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Abstract: The application of hyperspectral imagery coupled with deep learning shows vast promise
in plant species discrimination. Reshaping one-dimensional (1D) leaf-level reflectance data (LLRD)
into two-dimensional (2D) grayscale images as convolutional neural network (CNN) model input
demonstrated marked effectiveness in plant species distinction. However, the impact of the image
shape on CNN model performance remained unexplored. This study addressed this by reshaping
data into fifteen distinct rectangular formats and creating nine CNN models to examine the effect
of image structure. Results demonstrated that irrespective of CNN model structure, elongated
narrow images yielded superior species identification results. The ‘l’-shaped images at 225 × 9 pixels
outperformed other configurations based on 93.95% accuracy, 94.55% precision, and 0.94 F1 score.
Furthermore, ‘l’-shaped hyperspectral images consistently produced high classification precision
across species. The results suggest this image shape boosts robust predictive performance, paving the
way for enhancing leaf trait estimation and proposing a practical solution for pixel-level categorization
within hyperspectral imagery (HSIs).

Keywords: hyperspectral reflectance; plant species discrimination; deep learning; image reshaping;
image shape; CNN

1. Introduction

Remote sensing has increasingly been adopted for plant species classification in recent
years [1–3]. However, most prior work in this domain has focused predominantly on
digital image processing techniques applied to imaging spectra in the visible region [4,5].
Despite hyperspectral imagery providing a richer characterization of target spectra across
a more extensive electromagnetic range, relatively few studies have fully leveraged this
abundant spectral information [6]. While visual information carries diagnostic value
for discrimination, the underutilization of hyperspectral signatures is notable given the
potential for comprehensive discrimination when considering the full spectral profile
captured [7–9]. A more comprehensive exploitation of the inherent biochemical specificities
encoded in hyperspectral datasets may further advance automated plant taxonomy via
remote observation methods.

The use of hyperspectral imagery (HSIs) combined with machine learning techniques
exhibits the potential to distinguish different plant species [2,6,10]. The research by
Badola et al. [11] leveraged hyperspectral data and a modified version of the random
forest classifier aligned with Principal Component Analysis (PCA) to map tropical tree
species. Meanwhile, Hu et al. [12] productively hardcoded a fluorescence hyperspectral
device and machine learning to classify Oolong tea, attaining commendable accuracy via
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the Random Forest-Recursive Feature Elimination (RF-RFE) and Support Vector Machine
(SVM). Cao et al. [13] effectively employed close-range hyperspectral imaging in conjunc-
tion with machine learning techniques to proficiently discern various mangrove species,
achieved a remarkable accuracy of 93.54% by utilizing a Support Vector Machine (SVM)
model that incorporated selected wavebands derived from the successive projections algo-
rithm (SPA). Employing LiDAR and hyperspectral data in harmony with machine learning
methods, Marrs and Ni-Meister [14] managed to classify dominant tree species with greater
accuracy than what individual datasets could accomplish. Al-Awadhi and Deshmukh [15]
proposed a machine learning methodology for classifying honey botanical origins using
hyperspectral imaging, achieving impressive accuracy by leveraging Linear Discriminant
Analysis (LDA), SVM, and K-Nearest Neighbors (KNN). Song and Wang [6] found that by
combining the Bayesian optimization-based Support Vector Machine (SVM) model, and
the Recursive Feature Elimination (RFE) method for feature selection, they were able to
achieve a commendable classification accuracy of 86% across 52 different species.

Due to their hierarchical learning properties [16], deep learning algorithms have
been effectively combined with plant species classification [2,17,18]. Among which, CNN-
based models have generally yielded better results since they possess the capability to
extract highly discriminatory features and leverage spatial and spectral information [2].
A profound study conducted by Avesh Ali et al. [19] appropriates a deep learning CNN
methodology for plant species recognition, achieving a remarkable accuracy of 96.95% in
differentiating plant leaf images. Similarly, research presented by Gawli and Gaikwad [20]
employed a deep learning approach incorporating CNN for the automatic classification
of 17 distinct plant species, predicated on the texture and color characteristics of their
leaves, which culminated in an impressive accuracy rate exceeding 94.26%. The suitability
and superior performance of deep learning—particularly CNNs—in the automatic plant
species recognition and classification highlights its distinct advantage over conventional,
hand-crafted methods [21–23].

Despite their prevalent application in multidimensional image data analysis [24,25],
CNNs prove impractical for analyzing one-dimensional (1D) structured data, such as
leaf-level reflectance data (LLRD), due to implicit constraints of lower dimensionality
and limited sample size [26]. A plausible solution could be to transform 1D LLRD into a
two-dimensional (2D) matrix [27,28]. The underlying difference between deploying a 1D
array and a 2D image within a neural network lies in the data representation and process
management [29]. Compared to 1D arrays, 2D images offer more robust data representa-
tion [30]. By converting 1D array data into a 2D array, spatial correlation between attributes
can be inferred [31], including metric relationships (distance, direction or angle, and area)
and topological links such as connectedness, containment, and relative location [32].

Converting the original 1D LLRD into 2D image formats changes the spatial rela-
tionships between wavelength features. Using images of varying shapes and dimensions
enables CNNs to detect informative features at diverse scales [33]. However, improperly
sized images can negatively impact both model training duration and effectiveness [34]. By
reshaping the spectra into a spectral feature matrix, CNNs can capture meaningful spatial
patterns and correlations within the data that are important for accurate classification, espe-
cially between samples with similar compositions [27]. This transformation from 1D vectors
to 2D matrices enhances CNN performance for HSIs analysis. It facilitates comprehensive
spectral information utilization, precise feature extraction, enhanced differentiation among
classes, and reduced interference from highly correlated bands in the network architecture
proposed [28]. CNNs have demonstrated notable accuracy discriminating between six
plant species when LLRD were reshaped into 2D images, outperforming other models
such as SVM [29]. Nevertheless, the degree to which CNN performance is influenced by
the morphology of the input images utilized for plant species classification tasks remains
insufficiently explored. Therefore, it is of paramount importance to perform a rigorous
selection of the appropriate image dimensions and quality, ensuring that they align with
the specific task requirements and the corresponding network architecture.
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In the present study, we carefully investigate the effect of different image shapes on
the functional capabilities of CNN models in discriminating plant species using LLRD.
We aim to investigate the influence of image shape on species classification results when
using reshaped hyperspectral data. The primary research question we aim to address is:
How does the shape of reshaped hyperspectral images influence the performance of CNN
models in plant species discrimination? Our study objectives are to (1) propose a method for
transforming one-dimensional, leaf-level hyperspectral data into two-dimensional images
of different shapes, (2) assess the performance of CNN models using the reshaped images,
and (3) evaluate the effect of image shape on model performance.

