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Abstract: A significant challenge in detecting objects in complex remote sensing (RS) datasets is from
small objects. Existing detection methods achieve much lower accuracy on small objects than medium
and large ones. These methods suffer from limited feature information, susceptibility to complex
background interferences, and insufficient contextual information. To address these issues, a small
object detection method with the enhanced receptive field, ERF-RTMDet, is proposed to achieve
a more robust detection capability on small objects in RS images. Specifically, three modules are
employed to enhance the receptive field of small objects’ features. First, the Dilated Spatial Pyramid
Pooling Fast Module is proposed to gather more contextual information on small objects and suppress
the interference of background information. Second, the Content-Aware Reassembly of Features
Module is employed for more efficient feature fusion instead of the nearest-neighbor upsampling
operator. Finally, the Hybrid Dilated Attention Module is proposed to expand the receptive field of
object features after the feature fusion network. Extensive experiments are conducted on the MAR20
and NWPU VHR-10 datasets. The experimental results show that our ERF-RTMDet attains higher
detection precision on small objects while maintaining or slightly enhancing the detection precision
on mid-scale and large-scale objects.

Keywords: small object detection; enhanced receptive field; remote sensing; dilated convolution;
hybrid attention

1. Introduction

Due to its broad coverage and unique high-altitude view, object detection in RS (remote
sensing) datasets has received widespread focus with practical applications in various fields,
such as military surveillance, environmental analysis, and precision agriculture. Traditional
object detection methods typically involve extracting image features by manual design.
These features are then combined to classify objects. However, generating the candidate
regions is time-consuming. Designing features manually is also unreliable, complex,
and poorly generalized. These traditional methods have limited practical application.
Therefore, the focus of research on object detection methods has gradually shifted to the
application of deep learning methods.

Generally, object detection approaches that employ CNNs fall into two major types:
two-stage and one-stage approaches, depending on different pipelines [1]. Specifically,
the two-stage approaches, such as Faster R-CNN [2], conduct classification and regression
following the generation of region proposals. The end-to-end pipeline of the one-stage
approaches, such as YOLO [3], directly executes the classification and localization task on
the output of the model’s backbone. To sustain detection speed advantages while increasing
accuracy, several attempts have been made with these approaches [4–8]. In addition to
the above classification, mainstream object detection approaches are also categorized as
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anchor-based or anchor-free methods, according to whether the priori bounding boxes
are explicitly defined. Two-stage methods, like the proposals generated by RPN in Faster
R-CNN [2], are generally anchor-based as they use candidate prior bounding boxes. One-
stage methods used to be mainly anchor-based, but many anchor-free methods have been
developed with satisfactory accuracy in recent years.

Anchor-based methods predict the location of objects of interest by matching the
anchors with ground truth boxes. Representative methods, such as Mask R-CNN [9] and
YOLOv2 [4], are employed. The R-CNN [10] implements a strategy of sliding windows to
produce fixed anchors with predefined scales. However, utilizing the same group of anchors
for instances of various sizes can reduce the effectiveness of object recognition. Therefore, it
is necessary to set the corresponding hyperparameters of the anchors when applying anchor-
based methods to different datasets for object detection. Achieving high detection accuracy
is dependent on the proper hyperparameter settings. YOLOv2 [4] uses the K-means
clustering method to obtain the size of the anchor box. In addition, the issue of imbalanced
positive and negative samples impacts detection accuracy. This is because only a tiny
proportion of the predefined anchors become positive samples. RetinaNet [11] provides
a focal loss function that modifies positive/negative and hard/simple sample weights in
the loss function using hyperparameters. YOLOv3 [5] sets nine distinct anchor boxes to
predict multi-scale objects. Nevertheless, multi-scale objects with different orientations
significantly increase the challenge of setting appropriate hyperparameters for anchors in
high-altitude RS datasets.

Anchor-free methods predict objects by matching pixel points. The main advan-
tages of anchor-free methods are their flexibility, generality, and low computational com-
plexity. They avoid the massive computational resources typically required for anchors.
Among them, the model’s ability to capture small objects is enhanced by key-point-based
regression methods. CornerNet [12], a pioneer in anchor-free methods, uses the upper-left
and upper-right corners of the object bounding box as prediction key points. However,
the key points used by CornerNet may fall outside the objects, causing the model to fail to
capture internal information. This can lead to CornerNet missing instances when detecting
small objects. Based on this, ExtremeNet [13] predicts four extreme points and one central
point of the target. Another improvement of CornerNet, CenterNet [14], detects the central
point of objects to predict the scales of bounding boxes. Unlike keypoint-based methods
that rely solely on key points for detection, FCOS [15] uses a per-pixel approach. All an-
chors falling within the ground truth box are considered positive samples. The center-ness
branch assigns a low score to the predicted boxes that deviate from the center of objects.
YOLOX [16] adopts the center sampling strategy of FCOS. In addition, YOLOX improves
detection accuracy by introducing a decoupling head, robust data augmentation, and a
novel label assignment strategy. Based on YOLOX, RTMDet [17] achieves a further break-
through in accuracy. It uses strategies such as deep convolution with a large kernel and
dynamic soft label assignment. Therefore, we choose RTMDet as a robust baseline for the
proposed method.

