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Abstract: This paper analyzes the possibility of maintaining a circular displaced non-Keplerian orbit
around the Sun by means of a Sun-facing diffractive sail. With the goal of monitoring the Earth’s
high-latitude regions, the spacecraft is required to track its displaced orbit at an angular velocity equal
to the mean motion of the planet. In doing so, the spacecraft keeps a constant average phase shift with
respect to Earth’s angular position along its orbit, allowing the objectives of the scientific mission to
be achieved. The diffractive sail, recently proposed by Swartzlander and chosen in this paper as the
spacecraft’s primary propulsion system, is a special photonic solar sail in which the membrane film is
covered by an advanced diffractive metamaterial. In particular, a Sun-facing diffractive sail with a
grating at normal incidence generates radial and transverse thrust components of equal magnitude;
that is, the thrust vector is tilted 45 degrees from the Sun-spacecraft line. This peculiarity enables
the diffractive sail to maintain a family of circular displaced non-Keplerian orbits, each of which is
characterized by unique values of radius and a lightness number for an assigned value of spacecraft
displacement relative to the Ecliptic. A comparison with the ideal reflecting sail shows that the
diffractive sail performs better because for the same overall spacecraft mass, the latter needs about
30% less surface area exposed to the Sun. Finally, this paper discusses the classical stability problem,
assuming an error in orbit insertion of the diffractive sail-based spacecraft. In this context, extensive
numerical simulations show that such displaced orbits are marginally stable.

Keywords: diffractive sail; Sun-facing attitude; displaced heliocentric orbits; high-latitude monitoring

1. Introduction

Solar radiation pressure is the basis of the operating principle of photonic solar sails,
a class of propellantless propulsion systems that convert solar radiation pressure into
thrust [1]. Among them, the now well-known reflecting solar sails [2,3] reflect photons
thanks to a membrane coated with a highly reflective material. In addition to reflection,
other optical phenomena, such as refraction or diffraction [4–6], have been studied in recent
years to enable momentum transfer between photons from the Sun and the sail-based
spacecraft. In particular, a refractive sail generates thrust by deflecting incoming photons
through the refraction of sunlight across a thin transparent membrane made of polymeric
micro-prisms [7–9], while a diffractive sail uses a metamaterial film to diffract incoming
photons and deflect them from their natural path [10–12]; see Figure 1, which shows a
conceptual sketch of a translucent diffractive sail in a low-Earth orbit.

In this context, the pioneering work of Swartzlander [10] showed that the performance
of a sort of translucent diffractive sail is superior (in terms of the required flight time)
to a Littrow diffraction configuration or to a more conventional reflecting sail when the
spacecraft attitude is constant relative to an orbital reference frame. In particular, Swartz-
lander [11] also determined that a diffraction film with a grating period of one micrometer
can convert about 83% of the solar spectrum into spacecraft momentum and described
the advantages of diffractive sails by comparing suboptimal orbit-raising trajectories for

Remote Sens. 2023, 15, 5626. https://doi.org/10.3390/rs15245626 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15245626
https://doi.org/10.3390/rs15245626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-8390-9679
https://orcid.org/0000-0002-4277-1765
https://orcid.org/0000-0003-0811-0231
https://doi.org/10.3390/rs15245626
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15245626?type=check_update&version=1


Remote Sens. 2023, 15, 5626 2 of 19

diffractive and reflecting solar sails. In this context, Dubill and Swartzlander [12] proposed
exploiting a diffractive sail to increase the orbital inclination and reduce the orbital radius
of a spacecraft in a typical interplanetary mission scenario. More recently, building on
the above interesting results [10,12], the authors [13,14] have analyzed the performance
of a Sun-facing diffractive sail in the context of minimum-time interplanetary trajectories.
Many other literature works [15–19] demonstrate the growing interest of scientists in the
diffractive sail concept.

Figure 1. Conceptual sketch of a diffractive sail in a low-Earth orbit. Digital picture generated with
the aid of Bing Image Creator.

According to the recent literature [12,13], unlike reflecting solar sails, the great advan-
tage of refractive and diffractive sails is that they can generate a large transverse component
of thrust, even when facing the Sun, such as when their nominal plane is perpendicular to
the Sun–spacecraft line. Bearing in mind this peculiarity, the aim of this work is to study the
maintenance of circular displaced non-Keplerian orbits (DNKOs) by means of a Sun-facing
diffractive solar sail. Recall that a DNKO does not contain the center of mass of the primary
body [20], and therefore, although it can be approximated with a sequence of Keplerian arcs
connected through impulsive maneuvers [21,22], it requires the application of a continuous
thrust to be maintained. For this reason, the use of propellantless propulsion systems, such
as solar sails, is attractive because of the opportunity they offer to achieve long-duration
missions. In fact, the most common alternative for orbit maintenance, which is the use of
electric propulsion, would limit the duration of the mission and its scientific return based
on complete propellant consumption [23,24].