This study applies a novel technique to reduce the dimensionality of LLRD data, re-
sulting in two-dimensional grayscale images. This technique converts the conventional 1D
structured data into a visual representation enabling greater extraction of complex patterns
and characteristics. An innovative aspect is exploring different rectangular image shapes
to train CNN models. Observing the impact of diverse image shapes on classification
performance allows for CNN applications to push boundaries. Specifically, the discovery
that ‘l’-shaped HSIs outperform other shapes in model performance is a novel perspec-
tive. Another key innovation is the use of multiple CNN models to determine the most
effective architectures for plant classification. Particularly, cnn2A and cnn3B outperformed
the other models, emphasizing the importance of selecting the appropriate model for a
particular task.

2. Data and Methods
2.1. Data Source

The compiled database comprises six distinct datasets that are independent: ANGERS
(AN, ANGERS Leaf Optical Properties Database (2003)) [35], KARLSRUHE (KA, Leaf
reflectance plant functional gradient IFGG/KIT) [36], CANADA (CA, CABO 2018–2019
Leaf-Level Spectra v2) [37], NEON (NE, Fresh Leaf Spectra to Estimate LMA over NEON
domains in eastern United States) [38], NCNE (NC, NASA FFT Project Leaf Reflectance
Morphology and Biochemistry for Northern Temperate Forests) [39], and UPTON (UP,
Hyperspectral leaf reflectance, biochemistry, and physiology of droughted and watered
crops) [40]. Figure 1 shows the distribution of data sources used.
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Figure 1. Data source and distribution of different datasets, including ANGERS, KARLSRUHE,
CANADA, NEON, NCNE, and UPTON.

The reflectance spectra of four datasets, namely AN, NE, NC, and KA, were obtained
using an ASD Field Spec spectrometer. Additionally, the reflectance spectra of the UP
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species were measured using a Spectral Evolution PSR+ (or SE_PSR+ or HR-1024I) instru-
ment, while those of the CA species were measured solely with an HR-1024I instrument.
In order to incorporate variability attributed to the developmental stage, certain species
within the CA, KA, NC, and UP datasets were sampled multiple times. The datasets were
measured at wavelength ranges of 350 (or 400) nm to 2450 (or 2500) nm, with the exception
of the CA dataset which was measured between 400 nm and 2400 nm. To ensure the accu-
racy of our analysis, we excluded any data points falling outside the range of 400–2450 nm.
For the CA dataset, we used the value corresponding to the wavelength of 2400 nm to fill
the spectral region between 2401 and 2450 nm.

2.2. Data Preprocessing
2.2.1. Selection of Plant Species

Adequate sample quantities are crucial for both the training and validation stages of
deep learning models. As recommended by BeamLab [41], an optimal range of 100 to 1000
samples is recommended. Building on the previous study, we selected species based on the
sample sizes available in the collected dataset, ensuring an adequate number of instances
for each species. From the six distinct datasets, we have identified 22 focal species, each
with a sample size exceeding 90, resulting in a total of 3102 samples included in this study.
Table 1 provides details on the Latin name, sample size, symbol, code, and group assigned
to each species. The average reflectance spectra for the selected species are displayed in
Figure 2.

Table 1. Species Latin name, symbol, code, group, and source. AN: ANGERS Leaf Optical Properties
Database (2003)); KA: KARLSRUHE leaf reflectance plant functional gradient IFGG/KIT): CA: CABO
2018-2019 Leaf-Level Spectra v2); NE: Fresh Leaf Spectra to Estimate LMA over NEON domains in
eastern United States); NC: NCNE, NASA FFT Project Leaf Reflectance Morphology and Biochemistry
for Northern Temperate Forests; UP: UPTON, Hyperspectral leaf reflectance, biochemistry, and
physiology of droughted and watered crops.

Latin Name Symbol Code Group
Source

Total
CA KA AN UP NE NC

Betula papyrifera Marshall BEPA 0 Tree 31 51 10 92
Quercus rubra L. QURU 1 Tree 21 90 84 195

Raphanus sativus L. RASA 2 Herb 195 195
Acer saccharum Marshall ACSA 3 Tree 81 18 99

Betula populifolia Marshall BEPO 4 Tree, Shrub 104 104
Phalaris arundinacea Linnaeus PHAR 5 Herb 75 22 97
Andropogon gerardii Vitman ANGE 6 Herb 89 2 91

Acer rubrum L. ACRU 7 Tree 57 96 42 195
Tsuga canadensis (L.) Carrière TSCA 8 Tree 112 112

Acacia smallii Isely ACSM 9 Tree, Shrub 119 119
Capsicum annuum L. CAAN 10 Herb 195 195

Populus ×canadensis Moench POCA 11 Tree 195 195
Helianthus annuus L. HEAN 12 Herb 172 172

Populus tremuloides Michx. POTR 13 Tree 120 120
Quercus alba L. QUAL 14 Tree 10 78 60 148

Acer pseudoplatanus L. ACPS 15 Tree 181 181
Pinus strobus L. PIST 16 Tree 12 82 94

Cucurbita pepo L. CUPE 17 Vine, Herb 195 195
Abies balsamea (L.) Mill. ABBA 18 Tree 19 133 152

Setaria italica (L.) P. Beauv. SEIT 19 Herb 96 96
Sorghum bicolor (L.) Moench SOBI 20 Herb 151 151

Fagus grandifolia Ehrh. FAGR 21 Tree 47 39 18 104
Total 577 22 181 1199 461 662 3102



Remote Sens. 2023, 15, 5628 5 of 19

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 19 
 

 

Sorghum bicolor (L.) Moench SOBI 20 Herb    151   151 
Fagus grandifolia Ehrh. FAGR 21 Tree 47    39 18 104 

Total    577 22 181 1199 461 662 3102 

 
Figure 2. Average reflectance of selected species. The legend shows the symbol of each species, the 
respective species of each symbol refer to Table 1. 

2.2.2. Reflectance Data Preprocessing 
In alignment with previous studies, the one-dimensional LLRD was converted to 

two-dimensional grayscale image data in order to serve as the input for the CNN model. 
To ascertain the most effective reflectance data image shape, we experimented with fifteen 
distinct image configurations (Figure 3) within the CNN models. The transformation of 
the LLRD into a two-dimensional array was facilitated through the Python platform using 
NumPy’s universal “reshape” function. After the aforementioned modification, the Keras’ 
image preprocessing technique was utilized to preserve the modified array in the form of 
a grayscale image. The wavelengths chosen spanned from 400 to 2424, covering a total of 
2025 features, which were subsequently transformed into the intended grayscale image, 
with each pixel representing a unique feature. In the course of this implementation, leaf 
reflectance values ranging from 0 to 1 were rescaled to fit within the 0 to 255 range [29] (as 
shown in Figure 3). 
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2.2.2. Reflectance Data Preprocessing

