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Abstract: With developments in deep learning, semantic segmentation of remote sensing images has
made great progress. Currently, mainstream methods are based on convolutional neural networks
(CNNs) or vision transformers. However, these methods are not very effective in extracting features
from remote sensing images, which are usually of high resolution with plenty of detail. Operations
including downsampling will cause the loss of such features. To address this problem, we propose a
novel module called Hierarchical Wavelet Feature Enhancement (WFE). The WFE module involves
three sequential steps: (1) performing multi-scale decomposition of an input image based on the
discrete wavelet transform; (2) enhancing the high-frequency sub-bands of the input image; and
(3) feeding them back to the corresponding layers of the network. Our module can be easily integrated
into various existing CNNs and transformers, and does not require additional pre-training. We
conducted experiments on the ISPRS Potsdam and ISPRS Vaihingen datasets, with results showing
that our method improves the benchmarks of CNNs and transformers while performing little
additional computation.

Keywords: discrete wavelet transform; remote sensing images; feature enhancement; semantic
segmentation

1. Introduction

Over the past few years, aerial and satellite remote sensing technology has advanced
significantly, leading to a rapid increase in the number of remote sensing images. This trend
has created a greater need for more efficient and accurate methods to analyze remote sensing
images. Semantic segmentation is a critical aspect of remote sensing image processing
that significantly enhances its efficiency and the utilization of remote sensing data. Unlike
regular images, remote sensing images typically have high resolution and include spatial,
spectral, and temporal data, which makes them highly detailed. Therefore, extracting
contextual relationships when performing semantic segmentation of remote sensing images
is crucial.

For a long time, convolutional neural networks (CNNs) have been the mainstream
methods for semantic segmentation. The exceptional performance of FCNs (fully convolu-
tional networks) [1] has led to the development of their high-achieving successors [2–5],
which have made CNNs the prevailing approach for semantic segmentation of general
images. Recent advancements in CNNs, such as ConvNeXt [6], HorNet [7], and InternIm-
age [8], have significantly improved the performance of CNNs, even surpassing that of
transformers, in the general field of semantic segmentation.
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Recently, transformers [9] have been used in computer vision tasks. Vision trans-
formers [10–13] are a special type of transformer designed for image processing. They
are powerful tools for modeling long-range dependencies, based on the self-attention
mechanism that was first introduced in natural language processing. The ViT [10] was the
first vision transformer and became a trendsetter with strong potential, but the enormous
computational complexity during training and fine-tuning is not acceptable. To address
this problem, hierarchical transformers with the encoder–decoder paradigm were designed,
and measures like deformable attention (Deformable DETR by Xia et al. [13]) and windowed
attention (Swin Transformer by Liu et al. [12]) were adopted either separately or together.
However, transformers are less effective in extracting detailed features from RSI because of
the massive computation resources required and the lack of spatial inductive bias.

In the recent literature, frequency domain analysis has been introduced in the field
of semantic segmentation to address the problem of semantic information loss during the
process. This approach has produced promising results using different types of transforms,
including discrete Fourier transform (DFT) [14–18], discrete cosine transform (DCT) [19–21],
and discrete wavelet transform (DWT) [22–26]. These methods can effectively extract low-
frequency and high-frequency image components for separate processing. However, they
still have issues such as poor generalization and high computational complexity.

In our paper, we introduce a new architecture called Hierarchical Wavelet Feature
Enhancement (WFE), which is based on discrete wavelet transform (DWT). The WFE
module performs a multi-scale, lossless decomposition of the input image, which allows
it to preserve the high-frequency information. By reintroducing the high-frequency sub-
bands back into the original architecture, the WFE module enhances the performance of
the architecture. The best part is that the WFE module can be easily integrated into existing
convolutional neural networks (CNNs) and transformers without requiring any additional
pre-training.

Compared to the time and computation cost required for designing a new semantic
segmentation network, WFE modules are relatively simpler and can be easily integrated
into existing state-of-the-art pyramid-based semantic segmentation networks. Our model
can enhance the performance with minimal increase in structural complexity and computa-
tional cost due to the lightweight computation of this architecture. We have conducted tests
on remote sensing datasets using popular transformer architectures like Swin Transformer
and SegFormer, as well as CNN architectures such as ResNet and ConvNeXt, and have
achieved promising results.

2. Related Work

In this section, we briefly review recent advances in semantic segmentation methods
specialized for remote sensing images, particularly those related to the frequency domain.

