decreasing by a factor of 0.5.

3.5. Validation

We conducted an evaluation on multiple scales, including the scales used for training
and higher spatial resolutions. For the MUR SST dataset and SST Monthly Mean dataset,
we evaluated the performance of the models on out-of-training enhancement scales of 8,
12, 14, 16, and 20, in addition to the in-training enhancement scales of 2 to 5. We used
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the original resolution MUR SST and SST Monthly Mean dataset as the ground truth. For
each enhancement scale k, we first down-sampled the original resolution samples to the
corresponding LR inputs using the nearest neighbour interpolation by a scale of (1/k)
and then applied different models to increase the resolution to the original resolution and
compared with the ground truth. Root mean squared error (RMSE) between ground truth
HR data and generated HR data was used to evaluate performance.

4. Results and Discussion
4.1. Comparison of Results Generated by Different Models for Arbitrary Scale HR

To verify the effectiveness of the proposed model in generating HR SST data of different
scales, we compared the results obtained by the proposed T_INRI with those obtained
by other interpolation methods, including two traditional interpolation methods, bicubic
interpolation and bilinear interpolation, as well as two deep learning models, SRCNN and
SRGAN. As mentioned previously, SRCNN and SRGAN were used to improve resolution
with a fixed enhancement scale. Once trained, they cannot be used for arbitrary multiple-
resolution enhancements. In our results, we only compared two enhancement scales, 4 and
8 for SRCNN and SRGAN. The training process of SRCNN follows [12], and the training
process of SRGAN follows [14]. For each enhancement scale, the original resolution serves
as the ground truth. We down-sampled the original data to the corresponding size as
LR input for each scale using an average pooling, respectively. To analyze the impact of
temporal information on the proposed interpolation method, we also trained a decoder
and MLP for interpolation without incorporating time information. The method without
embedded temporal information is denoted as INRI.

The results of the comparison are given in Table 1. We not only emphasize the
enhancement scales observed during the training phase, specifically scales 2 to 5, but
also consider the scales beyond training scales, termed as “out-of-training scale” in the
table. The table also delineates results for both versions: one with temporal information
and one without. It is evident from the data that across various enhancement scales, the
performance of the proposed method, irrespective of with or without temporal information,
markedly surpasses that of traditional interpolation methods. For instance, when the
enhancement scale is 2, both bicubic and bilinear have an RMSE of 0.014 and the RMSE
corresponding to T_INRI achieves merely 0.004, which is a 71% improvement compared
to the previous two methods. When the enhancement scale is 5, the RMSE for Bilinear is
0.050, while for the same scale, T_INRI’s RMSE is 0.019, denoting a 62% enhancement. For
the out-of-training scale, the superiority of T_INRI remains evident. Specifically, when the
enhancement scales were 8, 10, 12, 14, 16, and 20, respectively, the HR results produced by
T_INRI exhibit approximately 53%, 49%, 45%, 50%, 42%, and 39% enhancement compared
to Bilinear. Unlike traditional bicubic and bilinear methods that work solely on original
values, T_INRI operates on a deeper level of feature domain [33]. When T_INRI is used
to upscale an LR input, it does not just interpolate between the original data domains; it
predicts HR details based on its learned understanding of how HR should be enhanced.
This leads to more details, which is particularly noticeable in textures and edges. Through
its deep learning architecture, it can adapt its upscaling process based on different areas of
input data. This adaptability allows for more nuanced detail preservation as opposed to
the one-size-fits-all approach of bicubic or bilinear methods [27,34].

For SRCNN and SRGAN, when the enhancement scale is 4, the results from SRCNN
and SRGAN are close to those of T_INRI. However, when the enhancement scale is 8,
SRCNN and SRGAN slightly outperform T_INRI. As previously discussed, the architec-
tures of these two models are specifically designed and trained for a certain enhancement
scale; hence, it is anticipated that their performance under specific resolution conditions
would be comparable to that of T_INRI. More intricate model structures can be formulated
based on SRCNN and SRGAN to boost the performance of the HR outputs. However, their
network architectures and parameters are defined for specific enhancement scales, making
it infeasible to compare them with other models under arbitrary enhancement conditions.
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Table 1. Quantitative comparison of different methods on MUR SST validation dataset.