Current generic object detection approaches have developed various variants, such
as increasing model width and depth and adding multi-scale fusion networks [18]. These
methods are usually applied to natural images. The accuracy of these detection methods in
RS images is not very satisfactory. This is because RS images have different characteristics
from natural images. To illustrate this, some examples were selected from the MAR20
dataset. As seen in Figure 1a, RS images have a high density of small objects, which
makes detection much more difficult. Second, objects in RS images vary significantly in
scales and orientations, as illustrated in Figure 1b. This makes the detection task more
challenging. Additionally, existing detection methods are prone to losing small objects’
weak features in RS images. The complex scenes can interfere with detection, as Figure 1c
shows. The overhead view of RS images reduces the available feature information for
object detection. Small objects occupy a small resolution and are susceptible to interference
from background information [19]. Consequently, the feature and contextual information
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of small objects extracted by the model is limited [20]. Therefore, developing a method to
enhance the effect of detecting small objects in RS datasets is urgently needed.

(a) (b) (c)

Figure 1. Several examples selected from the MAR20 dataset. (a) Densely arranged objects. (b) Objects
with different scales and orientations. (c) Complex background.

Due to scale differences, the detection accuracy of medium and large objects is signifi-
cantly better in comparison with small ones. Therefore, many feature fusion architectures
have been developed to reduce small object feature loss and improve overall object de-
tection accuracy. To enhance shallow feature maps’ semantic and depth information,
the Feature Pyramid Network (FPN) [18] was developed for object detection. Building
on the top-down path of FPN, a bottom-up path is added to complement the localization
information of deep feature maps in the Path Aggregation Network (PANet) [21]. The
feature fusion of deep and shallow layers in FPN and PANet can provide more feature in-
formation for object detection. However, these FPN variants have limitations. For example,
simply concatenating deep and shallow feature maps does not adequately fuse multi-scale
features and may introduce irrelevant information interference. To obtain better results
in small object detection, FE-YOLOv5 [19] employs the feature enhancement strategy to
enhance the model’s spatial perception capability and feature enhancement. QueryDet [20]
develops a novel coarse-to-fine cascaded sparse query mechanism. Cao et al. [22] added the
mixed attention and the dilated convolution modules in the YOLOv4 network. LMSN [23]
proposed multi-scale feature fusion and receptive field enhancement modules to achieve
lightweight multi-scale object detection. EFPN [24] developed a feature texture transfer
module and a new foreground–background balance loss function. The is-YOLOv5 [25]
modified the information path of feature fusion and improved the SPP module. AFPN [26]
designed three new attention modules to enhance the model’s perception capabilities of
foreground and contextual information. Methods to boost the accuracy of small object
detection in RS images are still relatively rare. CotYOLOv3 [27] redesigned the residual
blocks in the backbone Darknet-53 as Contextual Transformer blocks. FE-CenterNet [28]
employs feature aggregation and attention generation structures to detect vehicle objects in
RS images.

The baseline RTMDet [17] achieves high accuracy by implementing deep convolution
with large convolution kernels and a dynamic soft label assignment strategy. However,
the small object detection accuracy improvement of the RTMDet method is not satisfactory.
First, multiple convolutional layers in the backbone continuously perform downsampling
operations while extracting feature maps. The discriminative features of small objects
decrease with decreasing resolution. Second, the deep feature maps extracted by the
backbone have low resolution and large receptive fields. These are not appropriate when
detecting small objects. Furthermore, small objects may be more negatively affected by the
small bounding box perturbations. Inspired by the above small object detection methods,
our ERF-RTMDet model introduces two novel modules: the dilated spatial pyramid pooling
fast (DSPPF) module and the hybrid dilated attention (HDA) module. Additionally, we
adopt the Content-Aware Reassembly of Features (CARAFE) upsampling operator further
to boost the small object detection accuracy in RS images. Specifically, we first introduce
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high-resolution shallow feature maps. Then, the CARAFE upsampling operator replaces the
nearest-neighbor upsampling operator in feature fusion. Finally, we developed the DSPPF
and HDA modules to extend the receptive field of small objects. Thus, an improved small
object detection approach with the enhanced receptive field, ERF-RTMDet, is proposed to
achieve more robust detection capability in RS images. The quantitive detection results of
various representative methods on objects of three scale types are compared in Figure 2.
Following the definition of the generic MsCOCO dataset [29], in this paper, small objects
are defined as objects smaller than 32× 32 pixels, medium objects are defined as ones larger
than 32× 32 pixels smaller than 96× 96 pixels, and large objects are defined as ones larger
than 96× 96 pixels. The results show that the accuracy of detecting small objects (mAP_s)
is significantly worse in comparison with medium (mAP_m) and large ones (mAP_l). The
precision in detecting small objects with ERF-RTMDet is 8.8% higher than the most effective
comparative method. ERF-RTMDet not only shrinks the distance between the accuracy of
detecting small objects and medium and large objects; it can also maintain or even slightly
boost the detection effect on medium and large objects.
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Figure 2. Comparison of detection accuracy of different sizes of objects by several methods.

