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Abstract: The efficiency and accuracy of target recognition in synthetic aperture radar (SAR) imagery
have seen significant progress lately, stemming from the encouraging advancements of automatic
target recognition (ATR) technology based on deep learning. However, the development of a deep
learning-based SAR ATR algorithm still faces two critical challenges: the difficulty of feature extraction
caused by the unique nature of SAR imagery and the scarcity of datasets caused by the high acquisition
cost. Due to its desirable image nature and extremely low acquisition cost, the simulated optical
target imagery obtained through computer simulation is considered a valuable complement to
SAR imagery. In this study, a CycleGAN-based SAR and simulated optical image fusion network
(SOIF-CycleGAN) is designed and demonstrated to mitigate the adverse effects of both challenges
simultaneously through SAR-optical image bidirectional translation. SAR-to-optical (520) image
translation produces artificial optical images that are high-quality and rich in details, which are
used as supplementary information for SAR images to assist ATR. Conversely, optical-to-SAR (O2S)
image translation generates pattern-rich artificial SAR images and provides additional training data
for SAR ATR algorithms. Meanwhile, a new dataset of SAR-optical image pairs containing eight
different types of aircraft has been created for training and testing SOIF-CycleGAN. By combining
image-quality assessment (IQA) methods and human vision, the evaluation verified that the proposed
network possesses exceptional bidirectional translation capability. Finally, the results of the S20
and O2S image translations are simultaneously integrated into a SAR ATR network, resulting in an
overall accuracy improvement of 6.33%. This demonstrates the effectiveness of SAR-optical image
fusion in enhancing the performance of SAR ATR.

Keywords: synthetic aperture radar (SAR); automatic target recognition (ATR); image fusion; deep
learning; CycleGAN

1. Introduction

With strong penetrability, electromagnetic waves can penetrate clouds, vegetation,
snow, ice, sand, and other earth surface cover. By actively transmitting electromagnetic
waves and receiving echoes for imaging, synthetic aperture radar (SAR) can monitor ground
conditions in all weather conditions throughout the day, which plays an irreplaceable role
in time-sensitive tasks such as disaster detection, ship monitoring, and traffic investigation.
The research of automatic target recognition (ATR) using SAR images has attracted consid-
erable attention in recent years. Numerous attempts at progress have been made around
the creation of SAR target datasets and the proposal of SAR ATR algorithms [1]. However,
current SAR ATR technologies still have room for improvement in practical applications,
which is mainly challenged by two aspects: the difficulty of SAR target feature extraction
and the scarcity of training datasets. (1) Due to the unique imaging mechanism of SAR,

Remote Sens. 2023, 15, 5569. https:/ /doi.org/10.3390 /1515235569

https://www.mdpi.com/journal /remotesensing


https://doi.org/10.3390/rs15235569
https://doi.org/10.3390/rs15235569
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8999-5515
https://orcid.org/0009-0004-4271-9096
https://doi.org/10.3390/rs15235569
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15235569?type=check_update&version=1

Remote Sens. 2023, 15, 5569

2 of 24

the target in SAR images exhibits distinct features that differ from its optical appearance.
These characteristics, such as geometric distortion and speckle noise, seriously affect image
quality. In addition, target features in SAR images are rarely robust against pose variation
and exhibit significant viewpoint-dependent variations, which complicates the tasks of
feature extraction, generalization, and classification. (2) The scarcity of SAR datasets is not
solely attributed to costly SAR systems and experiments but also due to the inherent diffi-
culty in manually interpreting and labeling SAR images. Accordingly, existing open-source
datasets for SAR target recognition are seriously insufficient in terms of data volume, target
type diversity, and scene variability. The recognition algorithm developed on this basis has
strong limitations and poses challenges when applied to complex real-world scenarios.

The SAR-to-optical (5S20) method, based on deep learning, provides a solution for
processing SAR target features by translating them into optical expressions through image-
to-image translation. This approach enhances the quality and interpretability of SAR
images, thereby reducing the difficulty of both manual interpretation and automatic target
recognition [2—4]. The vast majority of S20 methods rely on SAR and optical remote-
sensing images acquired from satellite platforms to demonstrate large-scale scene S20
translation, which provides limited improvement for enhancing the recognition algorithms
of small targets. An earlier work [5] by our team showed the 520 translation of small
ground targets for the first time and verified its enhancement for SAR target recognition,
both automatic and manual. The translation performance is further enhanced in this
paper through improvements to the network architecture, integration of appropriate loss
functions, expansion of the dataset, and other enhancements.

In order to alleviate the scarcity of training datasets, a common approach is to utilize
the data generation ability of deep networks for data augmentation. Specifically, the deep
networks are used to learn the mapping relationship between labels and real data and
then generate artificial data with a similar distribution to real data by adjusting the labels.
Among these methods, generative adversarial networks (GANs), which were proposed
in 2014 [6], have been particularly effective in expanding SAR target datasets due to their
excellent generation effect [7-10]. There are few SAR target datasets available for reference,
resulting in a single scenario for SAR data generation applications. Meanwhile, because
of the complex operating conditions of SAR imaging, the GAN-based generation of SAR
target datasets still faces the problems of complex input condition labels [11]. By using the
same generative adversarial idea, this paper achieves optical-to-SAR (O2S) translation with
the simulated optical images of the targets as labels and SAR images of the targets as real
data, which provides a cost-effective approach to augment the existing SAR target datasets.