Method
In-Training-Scale RMSE (◦C) Out-of-Training-Scale RMSE (◦C)

×2 ×3 ×4 ×5 ×8 ×10 ×12 ×14 ×16 ×20

Bicubic 0.014 0.027 0.040 0.051 0.082 0.099 0.112 0.129 0.135 0.154
Bilinear 0.014 0.027 0.039 0.050 0.079 0.095 0.107 0.124 0.130 0.148
SRCNN - - 0.015 - 0.035 - - - - -
SRGAN - - 0.014 - 0.033 - - - - -
T_INRI 0.004 0.009 0.014 0.019 0.037 0.048 0.058 0.063 0.075 0.090

INRI 0.013 0.015 0.017 0.021 0.038 0.049 0.059 0.065 0.077 0.092

From the performance comparison between T_INRI and INRI across varying en-
hancement scales, the beneficial impact of temporal information on the results becomes
evident. For in-training scales, the advantage conferred by temporal information tends to
diminish as the scale increases. For instance, at an enhancement scale of 2, INRI registers
an RMSE of 0.013 ◦C, aligning with the results from bicubic and bilinear methods. The
RMSE of 0.004 ◦C demonstrated by T_INRI underscores the substantial benefits derived
from incorporating temporal information. As the enhancement scale progresses from 3
to 5, the improvements observed with AW are 0.006 ◦C, 0.003 ◦C, and 0.002 ◦C, respec-
tively, indicating a declining trend. Considering out-of-training scales, T_INRI consistently
outperforms INRI, albeit with a slight margin, and this superiority remains stable across
different enhancement scales. Enhancing the resolution of LR input by a significant scale is
inherently challenging, particularly for scales not encountered during training. Under such
circumstances, the influence of temporal information on the model is relatively diminished.

The qualitative comparison results are illustrated in Figures 5 and 6. To better showcase
the discrepancies in the HR results generated by different models, in Figure 5, we present
the results for various models when the enhancement scale is set to 2, and these results
are derived based on the RMSE calculated per cell. In Figure 6, we display the outcomes
obtained by subtracting the HR results generated by different models from the ground
truth for a sample. As can be seen from Figure 5, when the enhancement scale is set
to 2, the spatial distribution of T_INRI’s results aligns closely with the ground truth.
Observing the top-left figure reveals that most regions are blue, indicating that the difference
between T_INRI’s output and the ground truth is nearly zero. The error distribution
patterns of INRI, bicubic, and bilinear are similar, corroborating the results presented in
Table 1. Comparing INRI and T_INRI highlights the significant advantages that temporal
information offers in enhancing the quality of the resulting HR output, where INRI exhibits
higher RMSE values in the northern and central regions of the area. However, when the
enhancement scale is set to 5, as depicted in Figure 6, despite the observation that the
proposed models with and without temporal information still outperform bicubic and
bilinear in terms of spatial error distribution, the influence of spatial information on the
proposed models becomes marginal. The spatial distributions between the two are largely
consistent across most regions. We also find that traditional interpolation models tend
to overestimate SST in areas where INRI and T_INRI typically underestimate, and vice
versa. These differences may arise because traditional methods interpolate in the original
data space, while the proposed interpolation takes place in the implicit neural space.

To further validate the robustness and applicability of the proposed method, an addi-
tional dataset was utilized. Specifically, the MUR monthly mean SST dataset was employed,
which shares an identical spatial resolution with the MUR daily dataset. For evaluation
purposes, the original spatial resolution was treated as the ground truth. Corresponding LR
inputs were derived using average pooling across different scales. From Table 2, we observe
the results based on the additional dataset. The proposed interpolation method, which
embeds temporal information, consistently exhibits superior performance across various
enhancement scales. When comparing results with and without temporal information,
it is evident that for the MUR monthly mean SST dataset, the embedding of temporal
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information contributes to a more substantial performance improvement compared to the
previous validation dataset. For instance, at an enhancement scale of 5, the improvement
between with and without temporal information in the additional dataset is 0.008 ◦C. This
gap narrows to 0.004 ◦C at an enhancement scale of 16. In contrast, for the same enhance-
ment scales, the validation dataset shows a consistent improvement of only 0.002 ◦C. This
indicates that embedding temporal information enhances the generalization capability of
the proposed interpolation method.

Figure 5. Qualitative comparison of generated HR SST data from different models. RMSE is calculated
for every cell across validation dataset. The enhancement scale is ×2.

Table 2. Quantitative comparison of different methods on MUR SST monthly dataset.

Method
In-Training-Scale RMSE (◦C) Out-of-Training-Scale RMSE (◦C)

×2 ×3 ×4 ×5 ×8 ×10 ×12 ×14 ×16 ×20

Bicubic 0.014 0.028 0.041 0.053 0.084 0.100 0.115 0.128 0.138 0.157
Bilinear 0.014 0.028 0.040 0.052 0.081 0.097 0.111 0.123 0.132 0.151
T_INRI 0.005 0.010 0.015 0.020 0.038 0.050 0.060 0.069 0.077 0.092

INRI 0.014 0.021 0.023 0.028 0.044 0.055 0.064 0.073 0.081 0.096
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Figure 6. Qualitative comparison of generated HR SST data from different models. The sample is
from the MUR SST validation dataset with time label 20170924. The enhancement scale is ×5.