The major contributions of our study are briefly outlined below:

1. To address the small object detection challenges faced by existing detection methods,
the ERF-RTMDet method is proposed to enhance the receptive field and enrich the
feature information of small objects.

2. A dilated spatial pyramid pooling fast module is proposed. The DSPPF module
achieves a larger multi-scale receptive field while maintaining resolution. The succes-
sive dilated convolutions are employed to extract more contextual information about
small objects. The DSPPF module further improves the accuracy through the channel
attention module to avoid the interference of background information.

3. A hybrid dilated attention module is proposed. To obtain more detailed information
of small objects, the HDA module uses parallel convolutional layers with different
dilation rates to fuse different receptive fields. It is followed by spatial and channel
attention modules to extract meaningful information from the fused features.

4. The CARAFE Module [30] is used in the feature fusion as the upsampling operator
rather than the nearest neighbor sampling operator. This allows the upsampled
feature maps to contain more information about small objects, leading to the more
efficient extraction of object feature information.

5. The experimental results show that ERF-RTMDet achieves higher detection accuracy
on small objects while sustaining or slightly boosting the detection precision on
mid-scale and large-scale objects.
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2. Method

In this section, the general framework of our ERF-RTMDet model is presented. Then,
details of the DSPPF module and the HDA module are presented.

2.1. Overview of ERF-RTMDet

RS images are usually high resolution. While RS images are used as inputs to the
object detection network, they must first be cropped or resized according to different
hardware memory and model input sizes. One-stage object detectors can operate faster
than two-stage ones. ERF-RTMDet incorporates the improvements made by RTMDet to
YOLOX, such as deep convolution with a large kernel size of 5× 5 in the backbone and
neck, data augmentation with cache mechanism, and the design of a dynamic soft label
assignment strategy. As shown in Figure 3, The backbone CSPNeXt introduced large
kernel depth convolution in the cross-stage partial block in CSPDarknet [6], containing
four stages, C2–C5. The feature maps output from these four stages are {4, 8, 16, 32} times
the downsampling rate of the input feature maps, respectively. To boost the capability of
detecting small objects, ERF-RTMDet introduces a shallow feature map of higher resolution
extracted in stage C2 [31]. The C2 stage’s output also contains more detailed information.
Instead of the SPPF module, we designed the DSPPF module at the C5 stage, which
captures more appropriate receptive fields for small objects. Following YOLOX, the ERF-
RTMDet neck combines the characteristics of FPN and PAN. The feature maps generated
by the concatenation operation are first fed into the CSP block before being passed to the
convolution module. The HDA module is added after the 32-times-downsampled feature
map output from the neck to enhance the representative capability of the low-resolution
feature maps. Additionally, the convolution module replaces the regular convolution with
a dilated convolution [32] with an expansion rate of two when extracting the low-resolution
feature maps in the backbone (C4 and C5) and neck (P4 and P5). Such a modification
expands the receptive field of the deep feature maps and preserves more detail, allowing
for better object detection. Finally, the four-layer feature maps are fused and fed to the
following detection heads for classifying and locating. The convolution modules of the
classification and regression detection heads share their parameters, respectively.

Figure 3. An Overview of Our ERF-RTMDet. CARAFE Module: Content-Aware Reassembly of
Features Module. HDA Module: Hybrid Dilated Attention Module.

2.2. CARAFE Upsampling Operator

In the top-down path of the neck feature fusion network, feature maps of different
resolutions are generally upsampled to the same resolution before being concatenated.
Many current small object detection methods in the RS datasets rely on the original nearest-
neighbor interpolation in the FPN, and others employ deconvolution [33] or sub-pixel
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convolution [27] instead. The nearest-neighbor interpolation method fills the feature map
using adjacent pixels and only considers sub-pixel neighborhoods. Also, when upsampling
with the nearest-neighbor interpolation, much of the feature information of small objects
is lost due to background interference. Deconvolution scales up the size by padding the
feature map with zeros. Much invalid information is introduced while improving the
resolution. It is not ideal for small objects in RS images. Sub-pixel convolution [34] first
extends the channel dimension of the feature map. After that, the multiple of the channel
dimension extension is transferred to the specific values for feature map dimensions by the
PixelShuffle operation. CARAFE is proposed as a lightweight and efficient upsampling
operator with several advantages over the above operators. First, CARAFE has a larger
receptive field compared to sub-pixel neighborhoods. This allows for a more comprehensive
use of contextual information. Second, unlike deconvolution, which employs a fixed kernel,
CARAFE produces adaptive kernels in an on-the-fly content-aware approach. Specifically,
CARAFE predicts the upsampled kernels by convolutional layers. Different kernels are
applied to combine semantic information at various positions in the feature map, achieving
the final upsampling result. Moreover, CARAFE can be seamlessly integrated into various
architectures that contain upsampling operators to achieve lightweight and operationally
fast feature upsampling. Therefore, in the neck feature fusion network, ERF-RTMDet uses
the plug-and-play CARAFE upsampling operator instead of nearest-neighbor interpolation
to generate upsampled feature maps, which can more accurately represent the object shape.