In alignment with previous studies, the one-dimensional LLRD was converted to
two-dimensional grayscale image data in order to serve as the input for the CNN model.
To ascertain the most effective reflectance data image shape, we experimented with fifteen
distinct image configurations (Figure 3) within the CNN models. The transformation of
the LLRD into a two-dimensional array was facilitated through the Python platform using
NumPy’s universal “reshape” function. After the aforementioned modification, the Keras’
image preprocessing technique was utilized to preserve the modified array in the form of a
grayscale image. The wavelengths chosen spanned from 400 to 2424, covering a total of
2025 features, which were subsequently transformed into the intended grayscale image,
with each pixel representing a unique feature. In the course of this implementation, leaf
reflectance values ranging from 0 to 1 were rescaled to fit within the 0 to 255 range [29] (as
shown in Figure 3).
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data; (B): reshaped 2D image data. Fifteen image shapes were created by selecting factorizations
of the total number of features (2025). Specifically, the feature vectors were reshaped into images
with the following pixel dimensions: (a) 1 × 2025; (b) 3 × 675; (c) 5 × 405; (d) 9 × 225; (e) 15 × 135;
(f) 25 × 81; (g) 27 × 75; (h) 45 × 45 as shown; (i) 75 × 27; (j) 81 × 25; (k) 135 × 15; (l) 225 × 9;
(m) 405 × 5; (n) 675 × 3; (o) 2025 × 1 [29]. Each of these image shape variations generated a separate
dataset that was then used individually to train and evaluate the CNN classification models. The
shapes (a), (b), (c), (m), (n), and (o) that are either too long or too high were subsequently excluded in
this figure. The original images were in greyscale hence we colorized all fifteen images for improved
visualization purposes. For the greyscale figure please refer to Supplementary File Figure S1.

2.3. CNN Model Architectures

A comprehensive summary of the CNN model architectures is given in Table 2. A
detailed illustration of the architectures can be found in Figure 4.

Table 2. Summary of CNN Model Architecture. This table presents an overview of the CNN model
architecture, indicating the number of convolutional layers—1, 2, or 3—by numbers following the
term “CNN”. Also, various pooling layers—A, B, C, D—are demonstrated to showcase the variations
employed in the architecture. The ‘L ×W’ indicates the pixel dimensions of the input image dataset.
When the Max-Pooling function is applied, the image dimensions change to ‘L1 × W1′ and/or
‘L2 ×W2′. The Last Calculated Output Value varies depending on the datasets and models used.
The Output layer consists of 22 dense neurons, each corresponding to one of the 22 species.

CNN1A CNN1B CNN2A CNN2B CNN2C CNN3A CNN3B CNN3C CNN3D

Input L ×W × 3

Rescaling L ×W × 3

Conv1

Kernel 3 × 3

Stride 1 × 1

Output L ×W × 32

Pooling Output - L1 ×W1
× 32 - L1 ×W1 × 32 - L1 ×W1 × 32

Conv2

Kernel - - 3 × 3

Stride - - 1 × 1

Output - - L ×W ×
32 L1 ×W1 × 32 L ×W ×

32 L1 ×W1 × 32

Pooling Output - - - - L2 ×W2
× 32 - - L2 ×W2 × 32

Conv3

Kernel - - - - - 3 × 3

Stride - - - - - 1 × 1

Output - - - - - L ×W ×
32

L1 ×W1
× 32 L2 ×W2 × 32

Pooling Output - - - - - - - - L3 ×W3
× 64

Dropout Rate (%) 0.2

Flatten Last Output Calculated Value

Dense Flatten × 128

Output 1 × 22
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We developed a total of nine comprehensive CNNs for the purpose of species detection
using LLRD. Each CNN model architecture used in the study contains several underlying
layers, starting with an input layer to accept the pre-processed gray-scale images. Several
convolutional layers (Conv) are then applied to learn image features; for CNN1 family
there is 1 Conv layer, for CNN2 family there are 2 Conv layers, and for CNN3 family there
are 3 Conv layers. The ‘A’ type of model, such as CNN1A, CNN2A, and CNN3A, have no
Max-Pooling layer, other types have Conv layer followed by pooling layers to reduce spatial
dimensions while retaining important information. After the conv or Max-Pooling layer,
a flattening layer transforms the output volume of the previous layers into a 1D vector,
which is used as input for the following dense layers. Next, a dense layer (Dense) performs
classification via multiclass non-linear projections. Finally, an output layer with twenty-two
units, related to the twenty-two plant species considered, produces class predictions. The
CNN models are differentiated by the number and configuration of the alternate Conv
and Pooling layers used to process the images, allowing the impact of network depth on
discrimination performance to be assessed.

2.4. Model, Image Shape Comparison and Evaluation

As the optimal pairing of image shape and CNN model remains uncertain, it is
plausible to train and validate several models using datasets derived from different image
shapes under feasible circumstances. By comparing the precision of these distinct models,
we can identify the optimal model that corresponding with an optimal image shape.
Comparing the highest accuracy achieved through fifteen different image shapes can
enlighten us on the most efficient reshaped image shape for species identification, while
disregarding the CNN model. In order to compare the model and image shapes, we will
transform all LLRDs into fifteen distinct datasets with various shapes. These datasets
will serve as the training data for all nine models. Subsequently, each model will assess
accuracy, precision, and F1-score for every species (Figure 5). We will compare the highest
average accuracy, precision, and F1-score for each model, along with the dataset used
while ignoring specific model details. The F1-score can be interpreted as the harmonic
mean of precision and recall, where an F1-score reaches its best value at 1 and its worst
value at 0. Recall is defined as the number of true positives divided by the number of true
positives plus false negatives. The formula for the F1-score is: F1 = 2 × (precision × recall)/
(precision + recall).
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evaluation parameters. From left to right, each species is reshaped into a different-shaped image
dataset (letters a–o refer to a certain shape, see Figure 3). Each dataset is trained by nine CNN models.
The trained model is then used to evaluate accuracy, precision, and F1-score for each species. The
greatest mean accuracy, precision, and F1-score for each model, along with the dataset (disregarding
the model specifics), will be compared.

In the current study, to assess the predictive model’s effectiveness, a random sample
of 50 specimens was selected from each species, instead of the complete dataset, for the
prediction aspect of each dataset. In terms of the evaluation method, the confusion matrix
was obtained through comparing actual species values with those predicted by trained
models. This was achieved through the use of classification metric functions from the
scikit-learn library [43], including accuracy classification score, precision, and f1 score
(balanced F1-score) functions. The primary goal was to determine the accuracy, precision,
and F1-score of identification.

Each dataset was partitioned into training and validation subsets in a stochastic
manner, with a ratio of 3:1. The models were trained on the training data and subsequently
validated on the held-out validation data, with the implementation of a train-validation
procedure that involved 30 iterations. The model exhibiting the best validation performance
was saved for application to an independent prediction dataset composed of 50 randomly
sampled examples per species from the original training or validation data. Predicted
species labels from this application phase were then evaluated against true species labels to
quantify prediction accuracy.