Maintaining a DNKO is of particular interest for monitoring high-latitude terrestrial
regions and is an effective option for many other applications, as extensively discussed in
the useful survey paper by McKay et al. [25]. That is why there are so many articles dealing
with the problem of maintaining DNKOs by means of propellantless propulsion systems.
For example, McInnes and Bookless [26] have proposed using a solar sail to generate
families of displaced periodic orbits at planetary bodies, Gong et al. [27,28] studied the
possibility of maintaining elliptic DNKOs by means of solar sails for planetary polar
observation and investigated the relative orbit design and control methods for formation
flight around displaced solar orbits, while Song et al. [29] analyzed solar sail displaced
orbits in Hill’s restricted three-body problem. More recently, Bassetto et al. [30] studied
the performance of the magnetic sail conceived by Robert Zubrin [31–33] in maintaining
circular DNKOs.

In this paper, a Sun-facing diffractive sail is required to trace a circular DNKO at an
angular velocity equal to the mean motion of the Earth [34] so as to maintain a constant
average phase shift with respect to the angular position of our planet along its heliocentric
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orbit. The characteristics of the thrust vector of a Sun-facing diffractive sail enable the
maintenance of a family of circular displaced non-Keplerian orbits, each of which is char-
acterized by unique values of radius and a lightness number for an assigned value of the
elevation angle (i.e., the angle between the Sun–spacecraft line and the Ecliptic), the latter
being a design parameter. A comparison with the (ideal) reflecting solar sail option shows
that, for the family of feasible displaced orbits considered in this study, the diffractive sail
performs better than the more classical reflecting sail. In particular, a case study shows that
circular DNKOs based on diffractive sails are marginally stable.

This paper is organized as follows. Section 2 describes a simplified version of the
diffractive sail thrust model by using the recent literature results. Section 3 analyzes the
characteristics of feasible DNKOs and the performance required by the diffractive sail. In
addition, Section 3 provides the distance of the spacecraft from Earth as a function of a set
of design parameters, a comparison with the reflecting sail case, and the characteristics
of the spacecraft osculating orbit. Section 4 deals with linear stability analysis of the orbit
and shows the results of a numerical simulation chosen as an example. Finally, Section 5
contains our concluding remarks.

2. Simplified Diffractive Sail Thrust Model in Sun-Facing Condition

This section summarizes a simplified version of the more general (and refined) thrust
model proposed by Swartzlander [10], which has been recently used by the authors [13,14]
to analyze the performance in a typical interplanetary mission scenario. In fact, similar to
more classical reflecting solar sails [34,35], the propulsive acceleration vector provided by a
diffractive sail depends on the attitude of the sail reference plane relative to the Sun. In this
context, an early mathematical model useful to describe the thrust vector characteristics
of a diffractive sail as a function of the spacecraft attitude was proposed about six years
ago in fundamental work [10]. A few years later, Dubill and Swartzlander [12] specialized
that first model to the case of a Sun-facing attitude, which is precisely the case analyzed in
this paper.

First of all, we introduce a right-handed body frame TC(C; x, y, z), where C coincides
with the spacecraft center of mass, while the direction of the three axes {x, y, z} is described
by the unit vectors {îx, îy, îz}, respectively. The reference frame is sketched in Figure 2,
which has been adapted from [13].

Sun

ˆ
zi

ˆ
xiK̂

p
a45 deg

x

z

ˆ
r

i

C

Figure 2. Diffractive sail of center of mass C facing the Sun, propulsive acceleration vector ap,
grating momentum unit vector K̂, and right-handed body reference frame T (C; x, y, z) of unit vectors
{îx, îy, îz}.

In particular, the (x, y) plane identifies the nominal plane of the (flat) diffractive sail,
and the x-axis direction is opposite to the grating momentum unit vector K̂ (i.e., îx = −K̂
in the figure), which is in turn, aligned with the direction of periodicity of the grating [36].
Note also that, according to Dubill and Swartzlander [12], a Sun-facing diffractive sail with
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a grating at normal incidence generates radial and transverse thrust components of equal
magnitude: that is, the propulsive acceleration vector ap is tilted 45 degrees with respect to
the Sun–spacecraft unit vector îr, as sketched in Figure 2.