2.1. Methods on Semantic Segmentation of Remote Sensing Images

Semantic segmentation in remote sensing images is different from that of ordinary
images, as it involves many details due to its high-resolution nature. In the field of CNN–
transformer fusion, several authors have attempted to improve the observed performance.
Zhang et al. [27] created an adapter to fuse convolutional layers and attention modules,
specifically, the deformable attention from Deformable DETR [13] and Mask2Former [28].
Meanwhile, Chen et al. [29] proposed a similar fusion approach that is dependent on the
backbone of UNet. In contrast, multi-scale channel attention is applied to this architecture.
However, the efforts to enhance overall performance have been limited, likely due to the
inherent defects of CNNs and transformers that still need to be addressed. Other methods
of improvement have also been discovered, including the one proposed by Zhang et al. [30],
where an extension of the SE module [31] was applied to extract channel features out of
transformers. Although our methods are similar, their module is too complex as it involves
more learnable parameters. Fang et al. [32] introduced a creative method that successfully
trained a CRENet with a detail head, an LFEAM module, and a superpixel affinity loss
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to capture both local and global features. Although this plugable module achieved good
results, it is highly complex and requires a significant amount of training techniques,
making it less desirable in terms of portability. However, none of the above-mentioned
works exploited the high-resolution nature of remote sensing images and adopted measures
to deal with fine-grained details. In contrast, our approach in the frequency domain has
the potential to outperform theirs in processing details.

2.2. Methods Based on DFT

Discrete Fourier transform (DFT) is a powerful tool used for signal and image anal-
ysis. By transforming spatial information into frequency information, DFT enables the
application of various operations. In the field of semantic segmentation, MsaNlfNet [14]
and FSLNet [15] concatenate the real and imaginary parts of feature maps, followed by
point-wise weighting to learn contextual information in the frequency domain. Another ap-
proach proposed by Zhang et al. [16] is the CSA module that applies DFT in the transformer
structure. In this method, the real and imaginary parts are processed separately before
being fed into the attention module. In unsupervised learning, Yang et al. [33] proposed
the FDA method that uses DFT in unsupervised models, while Tang et al. [17] applied DFT
in knowledge distillation with a method called Target-Category. Recently, Huang et al. [18]
introduced AFFormer, a frequency-adaptive filtering module that achieves the effect of
DFT with lower computational complexity compared to CNNs. However, AFFormer has
difficulty fitting images of different sizes. In contrast, our method does not require the
processing of complex numbers, resulting in lower computational complexity.

2.3. Methods Based on DCT

Discrete Cosine transform (DCT) is a well-established technique used in image and
video compression. Currently, DCT is mainly utilized for compressed images and unsu-
pervised learning. EDANet, introduced by Lo et al. [19], constructs perceptrons on DCT
components of compressed JPEG images. Huang et al. proposed FSDR [20], which applies
DCT in unsupervised training. On the other hand, Pan et al. [21] incorporated DCT into
ResNet, but this research is limited to image classification. To date, supervised learning
using DCT is not widely employed.

2.4. Methods Based on DWT

Our module relies on a more innovative method called the DWT, which is used for
analyzing signals or images. In their study, Liu et al. [22] replaced pooling operations
with DWT modules for downsampling and used inverse DWT for upsampling. This
technique ensured lossless downsampling. Li et al. [23] used skip connections in the
WaveSNet model to concatenate the high-frequency components generated by the DWT to
the corresponding upsampling positions, thereby preserving high-frequency information.
Su et al. [24] processed the high- and low-frequency components generated by DWT
separately, while processing aerial images; Azimi et al. [25] used multi-level DWT to
concatenate the high-frequency features of different resolutions to the feature map. This
helped supplement the information lost by downsampling. An impressive way to enhance
transformers is Wave-ViT [26], where Yao et al. improved ViT by using DWT as the
downsampling operation, achieving lossless downsampling, and reducing the number of
parameters in the self-attention module.

However, these advancements are highly specialized and cannot be applied to new
encoders. In contrast, our method is compatible with various encoders such as Swin
Transformer [12], SegFormer [11], ConvNeXt [6], and ResNet [34].

3. Method

This section briefly introduces the 2D-DWT, which forms the basis of our method.
This is followed by the Hierarchical Wavelet Feature Enhancement (WFE) module, the core
of our approach.
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3.1. Discrete Wavelet Transform

Discrete wavelet transform (DWT) is a popular time–frequency representation of
a signal. It improves upon Fourier transform by addressing the issue of representing
temporal-frequency dependencies. Through DWT, target signals are decomposed into a
combination of wavelets, or small waves. In recent times, wavelet theories have significantly
advanced and have become the mainstream in the fields of signal processing and file
compression. In this paper, DWT refers to discrete Haar wavelet transform, which is the
simplest form of wavelet transform. Other deterministic wavelets or adaptive wavelets are
yet to be considered.

3.1.1. The 2D-DWT

The 2D-DWT approach is an extension of the 1D-DWT, which is a powerful tool for
multi-scale analysis of signals and is widely used in image processing. It decomposes an
image into four sub-bands, consisting of the low–low (LL), low–high (LH), high–low (HL),
and high–high (HH) sub-bands. The 2D discrete wavelet transform (DWT) is lossless and
reversible, which means the original image can be fully recovered from the transformed
image without any edge problems or loss of information; but we do not apply the inverse
2D-DWT in our proposed model for a specific reason, which will be explained later. As a
separable transform, 2D-DWT can be independently applied to the rows and columns of an
image. In addition, 2D-DWT is a hierarchical transform, which means that the LL sub-band
can be further decomposed into four sub-bands and so on. The 2D-DWT can be interpreted
as a series of low-pass and high-pass filtering operations, followed by downsampling by a
factor of two.