4.2. Analysis of the Impact of Temporal Information

To further investigate the influence of temporal information on the results, we com-
pared the performance with and without temporal information embedded. Figure 7 depicts
the error density between HR data generated based on different calendar months and
the ground truth observations, with an enhancement scale set to 3. Notably, results in-
corporating temporal information consistently exhibit smaller errors than those without,
and this improvement remains stable across different calendar months. The difference in
average monthly error between the two approaches is approximately 0.005 ◦C. Comparing
results across various months, December manifests the smallest average error at 0.009 ◦C.
Meanwhile, August has the lowest standard deviation in error, amounting to 0.003 ◦C.
For results without temporal information, December similarly yields the smallest average
error, recorded at 0.013 ◦C, while July has the lowest error standard deviation, standing at
0.004 ◦C.

In order to better illustrate the impact of temporal information, we present in Figure 8
the improvement in results obtained with temporal information at different scales and
seasons. It is apparent that the figure reflects the same trend observed in Table 1. Specifically,
as the enhancement scale increases (here represented as 2, 3, 4, and 8), the difference
between results with and without temporal information diminishes. This diminishing
trend with respect to the enhancement scale is consistent across each calendar month.
For instance, at an enhancement scale of 3, the average difference between results with
and without temporal information for every calendar month is approximately 0.005 ◦C.
When the enhancement scale is increased to 8, this average difference narrows to about
0.003 ◦C. From the analysis of the impact of temporal information, we can conclude that
incorporating temporal data can enhance the HR SST results obtained for each calendar
month. However, as the enhancement scale increases, the positive influence of temporal
information consistently diminishes for every month.
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Figure 7. Density plot of error between with and without temporal information. The enhancement
scale is 3.

Figure 8. Mean error for the proposed interpolation method with and without temporal information
under different calendar months and enhancement scales.

To clarify how temporal information affects the results of each sample, we computed
the spatial standard deviation for every ground truth. Subsequently, we plotted the rela-
tionship between the error of each sample and its corresponding spatial standard deviation
across different enhancement scales. Figure 9 shows our results. Across varied enhance-
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ment scales, the slope of the trend for results with temporal information is consistently less
compared to the one without temporal information. Notably, at enhancement scales of 8 or
12, the trend for results with temporal information exhibits a negative slope. Although the
quantitative relationship between errors and spatial standard deviations remains ambigu-
ous due to varying sample sizes corresponding to different spatial standard deviations,
a qualitative comparison between RMSE and standard deviation trends suggests that
embedding temporal information aids in reducing errors for samples with larger spatial
standard deviations.

Figure 9. Relationship between RMSE and spatial standard deviation of samples, with and without
temporal information, across different enhancement scales.

4.3. Analysis of Using Proposed Method for Recovering Missing Value

The idea of the proposed interpolation method based on implicit neural representation
for obtaining HR results lies in the ability to infer values at unknown locations from known
values. In this section, we explore the applicability of the proposed method, with an
enhancement scale set to 1, to recover missing values in measurement data. Addressing
missing values in remote sensing measurement data holds significant relevance in climate
research. For instance, SST derived from infrared sensors can achieve a resolution as fine as
1 km. However, IR-based measurements are susceptible to cloud contamination. Such cloud
interference can result in missing values in the data for certain regions. These inherently
constrain the utility of the data to some extent. We assessed the efficacy of our proposed
method in addressing this challenge.

We employed our pre-trained encoder and MLP for these experiments. Our input data
consist of patches from the MUR SST validation dataset, each of size 200 × 200. Different
proportions of missing data were introduced. Initially, we filled these missing data points
with the average value of the known data. Subsequently, these filled patches were input
into the encoder to obtain the implicit representation. For each missing data point, we also
identified the four nearest known points and, in conjunction with temporal information,
utilized the MLP to simulate the value at that position. Results for various proportions
can be observed in Table 3. As the proportion of missing data ranges from 5% to 60%,
we note that the proposed interpolation method, which embeds temporal information,
consistently outperforms other conventional interpolation techniques. For instance, at
a 5% missing data ratio, the error for T_INRI stands at 0.007 ◦C, slightly superior to
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bicubic and linear methods, both registering an error of 0.008 ◦C. When the missing ratio
is at 40%, the error for T_INRI is 0.011, whereas INRI, bicubic, and linear yield errors of
0.014 ◦C. At a 60% missing ratio, T_INRI exhibits more stable outcomes. The errors for
the method with and without temporal information are 0.012 ◦C and 0.013 ◦C, respectively.
In contrast, bicubic, linear, and nearest interpolation techniques present errors of 0.017 ◦C,
0.019 ◦C, and 0.021 ◦C, respectively. we also present the standard deviation of the RMSE for
different methods at various missing ratios. We can observe that compared to traditional
methods, the standard deviation of our T_INRI under different missing ratios is smaller,
approximately half that of the traditional methods. This indicates that the results of our
proposed method are more stable. Broadly, T_INRI demonstrates a pronounced advantage,
particularly as the missing data proportion escalates. While the incorporation of temporal
information enhances T_INRI’s performance in recovering missing values, the extent of
improvement remains modest. The visual outcomes of these experiments can also be seen
in Figure 10.