2.3. Dilated Spatial Pyramid Pooling Fast Module

As the feature maps extracted by the backbone network become deeper layer by
layer, the receptive fields of the feature maps gradually expand. To fuse receptive fields of
different scales and obtain richer contextual information, YOLOv4 introduces the Spatial
Pyramid Pooling (SPP) module [35]. Furthermore, the SPPF module in YOLOv5 replaces
the parallel max-pooling layer with a sequential method to boost the running speed of
the module. However, the ordinary convolution operation outputs a fixed receptive field
and extracts a limited feature region. The max-pooling layer reduces the resolution of
the feature map. It also suffers from the drawback of inaccessible spatial localization
information. To address this issue, ASPP [36] employs several convolutions with different
dilation rates parallelly to fuse multi-scale feature information. Inspired by the above
methods, the proposed DSPPF module substitutes the SPPF module in the backbone C5
stage to enhance the small object detection accuracy. Figure 4 provides an illustration of
our ERF-RTMDet’s C5 stage.

Figure 4. Illustration of ERF-RTMDet backbone C5 stage. DSPPF Module: Dilated Spatial Pyramid
Pooling Fast Module. CSPLayer: Cross-Stage Partial Layer.

A detailed comparison between the framework of the SPPF module and the DSPPF
module is presented in Figure 5.
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(a)

(b)

Figure 5. Comparison of the framework between the Spatial Pyramid Pooling Fast(SPPF) module
and the Dilated Spatial Pyramid Pooling Fast(DSPPF) module. (a) SPPF module. (b) DSPPF module.

The DSPPF module consists of sequential convolution modules with different dilation
rates and an attention module. Specifically, the 1× 1 convolution Conv1×1 reduces the
number of input channels, thereby reducing the number of parameters and improving
operational efficiency. The convolution kernel of dilated convolution is discontinuous.
Not all pixels are used in the computation. Continuous dilated convolution can cause
a gridding effect if the dilation rates are not set appropriately. The receptive field of
feature maps is obtained grid-like, which loses locally relevant information and may also
introduce irrelevant distant information. The solution is to make the final output of a series
of convolution operations have a square receptive field without holes or edge loss [37].
The corresponding equation is given as follows:

Mi = max[Mi+1 − 2ri, Mi+1 − 2(Mi+1 − ri), ri], (1)

where N, K, and r represent the number of convolution layers, convolution kernel size,
and convolution layer dilation rate, respectively; Mi represents the maximum distance
between two nonzero values. The equation satisfies both MN = rN and M2 ≤ K. For the
proposed DSPPF module, the convolution kernel size K is three. Meanwhile, employing
ordinary convolution in the first layer can avoid the underlying information loss. Therefore,
the dilation rates of the three convolutional layers in the DSPPF module are r = 1, 2, 3.
After Conv1×1, an ordinary convolution with 3× 3 kernel size Conv3×3,r=1 is applied first.
Then, two 3× 3 convolution modules with dilation rates of two and three Conv3×3,r=2
and Conv3×3,r=3 are applied to extract feature maps of different receptive fields. Four
different receptive fields’ feature maps are concatenated and reduced in dimension. Fi-
nally, the Squeeze-and-Excitation (SE) attention module [38] provides the output. For the
input feature map fin, the specific procedure of the DSPPF module is denoted by the
following equations:

fout1 = Conv1×1( fin), (2)
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fout2 = Conv3×3,r=1( fout1), (3)

fout3 = Conv3×3,r=2( fout2), (4)

fout4 = Conv3×3,r=3( fout3), (5)

fout = SEModule(Conv1×1(Concat( fout1, fout2, fout3, fout4))). (6)

The SE attention module is added after the concatenated features, as shown in Figure 6.
First, the information is summarized and compressed by the global average pooling layer
to learn the relevance between channel feature maps. Then, two 1× 1 convolution modules
are implemented instead of the original full convolution layer to excite the channel weights.
The attention weights acquired in the process will then multiply with the original input to
produce the ultimate output.

Figure 6. The framework of the Squeeze-and-Excitation (SE) attention module.

2.4. Hybrid Dilated Attention Module

After the neck feature fusion, the output feature maps are {4, 8, 16, 32} times the
downsampled size of the input, respectively. The 32-times-downsampled deep feature
maps have a small resolution, which increases the challenge of object detection. The HDA
module is added after the lowest-resolution feature map. This enhances its ability to
interpret contextual information. The framework of the HDA module is described in
Figure 7. Similarly, the 1× 1 convolution operation first decreases the dimensionality of the
channels and the parameters of the module. The reduced dimensionality output is fed into
three convolutional branches and one residual attention branch in parallel. Considering
the kernel size of 3 and Equation (1), the dilation rates of the three parallel convolutions
are set to 1, 2, and 4. The residual attention branch comprises two parts: channel attention
and spatial attention. Specifically, the channel attention applies the ECA module, which
can obtain relatively good accuracy without slowing the speed. For a given input f min,
the specific procedures of spatial attention are shown below,

f mout = Conv
′
1×1(Conv3×3,r=2(Conv3×3,r=2(Conv1×1( f min)))), (7)

where the Conv3×3,r=2 and Conv1×1 denote convolution modules containing a convolu-
tion layer, a batch normalization layer, and a ReLU activation layer. Conv

′
1×1 denotes a

convolution layer with only one convolution layer. Finally, these four branches aggregate
contextual information with different receptive fields. They are concatenated and sent to
the detection head for RS image object detection.
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Figure 7. The framework of Hybrid Dilated Attention module.