Consequently, when the z-axis is aligned with the Sun–spacecraft line îr (i.e., when
îz ≡ îr), the propulsive acceleration vector ap can be written in a compact form as

ap =
I⊕ S
m c

( r⊕
r

)2 (
îx + îz

)
(1)

where r is the Sun–spacecraft distance, S is the surface area of the sail, c is the speed of light
in vacuum, m is the total mass of the spacecraft (which is assumed to be constant), and
I⊕ ' 1360.8 W/m2 is the solar constant; that is, the solar irradiance at the reference distance
r⊕ , 1 au from the Sun. Equation (1) can be rewritten in a more elegant form by introducing
the characteristic acceleration ac [34], defined as the maximum value of ap , ‖ap‖ when
r = r⊕. Taking Equation (1) into account, the expression of the characteristic acceleration ac
is then given by

ac =

√
2 I⊕ S
m c

(2)

from which one obtains the propulsive acceleration vector as a function of {îx, îz, r}, viz.

ap =
ac√

2

( r⊕
r

)2 (
îx + îz

)
≡ β√

2
µ�
r2

(
îx + îz

)
(3)

where
β ,

ac

µ�/r2
⊕

(4)

is the lightness number, that is, a dimensionless form of ac, being µ� ' 1.3271× 1020 m3/s2,
the Sun’s gravitational parameter.

3. Maintenance of Circular DNKOs

The thrust vector model of a (flat) diffractive sail, described in the previous section, is
used here to study the possibility of maintaining circular DNKOs [37]. With reference to
the scheme in Figure 3, we introduce a perifocal reference system TO(O; p, q, w), where O is
the center of mass of the Sun, the p-axis is aligned with the eccentricity vector of the Earth
(omitted in the figure for simplicity), and the w-axis is parallel to the angular momentum
of the Earth’s heliocentric orbit. Therefore, the plane (p, q) coincides with the plane of the
Ecliptic, which is represented as a yellow disk in Figure 3.

ρ

Ecliptic

Å
ω

circular
DNKO

O

�� r

θ

ν

η

diffractive sail-based
spacecraft

d

γ

Å
ρ

O'

p

q

w

Earth’s orbit

Figure 3. Conceptual scheme of a circular heliocentric DNKO with a displacement equal to η with
respect to the Ecliptic. The green disk indicates the plane of the displaced orbit, which the spacecraft
covers at a constant angular velocity ω⊕ at distance d from the Earth.
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A circular DNKO is a circular orbit centered in O′, which belongs to the w-axis of
constant radius ρ. The plane of the displaced orbit (see the green disk in Figure 3) is parallel
to the plane of the Ecliptic (i.e., the yellow disk in Figure 3) and the distance between
the two planes is denoted by η. Furthermore, the spacecraft travels along the circular
DNKO at a constant angular velocity, which corresponds to the mean motion of the Earth
ω⊕ ,

√
µ�/r3

⊕ ' 0.9856 deg/day around the Sun. For an assigned value of angular velocity,
a circular DNKO may also be equivalently characterized by the angle of elevation γ, that is,
the angle between the Sun–spacecraft line and the Ecliptic, and the Sun–spacecraft distance
r, as sketched in Figure 3. Without loss of generality and consistently with a monitoring
mission of the Earth’s high northern latitudes, in this paper, we assume that γ lies within
the interval [0, 90)deg. Note that the pair {ρ, η} can be written as a function of {r, γ} as

ρ = r cos γ (5)

η = r sin γ (6)

As will be better detailed in Section 3.1, the diffractive sail-based spacecraft is outside
the Earth’s sphere of influence (SOI), and therefore, the perturbative effect of our planet
can be neglected [38]. Paralleling the procedure proposed by McInnes [34] for the reflecting
solar sail and bearing in mind the scheme of Figure 4, the balance between propulsive,
gravitational, and centrifugal accelerations acting on the spacecraft results in the following
two scalar equations

β√
2

µ�
r2 = ρ ω2

⊕ sin γ (7)

β√
2

µ�
r2 + ρ ω2

⊕ cos γ =
µ�
r2 (8)

which describe the spacecraft equilibrium in a rotating reference frame along îx and îz,
respectively.

�

2ρ ωto Sun

diffractive sail 45 deg

�

2

β μ

r

γ

ˆ
zi

ˆ
xi

�

2

μ

r

Figure 4. Scheme of the gravitational, propulsive, and centrifugal forces per unit of mass acting on
the diffractive sail-based spacecraft during the flight along the circular displaced orbit.