In the process shown in Figure 1a, the low-pass filter, ϕ =
[
1, 1

]
, and the high-pass

filter, ψ =
[
1,−1

]
, are applied to the rows of the image followed by downsampling by a

factor of two. Then, the exact operation is repeated on the columns of the image. Figure 1b
illustrates the hierarchy of the entire transform. In our implementation, we treat filtering as
convolutions. Given that 2D-DWT is a linear transform, one different interpretation is that
the image passes through four different convolutional layers, each with different kernels.
Specifically, the convolution is applied with stride 2 and no padding. For Haar wavelets,
the four kernels are, respectively,

{
ϕLL, ψLH , ψHL, ψHH

}
=

{[
1 1
1 1

]
,
[

1 −1
1 −1

]
,
[

1 1
−1 −1

]
,
[

1 −1
−1 1

]}
(1)

This greatly simplifies the process by turning the transform into a few filtering opera-
tions, which fits well into the PyTorch [35] architecture.

3.1.2. Comparison: 2D-DWT vs. 2D-DFT

The 2D-DWT, like 2D-DFT, is a useful tool for extracting high-frequency features from
images, including edges and textures. These features are often lost during downsampling
operations in convolutional neural networks (CNNs) and transformers. Compared to 2D
discrete Fourier transform (DFT), 2D-DWT has several advantages.

• The 2D-DWT method preserves the positional information of the features. This means
that the transformed image maintains the same size as the original image, allowing
for direct manipulation of frequency information at specific positions in the original
image. Consequently, our method does not require the inverse, DWT.

• The 2D-DWT is a real transform that eliminates the need to process complex numbers,
unlike the 2D-DFT which is a complex transform.

• The 2D-DWT is a hierarchical transform, which means the transformed image can be
further decomposed into four sub-bands and beyond. This is a useful property that
will be discussed in the next section.
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• The 2D-DWT has lower computational complexity than 2D-DFT. The fast implementa-
tion of DWT (or FWT) has time complexity of O(HW), whereas DFT (or FFT) has time
complexity of O(HW log(HW)).

Horizontal filter

⬇ 2φ

ψ ⬇ 2

Image

⬇ 2φ

ψ ⬇ 2

⬇ 2φ

ψ ⬇ 2

LL

HL

LH

HH

Vertical filter

(a) Procedure of 2D-DWT.

LH1 HH1

HL1
LH2 HH2

HL2LH3 HH3

HL3LL3

LL1

LL2

Tier 1

Tier 2

Tier 3

(b) Hierarchy of 2D-DWT.

Figure 1. The 2D-DWT diagram is shown in two sub-figures. Sub-figure (a) demonstrates the 2D-
DWT procedure, with downsampling represented by a down-arrow. Sub-figure (b) displays the
hierarchy of 2D-DWT, with the figure showing the resolutions of each component.

3.2. Hierarchical Wavelet Feature Enhancement (WFE)
3.2.1. Motivation

The 2D-DWT is a hierarchical transform, allowing the transformed image to be further
decomposed into four sub-bands, and so on. As a result, the transformed image can be
viewed as a hierarchical representation of the original image.

Given that the mainstream CNNs and transformers are hierarchical models, and the
2D-DWT is also a hierarchical transform, we can combine the 2D-DWT with CNNs and
transformers to create a hierarchical model. This approach allows us to extract high-
frequency features from the image and then feed them to the CNNs or transformers to
enhance the features.

Additionally, the semantic information in the images, both high and low frequency,
can be lost while downsampling. The DWT operation transforms the semantic information
into wavelet–domain maps with reduced spatial size and increased channel count, while,
as a lossless operation, preserving all information. As the wavelet representation of images
captures both spatial and frequency information, operations on the wavelet domain can
produce better results. Inputting them to the feature map with the same resolution proves
to be effective and efficient in compensating for the lost semantic information.

Regarding feature enhancement, the DWT has some decided advantages compared
with DFT and DCT: (1) the produced wavelet–domain components are still representative
in terms of spatial information, making it possible to directly use the DWT-transformed
information in the original path, without the need to perform point-wise multiplication,
multi-layer perception, or inverse transform; (2) the transform can be performed hierar-
chically, which lays the foundation of its compatibility with existing hierarchical image
networks. The DWT produces consistent output resolution across all levels, enabling easy
weighted averaging without interpolation.
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3.2.2. Framework

Our method’s framework is illustrated in Figure 2. First, the input image goes through
a 2D-DWT transformation, which is then weighted by learnable parameters, and forwarded
to the backbone of the CNNs or transformers. Next, the LL part of the transformed image
is sent to the next level of the 2D-DWT, and the same process is repeated. This continues
until the transformed image becomes too small to be sent to the CNNs or transformers.