2.5. Loss Function

The loss function Ldet of ERF-RTMDet contains the Quality Focal Loss [39] Lcls used for
classification and the GIoU loss [40] Lreg used for bounding box regression. Focal Loss [11]
is usually used as the classification loss for the detection head of the one-stage methods.
Quality Focal Loss extends Focal Loss to enable the use of continuous labels that combine
classification and localization quality. Lcls is defined as follows:

Lcls = −|y− σ|β((1− y)log(1− σ) + ylog(σ)), (8)

where y denotes the continuous label obtained from the IoU of the bounding box and the
ground truth; σ denotes the predicted value; β denotes the hyperparameter of the dynamic
scale factor. The GIoU loss can be optimized while the overlapping area of two boxes is
zero, with good stability. Lreg is defined as follows:

Lreg = 1− (
|Gt ∩ P|
|Gt ∪ P| −

|C− Gt ∪ P|
|C| ), (9)

where Gt, P, and C denote the ground truth box, the prediction box, and the smallest
enclosing convex box of these two boxes, respectively. The total loss function Ldet of
ERF-RTMDet is denoted as,

Ldet = λ1Lcls + λ2Lreg, (10)

where λ1 and λ2 are weights of classification loss and regression loss, set to one and two by
default, respectively.

3. Result
3.1. Datasets and Evaluation Metrics

The NWPU VHR-10 dataset and MAR20 dataset are utilized in this study to evaluate
the proposed ERF-RTMDet and other comparative methods.

NWPU VHR-10 Dataset: The NWPU VHR-10 dataset [41] is a public geospatial object
detection dataset. It consists of 800 very-high-resolution RS images gathered through
Google Earth and Vaihingen. Images are 500× 500∼1100× 1100 pixels in size. NWPU
VHR-10 dataset contains 3651 instances of 10 types of RS objects. The average size of
the objects in these ten categories is about 6.4% of the image size. In evaluating various
methods, the horizontal bounding box annotations provided by the NWPU VHR-10 dataset
are used.

MAR20 Dateset: The MAR20 dataset [42] is the most massive RS image military
aircraft object recognition dataset available. It consists of 3842 high-resolution images
collected through Google Earth at 60 military airports in the United States, Russia, and other
countries. The size of images is mostly 800× 800 pixels. The MAR20 dataset contains 22,341
instances of 20 military aircraft categories. We used category labels A1~A20 to represent
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these 20 aircraft types, respectively. The average size of the objects in these 20 categories
is about 2.2% of the image size. MAR20 dataset is a fine-grained classification of military
aircraft. Different aircraft types may have similar characteristics, so the inter-class variation
is small. External factors such as weather and occlusion during RS image acquisition
make the dataset’s intra-class variation large. Precisely detecting and identifying the
correct category of aircraft instances is arduous. The horizontal bounding box annotations
provided by the MAR20 dataset were used in the evaluation of the different methods.

Evaluation Metrics: In order to evaluate the detection accuracy of various methods
for RS objects, we adopt the COCO evaluation metrics. The metrics include: mAP_50,
the average of all categories with an IoU threshold of 0.5; mAP, the average of mAP for
different IoU thresholds from 0.5 to 0.95; mAP_s, mAP for small objects with area less than
32× 32; mAP_m, mAP for medium objects with area between 32× 32 and 96× 96; and
mAP_l, mAP for large objects with area larger than 96× 96.

3.2. Implementation Details

All experiments in this study were conducted on a single NVIDIA GeForce RTX 3080
GPU using PyTorch. Due to the limited hardware device computation resources, all images
were cropped to 320× 320 pixels during training. We divided the cropped NWPU VHR-10
dataset and MAR20 dataset in the ratio of 6:2:2. In the NWPU VHR-10 dataset, 2088 images
were used as the training set, 522 images as the validation set, and 653 images as the test
set. In the MAR20 dataset, 10,635 images were used as the training set, 2659 images were
used as the validation set, and 615 original images were used as the test set. For all datasets
and comparative methods, the total training epochs and batch sizes were set to 200 and 4.
In the testing stage, we use the model with the highest mAP within the 200 training epochs
as the evaluation model. All optimizers for the comparative methods were set to AdamW.
The learning rate had an initial value of lr = 0.00005, following a cosine decay schedule
from the 100∼200 epochs with a weight decay of 0.05lr.

3.3. Comparison Experiments

To validate the effectiveness of ERF-RTMDet in RS image object detection, we com-
pared it with several representative methods on the NWPU VHR-10 and MAR20 datasets.
Methods for comparison include Faster R-CNN [2], RetinaNet [11], YOLOX [16], TOOD [43],
etc. Quantitative comparison results on the NWPU VHR-10 and MAR20 datasets are shown
in Tables 1 and 2, with the best results in bold. The proposed ERF-RTMDet achieves the
best mAP and mAP_s on both NWPU VHR-10 and MAR20 datasets.