Now, by substituting Equation (7) into Equation (8) and using Equation (5), we obtain
the following analytical result, which expresses the radius ρ of the circular displaced orbit
as a function of the angle of elevation γ and the reference distance r⊕, viz.

ρ = r⊕ 3

√
cos γ

1 + tan γ
(9)
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from which one obtains the values of {η, r} as

η =
r⊕ sin γ

3
√
(sin γ + cos γ) cos γ

, r =
r⊕

3
√
(sin γ + cos γ) cos γ

(10)

while the required value of the lightness number β is obtained by substituting Equations (5)
and (9) into Equation (7). In that case, the result is

β =

√
2 sin γ

sin γ + cos γ
(11)

In this context, Figure 5 shows the variations of {ρ, η, r, β} as a function of γ ∈
[0, 89.5]deg. Note that {ρ, r} → r⊕, η → r⊕ γ, and β →

√
2 γ when γ → 0, while ρ → 0,

{r, η} → ∞, and β→
√

2 when γ→ 90 deg.
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Figure 5. Variations of {ρ, η, r, β} with γ ∈ [0, 89.5]deg for a diffractive sail-based circular helio-
centric DNKO. (a) Orbit radius. (b) Orbit displacement. (c) Sun–spacecraft distance. (d) Lightness
number.
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3.1. Earth–Spacecraft Distance

The effectiveness of a scientific mission to monitor the Earth’s high latitudes will be
related to the distance of the spacecraft from the planet; see Figure 3. Therefore, in this
subsection, we will quantify the Earth–spacecraft (instantaneous) distance, showing that it
depends on three parameters, namely: the elevation angle, the Earth’s true anomaly, and
the point in the Earth’s orbit at which the spacecraft and the Earth have the same angular
position in the plane of the Ecliptic. For this purpose, consider the components of the
Sun–spacecraft position vector r in TO, that is

[r]TO
=

ρ cos θ

ρ sin θ

η

 (12)

where θ is the angle between the projection of the vector r on the Ecliptic and the p-axis, as
sketched in Figure 3.

The components of the Sun–Earth position vector in TO, instead, are given by

[r⊕]TO
=

ρ⊕ cos ν

ρ⊕ sin ν

0

 (13)

where ρ⊕ is the Sun–Earth distance, given by

ρ⊕ =
r⊕
(
1− e2

⊕

)
1 + e cos ν

(14)

in which e⊕ ' 0.0167 is the eccentricity of the Earth’s heliocentric orbit and ν is the planet’s
true anomaly. In particular, the value of θ is given by

θ = ω⊕ (t− t0) + θ0 (15)

where t is the time and θ0 is the angular offset between the diffractive sail-based spacecraft
and the Earth at the reference time t0. The latter is here defined, without loss of generality,
as the time instant at which the Earth passes perihelion, that is, ν(t0) , 0. Therefore, the
net of multiples of one year, and the time t can be written as a function of ν as

t =

√
r3
⊕

µ�
(E− e⊕ sin E) (16)

where E ∈ [0, 2π] rad is the eccentric anomaly of the Earth, given by

E = 2 arctan

(√
1− e⊕
1 + e⊕

tan
ν

2

)
(17)

The value of θ0 may be determined backward from the value of ν (namely, ν) where
θ = ν, which is the value of ν (assumed to exist) when the spacecraft and the Earth have
the same angular position in the plane of the Ecliptic. Accordingly, the value of E when
ν = ν is given by

E = 2 arctan

(√
1− e⊕
1 + e⊕

tan
ν

2

)
(18)
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the corresponding time instant is

t =

√
r3
⊕

µ�

(
E− e⊕ sin E

)
(19)

and
θ0 = ν−ω⊕ t (20)

Bearing in mind that t = t(ν) (see Equations (18) and (19)), then Equation (20) gives
θ0 = θ0(ν), which is plotted in Figure 6. Note that |θ0| is maximum when
ν ' {90.72, 269.28}deg and its value is about 1.91 deg.
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Figure 6. Variation of θ0 with ν; see also Equation (20).