Encoder

Res Block 1

Res Block 2

Res Block 3

Res Block 4

Stem Block

Decoder

UPerHead

WFE module

Wavelet Block 1

Wavelet Block 2

Wavelet Block 3

Wavelet Block 4

Wavelet Block 0

Images
Prediction

Softmax

xin

3×h×w

x(0)

c0×h/4×w/4

I(0)

3×h/4×w/4

x(1)

c0×h/8×w/8

I(1)

3×h/8×w/8

x(2)

c0×h/16×w/16

I(2)

3×h/16×w/16

x(3)

c0×h/32×w/32

I(3)

3×h/32×w/32

(a) WFE network.

2D Discrete
Wavelet Transform

Concat

1x1 Conv

x(n) I(n)

x(n-1) I(n-1)

LL, LH, 
HL, HH

LL

(b) Wavelet block.

Figure 2. The diagrams illustrate the main procedures in and around the WFE module. Sub-figure (a)
is based on the UPerNet−ResNet50 framework, and sub-figure (b) depicts the working principle of
our Wavelet block.

The transformed image is fed to the CNNs or transformers, on the corresponding level
of the 2D-DWT, so that the size of the transformed image is the same as the size of the
input image of that layer. Then, 1× 1 convolution is applied to the transformed image,
to reduce the number of channels to the same as the input image of that layer. Finally,
the transformed image is added to the input image of that layer, to enhance the features of
the input image.

The classic pyramid hierarchical framework manages to extract high-level features
while greatly reducing the time and spatial complexity of the model. However, as men-
tioned in Section 3.1, multiple downsampling operations may lead to the loss of certain
semantic information in the input image or feature map. For instance, the average pooling
operation may cause the loss of high-frequency image information, making the boundary
not ideally segmented.

To alleviate this problem, in our WFE module, the input image undergoes multiple
DWT operations and is concatenated into the original model feature map when its res-
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olution reached the same size as the original model hierarchy, to replace the semantic
information lost in the downsampling operation. Additionally, to improve the universality
of WFE modules, the overall structure is independent of the original model architecture and
connected with 1× 1 convolution through channel concatenation, as shown in Figure 2b.

The 2D-DWT method is only applied to the input image rather than the feature maps
of the CNNs or transformers, because the 2D-DWT is a linear transform whereas feature
maps of the CNNs or transformers are usually nonlinear. As a result, the 2D-DWT is not
suitable for the feature maps of the CNNs or transformers. Besides, if 2D-DWT is applied
to the feature maps produced by the backbone, then it is inevitable to consider the large
increase in channels, and subsequently, the increase in trainable parameters and model size.

3.2.3. Implementation

Figure 2 illustrates the implementation of our method. The input image is processed
through two branches—the blue branch and the black branch. The blue branch represents
the discrete wavelet transform (DWT) branch, and the black branch represents the feedback
branch. Each wavelet block consists of a 2D-DWT layer. The blue branch on the left
encompasses all four sub-bands, while the blue branch on the right includes only the LL
sub-band. The transformed image is then forwarded to the next level of the 2D-DWT
followed by performing the same operations.

We implemented a custom 2D-DWT layer instead of using the PyTorch Wavelet
Toolbox version, because the latter is not differentiable to be used in the training process.
The 2D-DWT layer is implemented using the 2D convolutional layer, with the kernels
defined in Equation (1). We added the WFE module to the original backbone architecture
and fine-tuned the entire model, with the learning rate adjusted. It is worth noting that
the WFE branch is not linked to the decoder, but rather to the original backbone, as
shown below:

• The position embedding layer in transformers is a linear projection, to which WFE
blocks have no connection whatsoever.

• The initial downsampling layer (aka the stem layer) usually performs a 4× down-
sampling operation in different ways. If that operation is performed through two
convolutions with strides of 2, then a WFE module is added between those convo-
lutions; otherwise, if it is performed through one 4× pooling, then no WFE module
is added.

• For other blocks in the encoder, namely Blocks 1 through 4, a WFE block is attached to
the output end of each.

Therefore, for each architecture, a total of 4 or 5 WFE blocks are implemented, depend-
ing on the type of the stem layer.

The WFE branch feedback is always before skip connections between the encoder and
the decoder, making full use of our enhancement module.

4. Experiments

In this section, we conduct experiments on the ISPRS Potsdam and the ISPRS Vaihingen
datasets, to evaluate the effectiveness and efficiency of our method. In addition, we compare
the performance and the computation cost of our method with other methods that apply
frequency domain analysis to semantic segmentation.

4.1. General Experimental Setups

This section introduces the general experimental settings in detail.

4.1.1. Implementation Details

Our method is implemented using the PyTorch framework and the mmsegmentation
library. Prior to training, we resize the images to 512× 512 pixels and normalize them using
the mean and standard deviation of the ImageNet dataset. During training, we use the
Adam optimizer with a specified learning rate, a weight decay of 0.01, and a momentum
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of 0.9. The batch size is set to 4, and the models are trained on a single NVIDIA GeForce
RTX 3090 GPU with 24 GB of memory. For ISPRS Potsdam, the models are trained for
160,000 iterations, while for ISPRS Vaihingen, they are trained for 80,000 iterations. We
use a polynomial learning rate scheduling scheme with a power of 1 and a 1500 iteration
warm-up. It is important to note that all the parameters of the 2D-DWT are fixed during
training, and all parameters are consistent with the original papers.