2.5. Flowchart of the Process

In this study, the whole process encompasses three phases, namely training and
validation, simulation of application, and evaluation. During the training phase (depicted
in orange in Figure 6), we reshape the training and validation data into 2D images to
facilitate the generation of predictive models using CNN. For identification purposes, we
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randomly select 50 examples per species and simulate this phase (as shown in green in
Figure 6) to assess the overall performance of each model. Subsequently, we leverage both
the actual species labels and identified labels to calculate confusion metrics. Finally, the
performance of each model is evaluated by computing metrics such as accuracy, precision,
and F1-score (as illustrated in blue in Figure 6).
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Figure 6. Flowchart of the process followed in this study. In the training stage, the 1D structured
LLRD undergoes reshaping into a variety of 2D grayscale images with differing shapes, which
serve as input data for CNN models. During the application stage, randomly selected examples
are employed to make predictions using trained models. The predicted and actual species are then
compared to produce prediction performance metrics.

3. Results
3.1. The Performance of Models

The CNN models trained on ‘l’-shaped images (cnn2A, cnn2B, cnn3A, cnn3B, cnn3C,
cnn3D) demonstrate higher accuracy, precision, and F1-scores compared to the models
trained on ‘k’-shaped images (Table 3). Specifically, cnn2A and cnn3B achieve the highest
accuracy, with 93.82% and 93.95%, respectively. Cnn2A obtains the maximal precision of
94.45%, while cnn3B attains the second-highest precision of 94.55%. Cnn2A and cnn3B
obtain the same peak F1-score of 0.94. In contrast, cnn1A and cnn1B, the sole two models
trained on ‘k’ and ‘j’-shaped images, produce the lowest accuracy, precision, and F1-scores.
All models exhibit relatively small standard deviations for the performance metrics.

Table 3. The best predictive results obtained by convolutional neural network (CNN) models for
each image shape. This has been established by determining and analyzing the mean and standard
deviation of the prediction accuracy, precision, and F1-score from a total of thirty models.

Models Image Shape Accuracy (%) Precision (%) F1-Score

cnn1A k 89.77 ± 4.69 91.03 ± 3.94 0.90 ± 0.05
cnn1B j 91.15 ± 1.50 92.07 ± 1.21 0.91 ± 0.02
cnn2A l 93.82 ± 1.32 94.45 ± 1.09 0.94 ± 0.01
cnn2B l 93.63 ± 1.16 94.23 ± 0.98 0.94 ± 0.01
cnn2C k 92.55 ± 1.60 93.23 ± 1.33 0.93 ± 0.02
cnn3A l 93.84 ± 1.65 94.41 ± 1.30 0.94 ± 0.02
cnn3B l 93.95 ± 1.30 94.55 ± 1.03 0.94 ± 0.01
cnn3C l 92.67 ± 1.61 93.45 ± 1.17 0.93 ± 0.02
cnn3D l 92.76 ± 1.36 93.31 ± 1.15 0.93 ± 0.01

Overall, the cnn2 and cnn3 model families demonstrate better performance compared
to the cnn1 family. Within each family, models A and B tend to achieve optimal results.
However, models C and D, featuring more Max-Pooling layers, did not produce superior
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results. This suggests that the LLRD dataset, with only 2025 features, may be too small
for CNN models. Therefore, it may not be necessary to increase the depth of the neural
network for classification or regression purposes. In summary, the CNNs trained on ‘l’-
shaped images, especially cnn2A and cnn3B, achieved the highest accuracy, precision, and
F1-scores. Conversely, the models trained on ‘k’-shaped images demonstrated significantly
lower performance.

3.2. The Best Performance of Each Image Shape (Regardless of the CNN Models)

The image shapes ‘l’, ‘h’, and ‘f’ achieved the highest accuracy, precision, and F1-
scores, as illustrated in Table 4. Particularly, shape ‘l’ attains the highest accuracy of 93.95%,
precision of 94.55%, and F1-score of 0.94. Conversely, shape ‘a’ displays the least accuracy,
precision, and balanced F1-score compared to the remaining shapes. Shape ‘h’ also achieves
a better accuracy of 93.07%, precision of 94.00%, and F1-score of 0.93, indicating that in
some situations, square shaped image may also be a better choice for deep learning models.

Table 4. The optimal predictive results, irrespective of the Convolutional Neural Network (CNN)
models employed, are determined for each image shape. These results include the mean and standard
deviation of prediction accuracy, precision, and F1-score from 30 models.

Image Shape Accuracy (%) Precision (%) F1-Score

a 79.27 ± 4.75 81.09 ± 4.94 0.79 ± 0.05
b 88.17 ± 2.53 89.62 ± 2.02 0.88 ± 0.03
c 87.69 ± 2.32 89.15 ± 1.86 0.88 ± 0.02
d 89.78 ± 2.17 90.88 ± 1.69 0.90 ± 0.02
e 90.51 ± 2.19 91.44 ± 1.87 0.90 ± 0.02
f 91.30 ± 2.00 92.43 ± 1.47 0.91 ± 0.02
g 91.40 ± 2.06 92.64 ± 1.58 0.91 ± 0.02
h 93.07 ± 1.87 94.00 ± 1.26 0.93 ± 0.02
i 92.62 ± 1.52 93.38 ± 1.21 0.93 ± 0.02
j 92.82 ± 2.19 93.61 ± 1.72 0.93 ± 0.02
k 92.82 ± 1.64 93.58 ± 1.31 0.93 ± 0.02
l 93.95 ± 1.30 94.55 ± 1.03 0.94 ± 0.01

m 91.08 ± 2.94 92.09 ± 2.58 0.91 ± 0.03
n 88.54 ± 3.09 89.92 ± 2.68 0.88 ± 0.03
o 77.99 ± 6.72 79.82 ± 7.51 0.77 ± 0.07

The accuracy, precision, and F1-score show a general improvement as we move from
shapes labeled ‘a’ to ‘l’, indicating enhanced performance on shapes occurring later in
the alphabet. However, shapes ‘m’ and ‘n’ exhibit inferior scores in comparison to most
other shapes, with performance similar to early alphabet shapes such as ‘b’ and ‘c’. This
implies that overly elongated or truncated shapes tend to lead to lower performance for
the purpose of species identification.

All metrics exhibit relatively low standard deviations, generally within the range of
1–3%, which indicates consistent performance across experimental runs. Additionally, the
measurements demonstrate a comparable trend, as anticipated considering the inherent
relationships between accuracy, precision, and F1-score. Increased accuracy is associated
with elevated precision and F1-score.