In this context, the angular offset between the spacecraft and the Earth, defined as

φ , θ − ν = ω⊕

(
t− t

)
− (ν− ν) (21)

is an explicit function of {ν, ν} according to Equations (16)–(19), so it changes throughout
the year. However, its mean integral value with respect to ν, that is, the function

Φ ,
1

2π

∫ 2π

0
φ dν ≡ θ0 (22)

turns out to coincide with the angular displacement between the diffractive sail-based
spacecraft and the Earth when the latter passes to perihelion. In this sense, the distance d
between the spacecraft and the Earth’s center of mass, given by

d =

√
(ρ⊕ cos ν− ρ cos θ)2 + (ρ⊕ sin ν− ρ sin θ)2 + η2 (23)

is an explicit function of {γ, ν, ν} and is represented in Figures 7 and 8. Note that in the
figures the values of d are reported in units of R⊕ , 6378.136 km; that is, in multiples of the
Earth’s mean equatorial radius. In addition, Figure 8 also shows the radius of the Earth’s
SOI, given by ρ⊕ (µ⊕/µ�)

0.4, which is a weak function of ν, the eccentricity of the Earth’s
orbit being much smaller than 1.

An interesting result is that the condition Φ = 0, which describes the situation in
which the angular offset between the spacecraft and the Earth has a zero mean value during
the year, does not necessarily imply that the minimum value of d with respect to ν (i.e.,
the value of minν(d)) is as small as possible. In this regard, consider Figure 9, which
shows the variation of minν(d) with {γ, ν}. Two important conclusions can be drawn from
that figure.
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The first is that, when Φ = 0 due to ν = 180 deg, the value of minν(d) is maximum
for all values of γ. The second is that, when Φ = 0 due to ν = {0, 360}deg, the value of
minν(d) is minimum only over a specific value of γ, referred to as γ̃. Such a value of γ̃ can
be obtained by imposing that ρ (see Equation (9)) is equal to the perihelion radius of the
Earth’s orbit. This leads to the following equation

(1− e⊕)
3 (1 + tan γ̃)− cos γ̃ = 0 (24)

which is (numerically) solved for γ̃ ' 2.89 deg. For smaller values of γ (i.e., for γ < γ̃), the
radius of the orbit is greater than the perihelion radius of the Earth’s orbit
(i.e., ρ > r⊕ (1− e⊕)) and, therefore, the value of minν(d) is minimum when the radius of
the orbit is equal to Earth’s orbit, viz.

cos ν =
1− e2

⊕

e⊕
3

√
1 + tan γ

cos γ
− 1

e⊕
(25)
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Figure 7. Variation of the spacecraft–Earth distance d with {γ, ν, ν}. The contour lines indicate the
values of d expressed in units of R⊕ , 6378.136 km. (a) ν = Φ = 0. (b) ν = 30 deg and Φ ' 0.94 deg.
(c) ν = 60 deg and Φ ' 1.64 deg. (d) ν = 90 deg and Φ ' 1.91 deg.
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Figure 8. Variation of the spacecraft–Earth distance d with {γ, ν, ν}. (a) γ = 0.1 deg, η ' 41 R⊕, and
β ' 0.0025. (b) γ = 0.2 deg, η ' 82 R⊕, and β ' 0.0049. (c) γ = 0.3 deg, η ' 123 R⊕, and β ' 0.0074.
(d) γ = 0.4 deg, η ' 163 R⊕, and β ' 0.0098.
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Figure 10 shows the variation of ν that minimizes minν(d) as a function of γ ≤ γ̃.
In particular, in the limiting case where γ = 0, the value of minν(d) is minimized when
cos ν = −e⊕, that is, when ν ' {90.96, 2.69}deg.
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Figure 10. Values of ν that minimize minν(d) as a function of γ ≤ γ̃.

Finally, Figure 11 shows the variation of minν(d) with {γ, ν} for very small values of
γ. From this figure it can be concluded that there is a value of γ (approximately equal to
0.36 deg) beyond which minν(d) is greater than the Earth’s SOI for any value of ν.
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Figure 11. Variation of the value of minν(d) with {γ, ν} for very small values of γ.

To summarize, the minimum Earth–spacecraft distance occurs when ν = 0 if γ ≥ γ̃
and when

ν =


arccos

(
1− e2

⊕

e⊕
3

√
1 + tan γ

cos γ
− 1

e⊕

)

2 π − arccos
(

1− e2
⊕

e⊕
3

√
1 + tan γ

cos γ
− 1

e⊕

) (26)

if γ ≤ γ̃.

3.2. Orbital Parameters of the Osculating Orbit

It is interesting to determine the orbital parameters of the spacecraft’s osculating orbit
relative to the Sun. For example, these parameters are important in the study of transfer
trajectories from Earth to the target (circular) DNKO. Therefore, consider Equation (10),
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which gives the Sun–spacecraft distance as a function of γ, and recall that the magnitude of
the inertial velocity of the diffractive sail-based spacecraft is v = r ω⊕.