4.1.2. Pre-Training and Diagonal Initialization

The models used for semantic segmentation are pre-trained on the ImageNet dataset,
just like they were in the original papers. To initialize the Wavelet blocks in the WFE
structure, a diagonal initialization method is used. This means initializing the weights of
the Wavelet blocks with the diagonal elements of the corresponding convolutional layers.
The reason for this is to ensure that the Wavelet blocks do not modify the features extracted
by the convolutional layers during initialization. This helps to ensure the stability of the
training process.

4.1.3. Evaluation Metrics

In this part, we elaborate the evaluation metrics. We use OA, mIoU, and mF1 to
evaluate our results. In the following equations, N0 stands for classes, whereas N stands
for all classes except clutter; in our experiments, N0 = 6, N = 5. The subscripts k in
Equations (3), (5)–(7) represents the kth class. H is the confusion matrix, where elements
Hij represents the amount of pixels whose ground truth is the ith class while being predicted
by the model to be the jth class.

For both datasets, we use OA as the main metric for evaluation, defined by Equation (2).
OA represents the overall performance of a certain model.

OA =
∑N0

n=1 Hnn

∑N0
m=1 ∑N0

n=1 Hmn
(2)

Given that differences of OA on different models may not be apparent, we use mIoU
and mF1 as supplementary metrics, as they better reflect the visual appearance of the
segmentation. IoU is defined by Equation (3).

IoUk =
Hkk

∑N0
n=1,n 6=k Hkn + ∑N0

n=1,n 6=k Hnk + Hkk
(3)

mIoU is the IoU averaged across all classes (includes clutter), defined by Equation (4).

mIoU =
1

N0

N0

∑
n=1

IoUn (4)

For mF1, we first define precision in Equation (5) and recall in Equation (6).

precisionk =
Hkk

∑N
n=1,n 6=k Hnk

(5)

recallk =
Hkk

∑N
n=1,n 6=k Hkn

(6)

Then based on those, we define F1 in Equation (7).

F1k =
2precisionk · recallk

precisionk + recallk
(7)
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mF1 is defined as the average F1 across all classes (excludes clutter), in Equation (8).

mF1 =
1
N

N

∑
n=1

F1n (8)

4.2. Experiments on ISPRS Potsdam

In the following section, we elaborate our experiment conducted on ISPRS Potsdam.

4.2.1. ISPRS Potsdam Dataset

The ISPRS Potsdam dataset, shown in Figure 3, is a widely-used dataset for semantic
segmentation of RSI. It contains 38 ortho-rectified images of the city of Potsdam, Germany,
with a spatial resolution of 5 cm, and a size of 6000× 6000 pixels. The images are divided
into 24 and 14 images for training and validation, respectively. The images are annotated
with six classes: impervious surfaces (imp surf), building, low vegetation (low veg), tree,
car, and clutter.

During the training, we crop the images to 512× 512 pixels (allow overlapping at
the edges), and randomly flip the images horizontally and vertically, thus producing
3456 images for training and 2016 images for validation.

Figure 3. ISPRS Potsdam dataset sample.

4.2.2. Experimental Settings on ISPRS Potsdam

We conducted experiments on the ISPRS Potsdam dataset to evaluate the effectiveness
and efficiency of our method. For transformers, we used Swin Transformer [12] and Seg-
Former (MiT) [11] as the backbone models. For CNNs, we used ResNet [5], ConvNeXt [6],
and the most recent InternImage [8] as the backbone models. As to the decode head, we
used UPerNet [5] as the standardized decode head model (except for SegFormer). In addi-
tion, we used DeepLabV3+ [4] as a comparable decode head model, to test whether the
decode heads have any impact on our method.

4.2.3. Results on ISPRS Potsdam

The results presented in Table 1 indicate that the adoption of the WFE module has
led to significant improvements in the performance of the original models that are based
either on CNNs or transformers. The improvements are more noticeable in the models
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based on CNNs, which saw an increase of roughly 0.4% in OA, than in those based on
transformers, where the increase was roughly 0.1% in OA. This is because the CNNs are
more sensitive to high-frequency information, which is preserved by the WFE module.
The WFE module requires little additional computation, as it only involves four–five
1× 1 convolutions, resulting in 0.2% (Swin) to 8% (ResNet) increase in parameters and
1% (Swin)–10% (ResNet) increase in float-point operations. The WFE module has shown
that it can be generalized into different models with little additional computation and
improve the performance of the original models in the context of remote sensing images.
Furthermore, our module surpassed the original architectures based on different backbone
sizes, on both CNNs and transformers, and on the earliest and latest purposed models. It
also showed a performance boost regardless of the decoder, as demonstrated by the results
of UPerNet−ResNet50 and DeepLabV3+−ResNet50.