Results on NWPU VHR-10 dataset: Compared with representative one-stage and
two-stage object detection methods, the proposed ERF-RTMDet achieves more precise
object detection results. Over the strong baseline RTMDet, ERF-RTMDet obtained an
improvement of 1.9% mAP and achieved 56.8%, 93.4%, and 52.2% for mAP, mAP_50,
and mAP_s, respectively. ABNet [44] is a framework specifically designed for multi-scale
object detection in RS images. Referring to the reported result in the ABNet paper, ERF-
RTMDet obtains an improvement of 2.68% mAP_50. Quantitative comparison results show
that ERF-RTMDet can achieve higher detection accuracy on small objects while maintaining
or slightly improving the detection accuracy on mid-scale and large-scale objects.

Results on MAR20 dataset: Similarly, the proposed ERF-RTMDet achieved the best
object detection results in comparative methods. Compared with the strong baseline RT-
MDet, ERF-RTMDet obtains an improvement of 5.2% mAP and achieves 81.5%, 99.7%,
and 40.2% for mAP, mAP_50, and mAP_s, respectively. Quantitative comparison results
show that ERF-RTMDet achieves optimal or sub-optimal detection accuracy on all cate-
gories in the MAR20 dataset.
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Table 1. Comparison of the detection accuracy of different methods on the NWPU VHR-10 dataset.
The abbreviations stand for storage tank (ST), baseball diamond (BD), basketball court (BC), tennis
court (TC), and ground track field (GTF). The AP(%) was taken as the metric for each category. Bold
print highlights the best results. Sub-optimal results are underlined.

Category
Method

CornerNet RetinaNet YOLOX YOLOv7 Faster R-CNN RTMDet YOLOv8 ERF-RTMDet

Airplane 54.2 58.4 62.1 59.4 63.9 64.3 66.8 63.8
Ship 47.6 46.8 52.0 53.3 54.7 60.2 59.4 59.8
ST 28.0 53.1 45.9 44.3 60.3 55.3 56.3 60.9
BD 54.9 55.2 60.5 61.9 58.5 68.3 64.2 65.9
TC 28.6 49.4 55.9 55.5 61.3 61.3 58.9 58.1
BC 37.6 43.2 57.2 55.6 64.1 62.1 63.1 67.4

GTF 45.3 23.5 24.7 32.6 35.6 41.0 33.8 45.6
Habor 27.1 32.5 47.4 51.0 41.3 48.6 50.8 49.8
Bridge 20.9 17.1 30.4 39.6 33.5 31.8 40.9 37.7
Vehicle 30.7 45.5 51.6 49.9 59.6 56.0 62.7 58.4

mAP_s 12.5 31.4 33.5 16.2 35.5 26.6 32.9 52.0
mAP_m 45.7 48.7 52.1 53.0 59.1 55.7 58.8 58.6
mAP_l 38.0 42.0 51.9 54.8 50.0 61.4 58.0 55.3

mAP_50 57.4 77.2 83.1 92.8 85.5 93.5 91.6 93.4
mAP 37.5 42.5 48.8 50.3 53.3 54.9 55.7 56.8

Table 2. Comparison of the detection accuracy of different methods on the MAR20 dataset. The AP(%)
was taken as the metric for each category. Bold print highlights the best results. Sub-optimal results
are underlined.

Category
Method

YOLOv7 YOLOX TOOD YOLOv8 RetinaNet Faster R-CNN RTMDet ERF-RTMDet

A1 62.7 66.8 67.1 71.5 74.2 74.1 75.5 78.2
A2 68.8 72.7 75.8 76.0 78.4 78.2 75.6 81.2
A3 67.6 60.0 69.6 72.6 75.4 75.2 76.5 80.1
A4 74.0 77.2 67.6 79.2 81.8 82.8 82.8 88.1
A5 58.8 56.1 60.4 64.5 70.0 69.5 67.7 75.2
A6 69.9 69.2 77.8 73.8 77.2 79.9 79.2 84.6
A7 70.8 71.0 74.1 79.3 79.3 81.4 80.6 81.1
A8 75.1 73.5 77.3 79.1 78.1 80.3 80.9 85.0
A9 71.2 70.7 69.6 75.6 79.3 78.8 76.9 83.9
A10 72.5 73.3 73.4 75.5 76.3 76.9 77.0 80.2
A11 70.7 65.9 68.7 76.2 69.7 81.4 76.8 82.1
A12 60.6 70.1 70.5 72.2 72.0 80.3 74.6 77.7
A13 63.7 63.2 66.9 67.6 71.0 71.4 69.2 78.6
A14 75.3 72.5 75.5 79.3 79.5 79.0 80.0 82.3
A15 52.2 46.1 47.4 59.0 65.5 65.5 65.7 80.8
A16 71.6 75.1 71.5 77.9 75.8 76.8 78.2 81.1
A17 69.4 72.0 78.6 77.2 81.1 80.8 80.9 86.5
A18 75.1 77.5 72.3 81.8 83.0 84.3 83.6 85.5
A19 54.9 59.0 62.2 65.1 75.0 74.7 72.4 81.8
A20 56.2 58.2 72.1 67.9 75.0 75.0 71.3 75.3

mAP_s 25.0 13.0 5.0 31.4 22.5 0.0 25.1 40.2
mAP_m 62.4 61.7 64.3 67.4 72.3 73.4 73.1 81.0
mAP_l 69.8 70.9 74.1 78.1 76.9 79.6 78.9 82.9

mAP_50 95.8 92.7 90.0 95.9 96.5 97.3 98.1 99.7
mAP 67.1 67.5 69.9 73.6 75.9 76.9 76.3 81.5