Accordingly, the specific mechanical energy (E ) and angular momentum (h) of the
spacecraft osculating orbit are given by

E ,
r2 ω2

⊕

2
− µ�

r
=

r2
⊕ ω2

⊕

2 [(sin γ + cos γ) cos γ]2/3 −
µ� [(sin γ + cos γ) cos γ]1/3

r⊕
(27)

h , r v = r2 ω⊕ =
r2
⊕ ω⊕

[(sin γ + cos γ) cos γ]2/3 (28)

from which the semimajor axis (a) and the eccentricity (e) of the osculating orbit are

a , − µ�
2 E =

r⊕

[(sin γ + cos γ) cos γ]1/3
(

2− [(sin γ + cos γ) cos γ]−1
) (29)

e ,

√
1 +

2 E h2

µ2
�

=
∣∣∣1− [(sin γ + cos γ) cos γ]−1

∣∣∣ (30)

As far as the true anomaly ( f ) is concerned, from the orbit equation in polar form we
have

cos f ,
(

h2

µ� r
− 1
)

1
e
= sign

(
[(sin γ + cos γ) cos γ]−1 − 1

)
(31)

or
f = arccos

[
sign

(
γ− π

4

)]
(32)

where r, h, and e are given by Equations (10), (28), and (30), respectively. In particular,
Equation (32) states that the spacecraft is at the aphelion or perihelion of its osculating orbit.
This is a fairly obvious result since the spacecraft velocity is always perpendicular to its
position vector with respect to the Sun.

Finally, the spatial orientation of the osculating orbit may be described with respect
to a heliocentric-ecliptic reference frame with the aid of three independent parameters.
Specifically, the inclination i describes the angle between the Ecliptic and the osculating
orbit plane, the argument of perihelion ω describes the angle between the eccentricity
vector of the osculating orbit and the position vector from the Sun to the ascending node,
while the right ascension of the ascending node Ω describes the angle between the p-axis
and the position vector from the Sun to the ascending node. Observing that the plane of the
osculating orbit is identified by the Sun–spacecraft position vector and the velocity vector
of the spacecraft, and recalling Equation (32), it is immediate to conclude that

i = γ , ω = f +
π

2
, Ω = ω⊕ (t− t0) + Ω0 (33)

where Ω0 = θ0 − π/2 is the value of Ω at time t0. Therefore, five of the six orbital parame-
ters of the spacecraft’s osculating orbit are constant during the monitoring mission, while
Ω varies linearly with time. This means that maintaining a circular DNKO is equivalent to
achieving a linear precession of the line of nodes of the osculating orbit without changing
the other orbital parameters (including the true anomaly).

In this context, Figure 12 shows the variations of {a, e, i, f } of the osculating orbit as
a function of γ ∈ [0, 67.5]deg; that is, for values of γ that entail a closed osculating orbit.
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Figure 12. Constant orbital parameters of the (closed) osculating orbit as a function of γ. (a) Semimajor
axis. (b) Eccentricity. (c) Inclination. (d) True anomaly.

In particular, the spacecraft’s osculating orbit is an ellipse when γ < 67.5 deg, a
parabola when γ = 67.5 deg, and a hyperbola when γ > 67.5 deg. Furthermore, the
osculating orbit is circular when γ = {0, 45}deg and, in such cases, a = r⊕. When the
osculating orbit is an ellipse, the minimum of a is reached when γ = 22.5 deg and its
value is 3

√
1/4 + 3

√
2/16 r⊕ ' 0.8016 r⊕, while the corresponding value of e (which is the

maximum in the interval γ ∈ [0, 45]deg) is 3− 2
√

2 ' 0.1716. For example, if γ = 0.4 deg,
then a ' 0.9909 r⊕, e ' 0.0069, i = 0.4 deg, f = 180 deg, and ω = 270 deg.