We present the training OA curve in Figure 4 and the sample results in Figures 5 and 6.
In our research, we have discovered that our module is more effective in detecting borders
of large objects surrounding buildings and trees, as demonstrated in Figures 5 and 6.
However, our module struggles with identifying small clusters of pixels and fine details.
This is due to its sensitivity towards high frequency information around large objects, rather
than small objects or near the edge of the image. Additionally, Figure 4 presents the curve
of OA against epochs during the training process, indicating that adopting our module
results in faster convergence throughout the training process.

Table 1. Experiments on ISPRS Potsdam. Shows the OA, mIoU, mF1, and Class Acc of our method
on the ISPRS Potsdam dataset. The OA and the mIoU include the clutter class, whereas the mF1
and the Class Acc exclude it. The results of the original models are also listed for comparison; bold
indicates the best.

Method Backbone WFE OA mIoU mF1 Class Acc
Imp Surf Building Low Veg Tree Car

Transformers

UPerNet Swin-T − 91.02 78.47 92.45 93.94 97.72 89.37 88.73 95.66
+ 91.03 78.68 92.50 94.08 97.38 89.76 87.92 95.24

UPerNet Swin-S − 91.13 78.98 92.07 94.00 97.53 91.01 87.16 96.26
+ 91.20 79.05 92.64 94.23 97.44 89.78 88.52 95.47

UPerNet Swin-B − 91.29 79.40 92.70 94.01 97.74 90.16 88.05 96.70
+ 91.37 79.50 92.85 94.40 97.55 90.23 88.11 96.59

SegFormer MiT-b4 − 91.13 78.79 92.60 94.32 97.71 91.06 86.78 96.41
+ 91.38 79.50 92.69 94.32 97.42 90.04 88.85 96.39

SegFormer MiT-b3 − 91.20 78.94 92.61 93.55 96.97 87.65 88.91 95.97
+ 91.42 79.67 92.71 93.80 97.14 87.64 89.04 95.95

CNNs

UPerNet InternImage-B − 91.37 79.60 92.93 94.23 97.85 90.40 88.74 96.12
+ 91.44 79.65 92.87 94.06 97.88 88.09 91.25 96.29

UPerNet ConvNeXt-S − 91.21 79.30 92.69 94.12 97.57 90.41 87.63 96.41
+ 91.22 79.12 92.60 94.11 97.70 90.42 87.13 96.70

UPerNet ConvNeXt-B − 91.34 79.44 92.69 94.56 97.48 89.48 88.80 96.10
+ 91.36 79.48 92.69 94.32 97.15 88.75 89.89 96.79

UPerNet ResNet-50 − 90.06 77.23 91.58 92.42 96.96 89.26 86.46 95.32
+ 90.54 78.27 92.00 93.20 96.85 89.70 86.57 95.07

UPerNet ResNet-101 − 89.85 77.13 91.30 92.01 96.28 89.31 84.92 94.37
+ 90.01 77.32 91.37 92.48 96.63 89.89 85.61 94.39

DeepLabV3+ ResNet-50 − 88.97 74.00 89.21 91.20 96.31 88.61 84.77 85.32
+ 89.14 74.01 89.23 90.93 95.93 89.64 86.26 84.30
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Figure 4. The OA curve on the validation set during the training process on ISPRS Potsdam,
with SegFormer-B3.

imp surf buildingLegends: low veg tree car clutter

Image Ground Truth SegFormer-B3 WFE-SegFormer-B3

Figure 5. Sample results with SegFormer-B3 (representing the results on transformers) include
comparisons with and without WFE. The red rectangles mark the improvement of the WFE version
against the original architecture.
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imp surf buildingLegends: low veg tree car clutter

Image Ground Truth ConvNeXt-B WFE-ConvNeXt-B

Figure 6. Sample results with ConvNeXt-B (representing the results on CNNs) include comparisons
with and without WFE. The red rectangles mark the improvement of the WFE version against the
original architecture. Note: The ground truths shown above are not border-eroded, whereas the
models were trained and validated on the border-eroded version of the ground truth.

4.3. Experiments on ISPRS Vaihingen

This section introduces our experiment conducted on ISPRS Vaihingen.

4.3.1. ISPRS Vaihingen Dataset

The ISPRS Vaihingen dataset, shown in Figure 7, is also a well-known dataset for
semantic segmentation of RSI. It contains 33 ortho-rectified images of the city of Vaihingen,
Germany, with a spatial resolution of 9 cm. All images are of different sizes, ranging from
2336× 1281 pixels to 3816× 2550 pixels. The images are divided into 16 and 17 images
for training and validation, respectively. Like the ISPRS Potsdam dataset, the images are
annotated with six classes: impervious surfaces (imp surf), building, low vegetation (low
veg), tree, car, and clutter.

During the training, we crop the images to 512× 512 pixels (allow overlapping at
the edges), and randomly flip the images horizontally and vertically, thus producing
344 images for training and 398 images for validation.