3.3. Identification Results

Figure 7 illustrates a circular diagram showing the relationships between the reshaped
image datasets and identified species in the study. Nodes in the upper portion of the
diagram represent different reshaped image datasets, while lower nodes correspond to
various identified species. Edges indicate links between them. Larger node size represents
a higher average correct prediction ratio accumulated across datasets or species. Thicker
edge thickness reflects a greater average correct prediction ratio weight between connected
datasets and species.
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Figure 7. Circular diagram showing the relationships between reshaped image datasets and identified
species. Nodes in the upper portion represent different reshaped image datasets (lowercase letters d–
m denote distinct shapes, refer to Figure 3 for visuals; shapes such as ‘a’, ‘b’, ‘c’, ‘n’, ‘o’ were excluded
from the diagram as their prediction accuracy fell below 90%), while lower nodes correspond to
identified species. Edges indicate connections between datasets and species. Larger node size
represents a higher accumulated average correct prediction ratio. Thicker edges signify greater
weights for the average correct prediction ratio between linked datasets and species.

The datasets labelled as ‘h’, ‘i’, ‘j’, ‘k’, and ‘l’ exhibit consistently higher accuracy across
a wide range of species (refer to Figure 7 and Supplementary File Table S1). For example,
the model exhibits a predictive accuracy greater than 95% for most species examined
when utilizing the ‘l’ shape. However, it struggles to differentiate between species like
TSCA and ACSM, or PIST and CUPE, despite these outcomes being the finest so far. More
comprehensive results can be found in Figure 8 and Supplementary File Figure S2, which
provide a comprehensive view of the prediction matrix. This finding provides evidence of
the model’s strong ability to predict complex species using the ‘l’ configuration. Conversely,
shapes such as ‘a’, ‘b’, ‘c’, ‘n’, ‘o’ were omitted from the diagram, as their average prediction
accuracy consistently fell below the benchmark of 90%. Please refer to Supplementary File
Table S1 for a comprehensive analysis and assessment.
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In contrast, shapes ‘g’, ‘j’, and ‘m’ demonstrate relatively lower accuracy rates across
many species. For example, shape ‘m’ scores below 90% accuracy for 6 out of the 20 eval-
uated species. Consequently, these shapes present a substantial challenge to the model’s
predictive performance across a broad range of species. Shape ‘d’, however, demonstrates a
bifurcated performance, achieving high accuracy (greater than 90%) for approximately half
of the species, yet underperforming for the remaining half, placing it in an intermediate
difficulty category.

When examining individual species, RASA and PHAR exhibit high accuracy across
all shapes (Supplementary File Table S1). In contrast, PIST records low accuracy rates for
all shapes. In the case of species with moderate accuracy, such as BEPA and QURU, a
considerable disparity is observed between high (95% or more) and low (81–89%) accuracy
rates across configurations.

4. Discussion and Future Work
4.1. Comparative Analysis with Prior Research

The utilization of 2D CNNs necessitated the preprocessing of input data. Chen
et al. [27] notably reformatted laser-induced breakdown spectroscopy spectra into a spec-
tral matrix (2D array) to facilitate model training, achieving a commendable validation
accuracy of 98.77% in the classification of 5 geological samples. Similarly, Gao et al. [28]
adopted a strategy wherein individual 1D spectral vectors, corresponding to pixels in
hyperspectral imagery, were transformed into 2D spectral feature matrices, subsequently
employed as inputs for a small convolutional kernel CNN. This approach yielded an im-
pressive overall accuracy of 89.88% when classifying data from the Indian Pines dataset,
encompassing 16 distinct classes. In our previous research [29], we extended the paradigm
of transformation techniques by converting 1D LLRD into 2D grayscale images. These
transformed images served as input data for CNN models tasked with species identifi-
cation, and the results were promising, yielding an accuracy of 98.60%. It is essential to
acknowledge, however, that these studies were constrained by their focus on a specific
spectral matrix shape where the number of rows equaled the number of columns, which
presents a limitation worth considering.

The present study expands upon our previous work in one crucial aspect: in addition
to the 45 × 45 pixel shape, we evaluate the 14 other potential image shapes generated
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during the rescaling process. Each unique shape configuration was used to train and
validate CNN models to assess impact on classification performance. As mentioned in
our previous study, the 15 potential image shapes derived from the rescaling were already
evaluated using the original six species datasets. Those results demonstrated the ‘j’ and
‘k’ shaped datasets produced the highest prediction accuracy and precision when input
to CNN models. We, therefore, concluded that a square leaf hyperspectral image may not
necessarily optimize deep learning-based species classification and that taller, narrower
rectangular formats could yield superior results. The current study reinforces this finding,
with the ‘k’, ‘j’, and ‘l’ shaped datasets enabling CNN models to significantly outperform
models trained on the other rescaled image configurations according to our comparative
evaluation (see Table 3).

It has been found that the ‘l’-shaped images measuring 225 × 9 pixels yielded better
results in terms of accuracy, precision, and F1 metrics as compared to other configurations.
The cnn2A and cnn3B models, trained on ‘l’-shaped images, achieved the highest accuracy,
precision, and F1-scores. The cnn2 and cnn3 model families generally outperformed the
cnn1 family, and among each family, models A and B tended to provide optimum results.
However, Models C and D, which featured more Max-Pooling layers, did not achieve
superior results, implying that the LLRD dataset was insufficient for deeper CNN models.
These results demonstrate the effect of image shape on the performance of CNN models in
discriminating between plant species.

4.2. Image Shape’s Impact on Species Discrimination Results

The primary difference among the modified datasets of images lies in their dimen-
sions, wherein the length and width of the image are adjusted (assuming that the width
corresponds to the left and right sides of the image, while the length corresponds to the top
and bottom). Consequently, the position of the reflectance band also changes. By referring
to Figure 3, it is possible to observe that as the width increases and the length decreases, the
shape of the leaf pigments (400–700 nm), cell structure (700–1300 nm), and water content
(1300–2500 nm) part transforms from a wide and short shape to a narrow and tall shape.

Figure 9 presents images of twenty-two species in both ‘d’ and ‘l’ shapes, with the
left panel displaying the stacked ‘d’ shaped images. There are obvious dissimilarities
between the species’ images, yet precisely identifying the specific locational differences is
challenging. Exhibits organized ‘l’-shaped images. Noticeable differences in reflectance can
be observed in the leaf pigments and water content sections of these images. From this,
it becomes apparent that the characteristics of the wide and short-shaped image do not
possess the same level of distinctiveness as those of the narrow and tall one. It is possible
this is why CNN models can effectively extract each species’ characteristics and distinguish
them when using the narrow tall-shaped images.