3.3. Comparison with the Reflecting Solar Sail Case

The same family of circular DNKOs (that is, those maintained with a propulsive
acceleration vector inclined by 45 deg with respect to the Sun–spacecraft line) may also be
maintained by means of a more common reflecting solar sail. In this case, assuming that
the reflecting sail is ideal, Equations (7) and (8) become

βrs cos3 α
µ�
r2 + ρ ω2

⊕ cos γ =
µ�
r2 (34)

βrs cos2 α sin α
µ�
r2 = ρ ω2

⊕ sin γ (35)
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where

βrs =
2 I⊕ Srs r2

⊕

m c µ�
(36)

is the lightness number of an ideal reflecting sail (Srs being the required surface area)
and α = 45 deg is the sail attitude necessary to maintain the desired family of circular
DNKOs (subscript rs stands for “reflecting sail”). Note that the 2 coefficient in the numerator
indicates that the sail reflects all incident light specularly. Substituting α = 45 deg into
Equations (34) and (35) and comparing the result with Equations (7) and (8) gives

Srs =
√

2 S (37)

For instance, the diffractive sail performs better than an ideal reflecting solar sail
because, for the same value of m, an ideal reflecting sail needs an area Srs exposed to the
Sun greater by a factor of

√
2 than that required by a diffractive solar sail.

4. Linear Stability Analysis

An important point to deal with is the stability analysis of the selected circular DNKO,
which is addressed here by looking for the conditions that guarantee linearly stable motion.
Paralleling the procedure described in Ref. [30], consider the diffractive sail-based spacecraft
equations of motion in the rotating cylindrical reference frame TC(O; ρ, θ, η)

ρ̈ = −µ�
r2 cos γ +

βi√
2

µ�
r2 (cos γ− sin γ) + ρ θ̇2 (38)

θ̈ = −2 ρ̇ θ̇

ρ
(39)

η̈ = −µ�
r2 sin γ +

βi√
2

µ�
r2 (sin γ + cos γ) (40)

where the dot symbol denotes a derivate taken with respect to time.
The perturbative dynamics is obtained by introducing an error in the initial position

of the spacecraft, which models a possible error in orbital insertion. For this purpose, the
radius and displacement of the initial orbit can be written as

ρ(ti) , ρi + δρ(ti) (41)

η(ti) , ηi + δη(ti) (42)

where the subscript i denotes the reference (i.e., nominal) value (ti being the start instant
of the monitoring mission), while δρ = δρ(t) and δη = δη(t) (with |δρ| � ρi and |δη | � ηi)
are the errors in orbital radius and displacement, respectively. It is also assumed that there
is no error in the initial velocity (i.e., ρ(ti) θ̇(ti) = ρi ω⊕). Note that, from Equation (39), it
follows that ρ2 θ̇ is constant. In particular, we have

ρ2 θ̇ ' ρ2
i ω⊕

(
1 +

δρ(ti)

ρi

)
(43)

Using the latter transformation and recalling Equation (43), the linearized expressions
of r−2, ρ θ̇2, cos γ, and sin γ become

r−2 ' r−2
i

(
1− 2 cos γi

δρ

ri
− 2 sin γi

δη

ri

)
(44)

ρ θ̇2 ' ρi ω2
⊕

(
1− 3

δρ

ρi
+ 2

δρ(ti)

ρi

)
(45)
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cos γ ' cos γi

(
1− cos γi

δρ

ri
− sin γi

δη

ri
+

δρ

ρi

)
(46)

sin γ ' sin γi

(
1− cos γi

δρ

ri
− sin γi

δη

ri
+

δη

ηi

)
(47)

The perturbation equations are obtained from Equations (38) and (40) by subtracting
the corresponding equilibrium equation written below

0 = −µ�

r2
i

cos γi +
βi√

2
µ�

r2
i
(cos γi − sin γi) + ρi ω2

⊕ (48)

0 = −µ�

r2
i

sin γi +
βi√

2
µ�

r2
i
(sin γi + cos γi) (49)

Accordingly, the perturbative equations become

δ′′ρ = a11 δρ + a12 δη + 2 δρ(ti) (50)

δ′′η = a21 δρ + a22 δη (51)

where the prime symbol denotes a derivative taken with respect to the dimensionless time
ω⊕ t, while the coefficients aij are given by

a11 =

(
r⊕
ri

)3 [(
1− βi√

2

)(
3 cos2 γi − 1

)
+

3 βi√
2

sin γi cos γi

]
− 3 (52)

a12 =

(
r⊕
ri

)3 [(
1− βi√

2

)
3 sin γi cos γi +

βi√
2

(
3 sin2 γi − 1

)]
(53)

a21 =

(
r⊕
ri

)3 [(
1− βi√

2

)
3 sin γi cos γi −

βi√
2

(
3 cos2 γi − 1

)]
(54)

a22 =

(
r⊕
ri

)3 [(
1− βi√

2

)(
3 sin2 γi − 1

)
− 3 βi√

2
sin γi cos γi

]
(55)

Recalling that(
r⊕
ri

)3
= (sin γi + cos γi) cos γi , βi =

√
2 sin γi

sin γi + cos γi
(56)