4.3.2. Experimental Settings on ISPRS Vaihingen

Similar to the experiments on the ISPRS Potsdam dataset, we conduct experiments on
the ISPRS Vaihingen dataset. Due to the smaller dataset, we selected fewer models with
moderate sizes to validate our method’s efficiency and effectiveness.
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Figure 7. ISPRS Vaihingen dataset sample.

4.3.3. Results on ISPRS Vaihingen

Based on the results presented in Table 2, it is evident that the performance of the
original models that are based on transformers has improved by approximately 0.3% after
the adoption of the WFE module. The improvement on the CNNs is also competitive. Also,
we present the training OA curve in Figure 8 and the sample results in Figure 9. Figure 9
demonstrates that our module is superior at identifying fine details, which is consistent
with the results obtained on the ISPRS Potsdam dataset where small clusters of pixels are
better categorized. Additionally, an OA curve of the training process has been provided,
which showcases the superior ability of our module.

It is worth noting that our module has a better improvement on transformers than on
CNNs when compared to the larger dataset, i.e., Potsdam. However, in smaller datasets
like Vaihingen, the generalization potential of the WFE module is largely affected, resulting
in little advantage or even disadvantage over CNN-based frameworks.
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Table 2. Experiments on ISPRS Vaihingen. Shows the OA, mIoU, mF1, and Class Acc of our method
on the ISPRS Vaihingen dataset, with results of the original models also listed for comparison. The OA
and the mIoU include the clutter class, whereas the mF1 and the Class Acc exclude it. Bold indicates
the best.

Method Backbone WFE OA mIoU mF1 Class Acc
Imp Surf Building Low Veg Tree Car

Transformers

UPerNet Swin-B − 90.53 73.19 89.58 93.64 96.20 81.52 91.52 84.83
+ 90.89 74.45 89.82 92.89 96.82 81.75 92.68 85.01

SegFormer MiT-b3 − 90.65 74.35 89.95 92.69 95.94 84.03 89.39 87.72
+ 90.66 74.08 89.95 92.77 95.94 84.07 89.35 87.61

CNNs

UPerNet InternImage-S − 90.86 74.52 90.17 93.64 96.31 81.88 92.10 87.04
+ 90.89 73.71 90.10 93.59 96.34 82.35 91.92 87.88

UPerNet ConvNeXt-S − 90.84 74.04 90.08 93.25 96.28 83.21 91.37 86.69
+ 90.73 73.67 89.94 93.35 96.32 82.04 91.89 86.55

UPerNet ResNet-50 − 89.74 69.88 88.26 91.80 94.98 83.35 88.73 82.44
+ 89.58 70.20 88.46 91.94 94.91 82.70 88.50 84.27
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Figure 8. The OA curve on the validation set during the training process on ISPRS Vaihingen,
with Swin-B.

4.4. Ablation Studies

In the ablation studies, we use SegFormer and UPerNet as the baseline model and
conduct experiments on the ISPRS Potsdam dataset to evaluate the effectiveness and
efficiency of different settings of our method. The results are displayed in Table 3.
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imp surf buildingLegends: low veg tree car clutter

Image Ground Truth Swin-B WFE-Swin-B

Figure 9. Sample results with Swin-B include comparisons with and without WFE. Note: The ground
truths shown above are not border-eroded, whereas the models were trained and validated on the
border-eroded version of the ground truth.

Table 3. Ablation studies on ISPRS Potsdam. The diagonal column indicates whether diagonal
initialization is applied, whereas the gray column stands for whether gray-scaling is performed.
In the levels column, H stands for HH, HL, and LH sub-bands, and L stands for the LL sub-band.
In the pooling column, avg stands for average pooling and max stands for maximum pooling. Bold
indicates the best.

# Method Backbone Diagonal Gray Levels Pooling OA mIoU

0 SegFormer MiT-b4 — 91.13 78.79

1

SegFormer WFE-MiT-b4

− + H Avg 90.18 76.94
2 + + H Avg 91.16 78.80
3 + − H Avg 91.22 79.09
4 + − L Avg 91.23 79.08
5 + − L and H Avg 91.38 79.50
6 + − L and H Max 91.27 79.01

0 UPerNet ResNet50 — 90.06 77.23

1

UPerNet WFE-ResNet50

− + H Avg 90.08 77.62
2 + + H Avg 90.17 77.96
3 + − H Avg 90.31 78.18
4 + − L Avg 90.43 77.57
5 + − L and H Avg 90.54 78.27
6 + − L and H Max 90.39 78.21
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4.4.1. Diagonal Initialization

For the WFE module, we use a diagonal initialization method in order to ensure that
the wavelet blocks do not change the features extracted by the convolutional layers initially,
so as to ensure the stability of the training process.

To verify the effectiveness of the diagonal initialization method, we conducted ex-
periments on the ISPRS Potsdam dataset, with and without the diagonal initialization
method. The results are shown in Table 3, groups #1 and #2. From the results, we can see
that the diagonal initialization method can improve the performance of the original model
substantially. This proves the diagonal initialization method to be effective.