The findings of this research highlight the importance of hyperspectral image data
morphology for identifying diverse plant species. As shown in Table 3 and Figure 10,
CNN models using ‘l’, ‘k’, and ‘j’-shaped visualizations outperformed those employing
alternative image shapes, indicating that slender images are ideal for discriminating be-
tween species irrespective of the CNN model structure. This demonstrates that taller,
narrower images allow CNNs to better learn distinguishing characteristics compared to
wider, shorter images when classifying plant species using hyperspectral data. The results
emphasize the need to optimize input data preprocessing for deep learning applications in
species identification.
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Figure 10. Comparison of the best hyperspectral image shapes for species discrimination based on
CNN models. (Panel A) shows a sample original reflectance line. (Panel B) displays the optimal
reshaped images for all models, including ‘j’, ‘k’, and ‘l’ shapes. To enhance understanding of each
reflectance component, the original generated image is colorized. Reflectance values ranging from
0 to 1 were reshaped into a grayscale image, with integer values then scaled to a range of 0 to 255.
As a result, the top left corner of each image (row 0, column 0) corresponds to the scaled value at
400 nm wavelength, while the bottom right corner represents the scaled value at 2424 nm (row 81,
column 25 for ‘k’; row 135, column 15 for ‘j’; row 225, column 9 for ‘l’). Images are shown in color for
visualization only. Please refer to Supplementary File Figure S4 for grayscale images.
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There is a clear correlation between the image structure and its impact on precision,
accuracy, and F1-scores. This is supported by the superior mean performance of ‘l’, ‘h’,
and ‘f’ formations in comparison to ‘a’. Additionally, when transitioning from image shape
‘a’ to ‘k’, there is a noticeable increase in the precision of species prediction, rising from
a modest 81.09% to a commendable 92.17%. Following this, there is a rapid decline in
precision, reaching a minimum of 79.82% for the ‘o’ shaped images. In relation to the given
context, we gradually altered the configuration of the LLRD from a broad and compact
format to one that is elongated and slender. This modification consisted of 15 different
shapes, and for systematic reference, we labelled each set of data for each specific shape in
alphabetical order. The results suggest that the order of the alphabet may indicate a level of
organization in shape-related performance (see Figure 11).
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Regarding species differentiation, the ‘l’, ‘f’, and ‘h’ shapes consistently achieved high
accuracy for a diverse array of species, experiencing only minimal deviations in isolated
cases. This finding suggests a level of uniformity in classifications across several iterations,
thereby demonstrating the models’ robustness.

The results suggest that the complexity of an image’s shape impacts the model’s
accuracy rate. However, the effect of image shape does not apply universally across all
species. For instance, species like RASA and PHAR achieved high accuracy regardless of
shape. In contrast, shape had little effect on the mediocre performance of PIST. Species
displaying modest accuracies, such as BEPA and QURU, showed more variation in accuracy
between shapes. In these cases, certain shapes elicited higher performance compared to
others. Overall, the influence of shape depends on the individual characteristics and
distinguishability of each plant species.

4.3. Uncertainty of Approach and Future Studies

Spectral omics is a research field that links the optical properties of leaves with plant
diversity and traits [9,44,45]. Leaf spectra can capture a wide range of functional traits
and can be used to differentiate between species [9,46]. By converting 1D LLRD into 2D
greyscale images as the input of a CNN model for tree species discrimination, the results
outperform those of support vector machine and DCN models [29]. In the present study,
we meticulously scrutinize the influence of various leaf-level hyperspectral image shapes
on the operational proficiency of CNN models tasked with plant species differentiation.
We discover that regardless of the CNN model’s structure, images of a long and narrow
shape prove to be particularly effective for species discrimination.

This research has provided valuable insights while also revealing opportunities for
additional investigation. Firstly, to maximize model performance across taxonomic clas-
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sifications, optimal techniques for shape selection warrant further study. While fifteen
rectangular geometries were examined herein, it remains untested whether alternative
morphologies like circular transformations may prove to be preferable. Moreover, the
findings suggest that certain higher-dimensional configurations may more comprehen-
sively represent species characteristics and merit exploration. Secondly, the TensorFlow
architecture employed here may not achieve the upper bounds of effectiveness, signifying
that alternate paradigms including Transformers, deserve consideration in future work.
Broadly, a more exhaustive design of shape manipulations and network formulations
offers potential avenues to refine predictive capacity. Ongoing refinement of preprocessing
and modeling techniques may also benefit inference extensions to cross-domain plant
identification challenges. Overall, the evaluation of shape impacts lays a foundation for
continued methodological and implementation advances in hyperspectral-based vegetative
classification via deep learning.

Nevertheless, this study has certain limitations. It was conducted using a limited
database of 22 species from six laboratories, so the generalizability of these findings to
other plant species or ecosystems remains uncertain. Additionally, only 15 rectangular
image shapes were utilized, and other shapes, such as circular transformations or higher-
dimensional configurations, could potentially yield better outcomes. Furthermore, the
CNN model’s performance could be improved by utilizing alternative CNN architectures
or preprocessing techniques.

5. Conclusions

The process of transforming the one-dimensional LLRD into a two-dimensional
grayscale image to be used as the input for CNN models was shown to be significantly
efficient in differentiating various plant species. By carefully investigating different image
shapes on the classification efficiency of CNN models in differentiating plant species, we
found a significant performance difference related to the image shape. The results show
that CNN models trained on ‘l’-shaped hyperspectral images significantly outperformed
those trained on other shaped images in terms of plant species classification. In particu-
lar, the cnn2A and cnn3B models achieved unmatched precision, accuracy, and F1-scores.
However, as the LLRD contains only two thousand or more features (pixels), it may not be
necessary to develop a deeper CNN model for classification purposes.

The ‘l’-shape images produced superior overall plant species classification perfor-
mance based on metrics like accuracy, precision, and F1-scores, outperforming shapes such
as ‘a’, ‘b’, ‘n’, and ‘o’. As the shape changes from ‘a’ to ‘l’, the reflectance characteristics of
leaf pigments, cell structure and water content become more specific, potentially explain-
ing shape’s impact on model performance. This important finding lays the foundation
for further developing leaf trait estimation and provides a feasible path for pixel-level
classification within HSIs.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs15245628/s1, Figure S1: Greyscale sample images generated from
reshaping a full-wavelength leaf reflectance measurement containing 2025 features ranging from 400
to 2424 nm. Figure S2: Confusion matrices of predicted species and true species using different image
shape datasets. Figure S3: Difference between the (d) 9 × 225 pixel and (l) 225 × 9 pixel shaped
greyscale sample images of twenty-two species. Figure S4: Comparison of the best hyperspectral
image shapes for species discrimination based on CNN models. Table S1: Average ratio of correct
predictions for the compared image shapes (%).
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10. Hycza, T.; Stereńczak, K.; Bałazy, R. Potential use of hyperspectral data to classify forest tree species. N. Z. J. For. Sci. 2018, 48, 18.
[CrossRef]

11. Badola, A.; Padalia, H.; Belgiu, M.; Verma, P.A. Tree Species Mapping in Tropical Forests Using Hyperspectral Remote Sensing
and Machine Learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS,
Brussels, Belgium, 11–16 July 2021; pp. 5421–5424. [CrossRef]

12. Hu, Y.; Xu, L.; Huang, P.; Luo, X.; Wang, P.; Kang, Z. Reliable identification of oolong tea species: Nondestructive testing
classification based on fluorescence hyperspectral technology and machine learning. Agriculture 2021, 11, 1106. [CrossRef]