Small Object Detection Results: Observing the mAP_s metric on the NWPU VHR-
10 dataset, ERF-RTMDet improves by 20.6%, 18.5%, and 25.4% over RetinaNet, YOLOX,
and RTMDet, respectively. The small object detection accuracies achieved by ERF-RTMDet
on the MAR20 dataset are enhanced by 17.7%, 27.2%, and 15.1% over RetinaNet, YOLOX,
and RTMDet, respectively. Examples of feature visualization results for several models
are presented in Figure 8. The RetinaNet model did not effectively capture all objects.
The YOLOX and RTMDet models focused more on a single object of interest. In comparison,



Remote Sens. 2023, 15, 5575 12 of 18

the ERF-RTMDet model can focus on more objects and has a larger effective receptive field.
The comparison of quantitative and visualization results proves the effectiveness of the
proposed ERF-RTMDet. ERF-RTMDet is able to obtain a more robust ability to detect
small objects while sustaining or slightly boosting the detection effect on mid-scale and
large-scale objects.

(a) (b)

(c) (d)

Figure 8. Feature visualization results of different methods. (a) RetinaNet. (b) YOLOX. (c) RTMDet.
(d) Our ERF-RTMDet.

Overall, the proposed ERF-RTMDet obtains the best object detection accuracy on the
NWPU VHR-10 and MAR20 datasets. We select two comparative methods with better
accuracy in Tables 1 and 2 to compare with ERF-RTMDet qualitatively. Several visualiza-
tion results on the NWPU VHR-10 and MAR20 datasets are shown in Figures 9 and 10,
respectively. Comparing the fourth row in Figure 9 and the fourth row in Figure 10, the pro-
posed ERF-RTMDet has higher accuracy and lower miss detection rate in detecting densely
arranged RS objects. While detecting small instances in RS images, such as the ship in
the fifth row in Figure 9 and the A20 type in the fifth row in Figure 10, ERF-RFMDet
also achieves the most advanced accuracy among several comparative methods. Both
qualitative and quantitative comparison experiments demonstrate that ERF-RTMDet can
effectively address the challenges of small variation between classes and large variation
within classes in the MAR20 dataset. Thus, our ERF-RTMDet can enhance the small object
detection accuracy while sustaining or slightly boosting the detection accuracy on mid-scale
and large-scale objects.

3.4. Ablation Study

To validate the effectiveness of our modifications to the baseline RTMDet, ablation
experiments were performed on the MAR20 dataset for different modules. The tables
below show the six improvements we added, respectively. Where the baseline indicates the
RTMDet method, ◦ and × indicate with and without adding the corresponding improve-
ments. Table 3 verifies that introducing the shallow and large feature map of the C2 stage
can capture more details and localization information of objects. The introduction of the C2
stage boosts the overall detection accuracy by 2.3% mAP and 1.6% mAP_50, respectively,
although a slight decrease of 0.6% mAP_s is observed. Adopting CARAFE instead of
nearest-neighbor interpolation as the upsampling operator in the feature fusion procedure
can further improve the overall detection accuracy. Small object detection accuracy is also
boosted at the same time.
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(a) (b) (c) (d)

Figure 9. Visual results obtained by various methods on the NWPU VHR-10 dataset. (a) Ground
truth. (b) RTMDet. (c) YOLOv8. (d) Our ERF-RTMDet. Solid boxes of different colors represent
different categories of the objects. The miss detections are shown in bold dash boxes.

Table 4 demonstrates the effectiveness of applying dilated convolution instead of
regular convolution in backbone and neck networks. The overall and small object detection
accuracy has been enhanced.
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(a) (b) (c) (d)

Figure 10. Visual results obtained by various methods on the MAR20 dataset. (a) Ground truth.
(b) Faster R-CNN. (c) RTMDet. (d) Our ERF-RTMDet. The miss detections are shown in red bold
dash boxes.

Table 5 validates the impact of the HDA module and DSPPF module on the de-
tection accuracy. The HDA and DSPPF modules obtain more contextual information
using continuous dilated convolution. Meanwhile, the attention mechanism introduced
allows the model to focus more on valuable information and avoid the interference of
background information.
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Table 3. Ablation experiments of whether to introduce the CARAFE upsampling operator and
C2 stage. ◦ and × indicate with and without adding the corresponding improvements.

C2 CARAFE mAP mAP_50 mAP_s

Baseline × × 73.4 97.2 40.5
Baseline ◦ × 75.7 98.8 39.9
Baseline ◦ ◦ 75.7 99.2 40.1

Table 4. Ablation experiments of whether to introduce dilated convolutions in the backbone and neck.
◦ and × indicate with and without adding the corresponding improvements.