Table 3. Comparison of errors corresponding to different methods used to recover missing grid
values under different missing data ratios.

Method
Missing Proportion (RMSE (◦C))

5% 10% 20% 30% 40% 50% 60%

Bicubic 0.008 ± 0.006 0.010 ± 0.007 0.013 ± 0.006 0.013 ± 0.006 0.014 ± 0.007 0.014 ± 0.007 0.017 ± 0.009
Linear 0.008 ± 0.006 0.008 ± 0.006 0.012 ± 0.005 0.014 ± 0.006 0.014 ± 0.006 0.015 ± 0.007 0.019 ± 0.008

Nearest 0.019 ± 0.006 0.019 ± 0.006 0.019 ± 0.006 0.018 ± 0.006 0.019 ± 0.006 0.020 ± 0.006 0.021 ± 0.007
T_INRI 0.007 ± 0.003 0.008 ± 0.003 0.012 ± 0.003 0.011 ± 0.003 0.011 ± 0.003 0.011 ± 0.003 0.012 ± 0.004

INRI 0.008 ± 0.004 0.009 ± 0.004 0.014 ± 0.004 0.013 ± 0.004 0.014 ± 0.004 0.013 ± 0.004 0.013 ± 0.004

Figure 10. Visualization of the original data and results obtained by the proposed interpolation
method and bicubic interpolation under different missing ratios. When the ratio is 0.3, the RMSE of
the sample for T_INRI is 0.008, and for the bicubic is 0.014; when the ratio is 0.6, the RMSE of the
sample for T_INRI is 0.015, and for the bicubic is 0.027.

5. Conclusions

In this study, we presented T_INRI designed for generating HR climate data across
various enhancement scales. Our method focused on SST data, employing daily HR MUR
SST datasets to train the encoder and MLP within T_INRI. For each position in the LR
input, the encoder translates it into an implicit representation. To determine values in
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unknown HR grids, T_INRI pinpoints the closest four known anchors from the LR sample.
T_INRI garners the information such as implicit neural representations, distances, grid
centroid coordinates, and size of the grid. To bolster interpolation accuracy, we incorporate
temporal information, specifying the originating calendar month of each LR sample. Using
the aggregated information, T_INRI employs the MLP to predict the value at an unknown
location. The values derived from the four anchors undergo an IDW process for averaging,
yielding the final value for the unknown grid. By methodically addressing each unknown
grid in HR, T_INRI consistently produces corresponding HR outputs from the LR inputs.

Unlike methods such as SRCNN or SRGAN, T_INRI strategically harnesses the fea-
ture domain to correlate known and unknown positions using distance. This interpolation
strategy empowers T_INRI to generate HR outputs at arbitrary enhancement scale. In
the training process, T_INRI employs a self-supervised learning approach. The primary
objective is to enable the encoder and MLP to deduce unknown positions using known
positions in the feature domain. This training approach ensures that T_INRI can not only
generate HR data corresponding to enhancement scales encountered during training but
also for those scales not directly addressed during the training phase, such as the results
at scales of 5, 8, 12, 14, 16, and 20. The findings underscore that T_INRI consistently
outperforms the alternatives across all enhancement scales.

To elucidate the impact of embedding temporal information, we examined the per-
formance of implicit neural-representation-based interpolation both with and without the
inclusion of temporal data. We observed that, across various enhancement scales, the
T_INRI incorporating temporal information consistently outperformed its counterpart,
INRI. The superiority of T_INRI is particularly pronounced for results corresponding
to in-training scales. In the context of out-training-scale results, the enhancement offered
by adding temporal information to implicit neural-representation-based interpolation is
marginal. By categorizing results from different enhancement scales into distinct calen-
dar months, we determined that the benefits provided by the temporal information are
consistent across various months. Incorporating temporal information has the potential
to improve HR results for samples with larger spatial standard deviations. Moreover,
when applying T_INRI to external datasets, we discerned that the embedding of temporal
information can enhance the generalization capabilities of generating HR climate data.

As a direction for future research, we plan to explore the use of learnable weights to
compute the final unknown grid cell values in T_INRI, as opposed to using fixed weights
based on inverse distance. In this study, we utilized discrete labels to describe the temporal
information of samples. A challenging avenue for future research would be exploring the
use of continuous representations to embed temporal information. These endeavors have
the potential to further enhance the capabilities of our method and provide new insights
into the use of deep learning methods in climate-related research.
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