13. Cao, J.; Liu, K.; Liu, L.; Zhu, Y.; Li, J.; He, Z. Identifying mangrove species using field close-range snapshot hyperspectral imaging
and machine-learning techniques. Remote Sens. 2018, 10, 2047. [CrossRef]

14. Marrs, J.; Ni-Meister, W. Machine learning techniques for tree species classification using co-registered LiDAR and hyperspectral
data. Remote Sens. 2019, 11, 819. [CrossRef]

15. Al-Awadhi, M.A.; Deshmukh, R.R. Honey Classification using Hyperspectral Imaging and Machine Learning. In Proceedings of
the 2021 Smart Technologies, Communication and Robotics (STCR), Tamil Nadu, India, 9–10 October 2021. [CrossRef]

16. Shenming, Q.; Xiang, L.; Zhihua, G. A new hyperspectral image classification method based on spatial-spectral features. Sci. Rep.
2022, 12, 1541. [CrossRef] [PubMed]

17. Nezami, S.; Khoramshahi, E.; Nevalainen, O.; Pölönen, I.; Honkavaara, E. Tree species classification of drone hyperspectral and
RGB imagery with deep learning convolutional neural networks. Remote Sens. 2020, 12, 1070. [CrossRef]

18. Fricker, G.A.; Ventura, J.D.; Wolf, J.A.; North, M.P.; Davis, F.W.; Franklin, J. A convolutional neural network classifier identifies
tree species in mixed-conifer forest from hyperspectral imagery. Remote Sens. 2019, 11, 2326. [CrossRef]

https://ecosis.org
https://doi.org/10.1109/JSTARS.2023.3239756
https://doi.org/10.3389/fpls.2022.855660
https://www.ncbi.nlm.nih.gov/pubmed/35498669
https://doi.org/10.1016/j.rse.2021.112322
https://doi.org/10.21275/ART2019476
https://doi.org/10.1016/j.eswa.2012.01.073
https://doi.org/10.1016/j.ecoinf.2023.102141
https://doi.org/10.1080/22797254.2020.1816501
https://doi.org/10.1111/nph.16771
https://doi.org/10.1111/nph.18902
https://doi.org/10.1186/s40490-018-0123-9
https://doi.org/10.1109/IGARSS47720.2021.9553549
https://doi.org/10.3390/agriculture11111106
https://doi.org/10.3390/rs10122047
https://doi.org/10.3390/rs11070819
https://doi.org/10.1109/STCR51658.2021.9588907
https://doi.org/10.1038/s41598-022-05422-5
https://www.ncbi.nlm.nih.gov/pubmed/35087142
https://doi.org/10.3390/rs12071070
https://doi.org/10.3390/rs11192326


Remote Sens. 2023, 15, 5628 18 of 19

19. Khokhar, A.A.; Yadav, S.; Khan, F.; Gindi, S. Plant Species Classification with CNN. Int. J. Emerg. Technol. Innov. Res. 2021, 8,
236–240.

20. Kiran, S.G.; Ashwini, S.G. Deep Learning for Plant Species Classification. Int. J. Emerg. Technol. Innov. Res. 2020, 7, 99–105.
21. Sobha, P.G.M.; Thomas, P.A. Deep Learning for Plant Species Classification Survey. In Proceedings of the 2019 International

Conference on Advances in Computing, Communication and Control (ICAC3), Mumbai, India, 20–21 December 2019. [CrossRef]
22. Kiss, N.; Czuni, L. Mushroom image classification with CNNs: A case-study of different learning strategies. In Proceedings of the

2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA), Zagreb, Croatia, 13–15 September 2021;
pp. 165–170. [CrossRef]

23. Liu, Q. The Development of Image Classification Algorithms Based on CNNs. Highlights Sci. Eng. Technol. 2023, 34, 275–280.
[CrossRef]

24. Tropea, M.; Fedele, G. Classifiers Comparison for Convolutional Neural Networks (CNNs) in Image Classification. In Proceedings
of the 2019 IEEE/ACM 23rd International Symposium on Distributed Simulation and Real Time Applications (DS-RT), Cosenza,
Italy, 7–9 October 2019. [CrossRef]

25. Kan, M.; Aliev, R.; Rudenko, A.; Drobyshev, N.; Petrashen, N.; Kondrateva, E.; Sharaev, M.; Bernstein, A.; Burnaev, E. Interpretation
of 3D CNNs for Brain MRI Data Classification. In Proceedings of the Communications in Computer and Information Science,
Virtual Event, 27–30 September 2021; Volume 1357 CCIS, pp. 229–241, ISBN 9783030712136. [CrossRef]

26. Zeng, F.; Peng, W.; Kang, G.; Feng, Z.; Yue, X. Spectral Data Classification by One-Dimensional Convolutional Neural Networks.
In Proceedings of the 2021 IEEE International Performance, Computing, and Communications Conference (IPCCC), Austin, TX,
USA, 28–30 October 2021.

27. Chen, J.; Pisonero, J.; Chen, S.; Wang, X.; Fan, Q.; Duan, Y. Convolutional neural network as a novel classification approach
for laser-induced breakdown spectroscopy applications in lithological recognition. Spectrochim. Acta-Part B At. Spectrosc. 2020,
166, 105801. [CrossRef]

28. Gao, H.; Yang, Y.; Li, C.; Zhou, H.; Qu, X. Joint alternate small convolution and feature reuse for hyperspectral image classification.
Can. Hist. Rev. 2018, 7, 349. [CrossRef]

29. Yuan, S.; Song, G.; Huang, G.; Wang, Q. Reshaping Hyperspectral Data into a Two-Dimensional Image for a CNN Model to
Classify Plant Species from Reflectance. Remote Sens. 2022, 14, 3972. [CrossRef]

30. Shahid, S.M.; Ko, S.; Kwon, S. Performance Comparison of 1D and 2D Convolutional Neural Networks for Real-Time Classification
of Time Series Sensor Data. In Proceedings of the 2022 International Conference on Information Networking (ICOIN), Jeju-si,
Republic of Korea, 12–15 January 2022; pp. 507–511. [CrossRef]

31. Zhu, Y.; Brettin, T.; Xia, F.; Partin, A.; Shukla, M.; Yoo, H.; Evrard, Y.A.; Doroshow, J.H.; Stevens, R.L. Converting tabular data into
images for deep learning with convolutional neural networks. Sci. Rep. 2021, 11, 11325. [CrossRef] [PubMed]

32. Olson, J.M. Cartography. In International Encyclopedia of the Social & Behavioral Sciences; Smelser, N.J., Baltes, P.B., Eds.; Pergamon:
Oxford, UK, 2001; pp. 1495–1501, ISBN 978-0-08-043076-8. [CrossRef]

33. Opiyo, J. How Does the Size of Input Affect the Performance of a Convolutional NEURAL Network (CNN)? Available online:
https://www.quora.com/How-does-the-size-of-input-affect-the-performance-of-a-convolutional-neural-network-CNN (accessed
on 24 August 2023).