Equations (52)–(55) become

a11 = 2 cos2 γi − 3 (57)

a12 = 2 sin γi cos γi (58)

a21 = sin γi cos γi (59)

a22 = − cos2 γi (60)

The poles of the linearized system are the roots of the associated characteristic polyno-
mial, that is

s4 + b s2 + c = 0 (61)

where

b , −(a11 + a22) = 3− cos2 γi (62)

c , a11 a22 − a12 a21 = cos2 γi (63)



Remote Sens. 2023, 15, 5626 16 of 19

Since the characteristic Equation (61) is biquadratic, the marginal stability of the
linearized system requires that its roots are purely imaginary. Therefore, the conditions to
be met are c ≥ 0 and b ≥ 2

√
c, which are both satisfied for any value of γi; see Figure 13.

0 30 60 90

0

1

2

3

2 c

b

c

Figure 13. Variations of {b, c, 2
√

c} with γi.

Note that the natural frequencies of the two pairs of purely imaginary poles are

ω1,2 =
1
2

(
3− cos2 γi ±

√
cos4 γi − 10 cos2 γi + 9

)
(64)

According to the Lyapunov linearization method [39], the marginal stability of the
linearized dynamics is a necessary (but not sufficient) condition for the stability of the
nonlinear system. Therefore, a numerical simulation was performed to verify the stability
of the nonlinear dynamics, showing that the nonlinear system is indeed marginally stable,
as discussed in the next subsection.

Potential Mission Application

Consider the problem of maintaining a diffractive sail-based spacecraft in a circular
DNKO to continuously observe the Earth’s high-latitude regions. This case is similar to
the pole-sitter mission concept described by Ceriotti et al. [40], in which a solar electric
thruster or a hybrid propulsion system (i.e., a combination of solar sail and solar electric
thruster) is used to maintain an Earth–spacecraft distance of about 420 R⊕ to ensure proper
spatial resolution for the scientific instruments. In this context, assuming γ = 0.4 deg, the
stability of the complete dynamics is now checked by numerical simulation. In particular,
Equations (38)–(40) are integrated in double precision using an Adams–Bashforth–Moulton
solver scheme of variable order with absolute and relative errors of 10−15 and 10−12,
respectively, and a time interval of 100 years. The error in orbit insertion is modeled by
assuming δρ(ti) = δη(ti) = 0.001 r⊕ ' 23.5 R⊕. Moreover, an error in the initial velocity is
also considered for completeness. In particular, consider the radial (vr), azimuthal (vθ), and
normal (vγ) components of the spacecraft velocity, defined as

vr , ρ̇ cos γ + η̇ sin γ (65)

vθ , ρ θ̇ (66)

vγ , η̇ cos γ− ρ̇ sin γ (67)

whose reference values are vri = vγi = 0 and vθi = ρi ω⊕ ' 29.7853 km/s, and assume that
the errors in {vri , vγi , vθi} are 0.001 ρi ω⊕ ' 0.0298 km/s. The simulation results involving
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normalized distance (r/ri) and elevation angle (γ/γi) are shown in Figure 14a, while the
time-variations of the velocity components are illustrated in Figure 14b. From the results
it can be concluded that the system is marginally stable (in fact, no damping source is
included in the model), even when errors in spacecraft velocity components are considered.
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Figure 14. Simulation results for the case study. (a) Time variations of {r, γ}. (b) Time variations of
{vr, vθ , vγ}.

5. Conclusions

In this paper, we have investigated the possibility of maintaining circular displaced
non-Keplerian orbits with a Sun-facing diffractive sail. An analytical solution has been
proposed that analytically relates the radius of the spacecraft orbit and the required light-
ness number to the elevation angle. In particular, we have shown that there is a γ value
(approximately equal to 0.36 deg) beyond which the Earth–spacecraft distance is greater
than the radius of the Earth’s SOI regardless of the angular offset between the spacecraft
and the Earth at the instant our planet passes to perihelion.

For the purpose of generating the same family of displaced non-Keplerian orbits
(i.e., those requiring the same radial and transverse thrust components), it has been shown
that a diffractive sail performs better than an ideal reflecting sail because, for the same total
spacecraft mass, it requires a surface area exposed to the Sun that is smaller by a factor
of
√

2. Finally, numerical simulations have shown that these orbits are marginally stable.
A possible extension of this work is to consider a change in attitude of the diffractive sail
during flight in order to generate a displaced elliptical orbit of given characteristics.
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