The adoption of diagonal initialization is essential in our method, as it eliminates
the need to pre-train. The current procedure is similar to training the enhanced model
from the unenhanced model by parameter freezing, but with added coupling between
relevant parameters.

4.4.2. Number of Channels

In our WFE module, we can control whether to use grayscale or RGB images as
the input of the 2D-DWT. To verify its effect, we conducted experiments on the ISPRS
Potsdam dataset, with grayscale and RGB images as the input of the 2D-DWT, respectively.
The results are shown in Table 3, groups #2 and #3. From the results, we can see that the
performance of the original model reaches its peak when RGB images are used as the input
of the 2D-DWT. This proves that the RGB images contain more information than grayscale
images, and thus can improve the performance.

4.4.3. Frequency Components Fed into the Backbone

For the WFE module, we can control the number of frequency maps out of the 2D-
DWT to be fed to the backbone. To verify its effect, we conducted experiments on the ISPRS
Potsdam dataset, with different frequency components fed into the backbone. The results
are shown in Table 3, groups #3 through #5. From the results, we can see that the perfor-
mance of the original model reaches its peak when all the frequency components are fed
into the backbone. This proves that the WFE module can extract useful information from
the frequency components, and feed them to the backbone to enhance the features.

4.4.4. Maximum Pooling

Due to the nonexistence of the 1/2 resolution feature maps in the original SegFormer,
we tried to use maximum pooling to downsample the full resolution feature maps to 1/2
resolution before applying the 2D-DWT to the downsampled feature maps. The results are
shown in Table 3, group #6. From the results, we can see that the performance of the WFE
model drops when maximum pooling takes place. This is possibly because the maximum
pooling operation loses the positional information of the features, leading to the 2D-DWT
not being able to extract useful information from the downsampled feature maps.

4.4.5. Skip Connection

In semantic segmentation tasks, the encoder are linked to the decoder by an output
and multiple skip connections. In an experiment on ConvNeXt-B, we performed multiple
groups of comparisons, and found out that injecting the WFE branch back right before
skip connections marginally outperforms the result of injecting them right after the skip
connections. This shows that WFE block is stable and would never pose structurally
destructive consequences on the decoder.

4.4.6. Type of Transform

In our related works, we conducted a review of various transforms including DFT
and DCT. To compare the outcomes of DWT with those of DFT and DCT, we conducted
an experiment. We derived the DFT and DCT branches from the input image by first
interpolating it to the same size as the main branch. We then performed DFT or DCT,
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followed by a linear layer and finally the inverse transform. We fused it into the main
branch using 1× 1 convolution. The results are tabulated in Table 4. The experiment
showed that DWT (#4) significantly outperforms DFT (#7) and DCT (#8). We attribute this
difference to the inherent hierarchy property of the discrete wavelet transform and the
lower parameter count with the elimination of the linear layer. Note that both the DFT and
DCT groups (#7, #8) exhibit weaker performance than the original ResNet. This suggests
that excessive information has been injected into the framework, leading to overfitting.

Table 4. Ablation studies on ISPRS Potsdam, comparing DCT and DFT with our proposed DWT
architecture. Bold indicates the best.

# Method Backbone Transform Type OA mIoU

0 UPerNet WFE-ResNet DWT 90.06 77.23

4 UPerNet WFE-ResNet DWT 90.54 78.27

7 UPerNet WFE-ResNet DFT 88.39 73.75

8 UPerNet WFE-ResNet DCT 87.86 72.29

5. Discussions

Based on our experiments, here we analyze our results and present our discussion.
Our module is a generalized model, which can be implemented on a wide range of

hierarchical encoder–decoder architectures, improving the results.
The main reason we introduce 2D-DWT as a module is because of its property of being

lossless. In essence, 2D-DWT can be regarded as a downsampling operation, with infor-
mation from the previous layers preserved, to supplement the model with the original
information.

Our module has the following merits:

• The WFE module is a hierarchical module, which can be applied to the CNNs and
transformers to enhance the features.

• The WFE module is a lightweight module, which can be generalized to different
models, and can improve the performance of the original models in the context of
remote sensing images, with little additional computation.

• The WFE module is a general module, which can be applied to different models,
and can be used on different tasks.

Still, our module has some limitations that can be improved upon:

• During the segmentation, our module can make little improvements at the edge of the
entire image.

• Our module has different adaptability towards architectures of different sizes. The WFE
module generally better adapts to small- or mid-sized models.

• Our module performed better on models when a WFE module can be injected in the
stem layer makes a difference, because the wavelet block 0 has a relatively larger
perception field.

6. Conclusions

We have introduced a new technique, known as Hierarchical Wavelet Feature En-
hancement (WFE), in this paper to enhance the features of CNNs and transformers. We
conducted experiments and analyzed our approach to demonstrate its usefulness and
versatility. Going forward, we plan to apply the WFE module to different models and tasks
to further validate its effectiveness and efficiency. Additionally, we will keep track of the
latest state-of-the-art models, upgrades, and patches to traditional models and continue
using our methods to better assess the universality and adaptability of our module.
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