Dilated Neck Dilated Backbone mAP mAP_50 mAP_s

Baseline × × 73.4 97.2 40.5
Baseline ◦ × 75.7 99.4 41.3
Baseline ◦ ◦ 76.0 99.3 42.1

Table 5. Ablation experiments of whether to add HDA module and DSPPF module. The best results
are shown in bold. ◦ and × indicate with and without adding the corresponding improvements.

HDA DSPPF mAP mAP_50 mAP_s

Baseline × × 73.4 97.2 40.5
Baseline ◦ × 75.8 98.9 42.9
Baseline ◦ ◦ 76.2 99.3 44.1

4. Discussion

Existing methods have made some attempts to boost the precision of detecting small
objects. For example, multi-scale feature fusion is conducted by using high-resolution fea-
tures from lower layers. However, the semantic information of shallow feature maps needs
to be more reliable and requires further processing. Attention mechanisms are introduced
to highlight the objects of interest in the feature maps and suppress the background noise.
Some other approaches use super-resolution networks to preprocess images to enhance the
representation of small target feature maps. However, super-resolution networks are often
complex and computationally expensive. Moreover, most methods focus on detecting small
objects in natural images. Methods that specifically study the detection of small objects in
RS images are less available. Therefore, this paper proposes the DSPPF and HDA modules
to extract feature maps with richer contextual information. Moreover, the dilated convo-
lution and the more efficient upsampling operator CARAFE are incorporated to enlarge
the receptive field of feature maps as well as to learn representations more conducive to
localization. Both comparison and ablation experiments demonstrate the efficiency of the
proposed ERF-RTMDet.

4.1. DSPPF Module

Following the sequential dilated convolution, the DSPPF module introduces the
SE attention mechanism. Besides the SE module, some other attention mechanisms have
been introduced. For example, the Convolutional Block Attention Module (CBAM) [45]
has two branches to learn channel and spatial attention. So, it has a more complex structure
and low operational efficiency. The Efficient Channel Attention (ECA) module [46] uses
one-dimensional convolution to implement a local cross-channel interaction strategy. These
three attention mechanisms are compared in experiments, as shown in Table 6. The intro-
duction of the SE attention mechanism in the DSPPF module yields the best effect, as shown
in the experimental results.
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Table 6. Comparison of different attention mechanisms in the DSPPF module. The best results are
shown in bold.

Attention Module mAP_s mAP_50 mAP

None 44.0 99.3 76.1
CBAM 43.6 98.3 75.1
ECA 41.3 99.3 76.2
SE 48.9 99.4 76.2

4.2. HDA Module

The HDA module employs parallel convolutions with different dilation rates to ac-
quire the multi-scale information necessary to detect small objects without diminishing
the receptive field. One residual attention branch is included in the HDA module. We
experimentally compared the effect of attention modules added at different locations on ac-
curacy, as shown in Table 7. Experimental results demonstrate that the effect of the attention
module added in the residual branch is superior to that after the concatenation operation.

Table 7. Comparison of attention mechanisms added at different locations in the HDA module.
The best results are shown in bold.

Attention Module’s Location mAP_s mAP_50 mAP

After concatenation 40.0 99.3 78.5
In residual branch 40.2 99.7 81.5

4.3. Future Work

In future work, we intend to enhance our ERF-RTMDet from three perspectives.
Firstly, due to the limited memory, the input images have been resized to 320× 320 pixels.
We will attempt to access the computational cluster to evaluate the detection results of
different models on larger input images (e.g., 1280× 1280 pixels) using larger hardware
memory. Secondly, the NWPU VHR-10 and MAR20 remote sensing datasets utilized in
this paper contain 10 and 20 categories of objects, respectively. We will attempt to explore
whether there are available RS datasets suitable for testing edge cases (e.g., containing
only one class or a large number of classes). Based on this, we will evaluate the detection
performance of our ERF-RTMDet on such datasets and verify its scalability and versatility.
Finally, the NWPU VHR-10 and MAR20 remote sensing datasets used in this paper are
high-resolution remote sensing image datasets. We will attempt to collate and simulate new
datasets that contain moving objects. Based on the new dataset, the detection performance
of our ERF-RTMDet on moving objects will be detected. Also, we will further explore
new strategies to improve the detection performance of our ERF-RTMDet on low- and
medium-resolution remote sensing image datasets.

5. Conclusions

A small object detection method with the enhanced receptive field, ERF-RTMDet, is
proposed by us to obtain more robust detection capability on small objects in RS images.
Specifically, the DSPPF module is designed to obtain more contextual information about
small objects and avoid the interference of background information. Additionally, we
substituted the nearest neighbor interpolation operator with the CARAFE operator in our
feature fusion network for more effective upsampling. The HDA module is employed to
augment the receptive field of features and enhance the features of objects. Comprehensive
experimental results validate the efficacy of the ERF-RTMDet on the publicly available
datasets MAR20 and NWPU VHR-10. Compared with other most representative models,
our ERF-RTMDet can both obtain better detection results on small objects and maintain or
slightly boost the detection effect on mid-scale and large-scale objects.
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