34. Aravind, R. How to Pick the Optimal Image Size for Training Convolution Neural Network? Available online: https://medium.
com/analytics-vidhya/how-to-pick-the-optimal-image-size-for-training-convolution-neural-network-65702b880f05 (accessed
on 24 August 2023).

35. Jacquemound, S.; Bidel, L.; Francois, C.; Pavan, G. ANGERS Leaf Optical Properties Database. 2003. Available online:
https://ecosis.org/package/angers-leaf-optical-properties-database--2003- (accessed on 5 February 2021).

36. Kattenborn, T.; Schiefer, F.; Schmidtlein, S. Leaf Reflectance Plant Functional Gradient IFGG/KIT. Available online:
https://ecosis.org/package/leaf-reflectance-plant-functional-gradient-ifgg-kit (accessed on 14 May 2022).

37. Kothari, S.; Beauchamp-Rioux, R.; Blanchard, F.; Crofts, A.L.; Girard, A.; Guilbeault-Mayers, X.; Hacker, P.W.; Pardo, U.; Schweiger,
A.K.; Demers-Thibeault, S.; et al. CABO 2018–2019 Leaf-Level Spectra v2. Available online: https://ecosis.org/package/cabo-20
18-2019-leaf-level-spectra-v2 (accessed on 14 May 2022).

38. Wang, Z. Fresh Leaf Spectra to Estimate LMA over NEON Domains in Eastern United States. Available online: https://ecosis.
org/package/fresh-leaf-spectra-to-estimate-lma-over-neon-domains-in-eastern-united-states (accessed on 5 February 2021).

39. Serbin, S.P.; Townsend, P.A. NASA FFT Project Leaf Reflectance Morphology and Biochemistry for Northern Temperate Forests.
Available online: https://ecosis.org/package/nasa-fft-project-leaf-reflectance-morphology-and-biochemistry-for-northern-
temperate-forests (accessed on 14 May 2022).

40. Burnett, A.C.; Serbin, S.P.; Davidson, K.J.; Ely, K.S.; Rogers, A. Hyperspectral Leaf Reflectance, Biochemistry, and Physiology of
Droughted and Watered Crops. Available online: https://ecosis.org/package/hyperspectral-leaf-reflectance--biochemistry-
-and-physiology-of-droughted-and-watered-crops (accessed on 14 May 2022).

41. Beamlab You Can Probably Use Deep Learning Even If Your Data Isn’t that Big. Available online: https://beamandrew.github.
io/deeplearning/2017/06/04/deep_learning_works.html (accessed on 30 June 2021).

42. Gavrikov, P. Visualkeras. Available online: https://github.com/paulgavrikov/visualkeras (accessed on 25 November 2023).

https://doi.org/10.1109/ICAC347590.2019.9036796
https://doi.org/10.1109/ISPA52656.2021.9552053
https://doi.org/10.54097/hset.v34i.5484
https://doi.org/10.1109/DS-RT47707.2019.8958662
https://doi.org/10.1007/978-3-030-71214-3_19
https://doi.org/10.1016/j.sab.2020.105801
https://doi.org/10.3390/ijgi7090349
https://doi.org/10.3390/rs14163972
https://doi.org/10.1109/ICOIN53446.2022.9687284
https://doi.org/10.1038/s41598-021-90923-y
https://www.ncbi.nlm.nih.gov/pubmed/34059739
https://doi.org/10.1016/B0-08-043076-7/02530-4
https://www.quora.com/How-does-the-size-of-input-affect-the-performance-of-a-convolutional-neural-network-CNN
https://medium.com/analytics-vidhya/how-to-pick-the-optimal-image-size-for-training-convolution-neural-network-65702b880f05
https://medium.com/analytics-vidhya/how-to-pick-the-optimal-image-size-for-training-convolution-neural-network-65702b880f05
https://ecosis.org/package/angers-leaf-optical-properties-database--2003-
https://ecosis.org/package/leaf-reflectance-plant-functional-gradient-ifgg-kit
https://ecosis.org/package/cabo-2018-2019-leaf-level-spectra-v2
https://ecosis.org/package/cabo-2018-2019-leaf-level-spectra-v2
https://ecosis.org/package/fresh-leaf-spectra-to-estimate-lma-over-neon-domains-in-eastern-united-states
https://ecosis.org/package/fresh-leaf-spectra-to-estimate-lma-over-neon-domains-in-eastern-united-states
https://ecosis.org/package/nasa-fft-project-leaf-reflectance-morphology-and-biochemistry-for-northern-temperate-forests
https://ecosis.org/package/nasa-fft-project-leaf-reflectance-morphology-and-biochemistry-for-northern-temperate-forests
https://ecosis.org/package/hyperspectral-leaf-reflectance--biochemistry--and-physiology-of-droughted-and-watered-crops
https://ecosis.org/package/hyperspectral-leaf-reflectance--biochemistry--and-physiology-of-droughted-and-watered-crops
https://beamandrew.github.io/deeplearning/2017/06/04/deep_learning_works.html
https://beamandrew.github.io/deeplearning/2017/06/04/deep_learning_works.html
https://github.com/paulgavrikov/visualkeras


Remote Sens. 2023, 15, 5628 19 of 19

43. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.;
et al. {API} design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, Prague, Czech Republic, 23–27 September 2013; pp. 108–122.

44. Song, G.; Wang, Q. Including leaf traits improves a deep neural network model for predicting photosynthetic capacity from
reflectance. Remote Sens. 2021, 13, 4467. [CrossRef]

45. Wang, Z.; Skidmore, A.K.; Wang, T.; Darvishzadeh, R.; Hearne, J. Applicability of the PROSPECT model for estimating protein
and cellulose + lignin in fresh leaves Remote Sensing of Environment Applicability of the PROSPECT model for estimating
protein and cellulose + lignin in fresh leaves. Remote Sens. Environ. 2015, 168, 205–218. [CrossRef]

46. Castro-Esau, K.L.; Sánchez-Azofeifa, G.A.; Caelli, T. Discrimination of lianas and trees with leaf-level hyperspectral data. Remote
Sens. Environ. 2004, 90, 353–372. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs13214467
https://doi.org/10.1016/j.rse.2015.07.007
https://doi.org/10.1016/j.rse.2004.01.013

	Introduction 
	Data and Methods 
	Data Source 
	Data Preprocessing 
	Selection of Plant Species 
	Reflectance Data Preprocessing 

	CNN Model Architectures 
	Model, Image Shape Comparison and Evaluation 
	Flowchart of the Process 

	Results 
	The Performance of Models 
	The Best Performance of Each Image Shape (Regardless of the CNN Models) 
	Identification Results 

	Discussion and Future Work 
	Comparative Analysis with Prior Research 
	Image Shape’s Impact on Species Discrimination Results 
	Uncertainty of Approach and Future Studies 

	Conclusions 
	References