In order to tackle the aforementioned challenges in SAR ATR, a SAR ATR system
enhanced by a SAR-optical image bidirectional translation method is proposed, where
a SAR-optical image fusion CycleGAN (SOIF-CycleGAN) improves the performance of
SAR ATR algorithms by taking advantage of the high quality and low acquisition cost
of optical target images. On the one hand, the S20 translation path of SOIF-CycleGAN
is implemented using a combination of supervised and unsupervised learning. A new
joint loss function, which integrates GAN losses, cycle-consistency losses, L1 loss, and
LPIPS loss, is proposed to significantly enhance the translation performance compared with
conventional ones. The SAR target image and its artificial optical image generated by 520
translation form a co-registration image as different channels, which is input into SAR ATR
networks to achieve higher accuracy recognition. On the other hand, the O2S translation
path of SOIF-CycleGAN uses optical target images from computer simulations in various
poses to generate SAR target images through unsupervised learning. The generator of
the O2S translation path incorporates random noise injection in its back-end layers to
ensure the diversity of details in the generated SAR images. These generated images
serve as an augmentation to existing SAR target datasets at a low cost. The proposed
system is trained and tested on a SAR-optical target dataset comprising eight types of small
aircraft and helicopters (SPHS8). Within the SPHS dataset, SAR images are acquired using a
UAV-borne SAR for ground imaging, whereas the optical images are generated through
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computer simulation referring to the active infrared imaging processes. The evaluations
of the SOIF-CycleGAN translation results based on both human vision and image quality
assessment (IQA) methods indicate that S20 translation produces optical images with high-
quality, rich details, and strong pose robustness. Meanwhile, O2S translation generates SAR
images with a feature representation and statistical distribution similar to those of real SAR
images. The results of SAR ATR confirm that the artificial optical image can be used as a
complement to SAR images, significantly reducing the difficulty in target feature extraction
and enhancing the LeNet-based SAR ATR algorithm to obtain more than a 5% accuracy
improvement. The artificial SAR image can accurately restore the structural features of the
target under the corresponding SAR imaging viewpoints and effectively augment patterns
in training data, which effectively improves the adaptability of the SAR ATR algorithm.
The main contributions of this work can be summarized as the following three aspects:

1. A method for bidirectional translation of SAR-optical images is demonstrated by
utilizing the bidirectional generation ability of CycleGAN. The feasibility of this data-
fusion method in solving the difficulty of feature extraction and the scarcity of training
datasets in SAR ATR is verified.

2. Ajoint loss function that takes into account both the whole and local factors for S20
translation is proposed by comparing the impacts of various supervised and unsuper-
vised losses. Through a combination of human vision and numerical evaluation, it
has been validated that the joint loss function improves the translation results.

3. A new dataset, SPHS8, comprising SAR images and the simulated optical images
of eight types of ground aircraft targets, is created. It includes both paired and
unpaired SAR-optical target images, making it suitable for supporting SAR-optical
data fusion, SAR ATR, SAR data generation, and other research, both supervised and
unsupervised.

The rest of the paper is structured as follows. In Section 2, we provide an overview of
the existing research on SAR ATR, SAR-to-optical image fusion, and SAR data generation
that is relevant to this study. Section 3 introduces SOIF-CycleGAN, a method for the SAR-
optical image fusion of targets, where two entry points for SAR ATR enhancement using
the SAR-optical image fusion are given. The dataset and experiment configuration are
elaborated in Section 4, followed by the presentation of translation and recognition results
in Section 5. The impact of loss functions and the sample size on the translation results is
discussed in Section 6, along with some special cases, demonstrating the robustness of S20
translation. In the end, we draw a conclusion in Section 7.

2. Related Works

In this Section, the previous works related to the paper are introduced, encompassing
research in the area of SAR ATR, SAR-optical image fusion, and SAR data generation.
By incorporating the literature review here, we hope this makes the argument in the
Introduction more concise.

2.1. SAR ATR

SAR images have a vast amount of information and are difficult to interpret by un-
trained people, which makes it necessary to replace manual labor with ATR algorithms
for accurate large-scale target recognition [12]. According to the detection, discrimination,
and classification three-level flow chart [13] launched by the Lincoln laboratory, the current
so-called SAR target recognition is essentially the process of classifying the SAR image
that contains a single target according to the type of target. The datasets designed for this
task usually contain SAR slices of a single target, among which the most typical one is the
Moving and Stationary Target Acquisition Recognition (MSTAR) dataset [14] organized by
the Defense Advanced Research Projects Agency (DARPA) and Air Force Research Labo-
ratory (AFRL). MSTAR contains multi-angle airborne SAR images of 10 types of ground
military vehicles, covering 1° to 360°, with a resolution of 0.3 m x 0.3 m. MSTAR continues
to expand as data collection continues. Because it has complete azimuth angles and a
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considerable amount of data, the majority of representative SAR ATR systems [12,15-19]
are developed based on MSTAR. In the task of ship recognition, OpenSARShip [20] and
OpenSARShip2.0 [21], collected from Sentinel-1A by Shanghai Jiao Tong University, are
widely used, which have a resolution of 20 m x 22 m and (2.7-3.5 m) x 22 m, with 45874 SAR
ship slices in total. While in OpenSARShip, the number of different types of ships is not
balanced, with most of the ship samples being cargo ships. Another commonly used
dataset, FUSAR [22], containing 15 types of ship targets published by Fudan University has
a higher resolution, (1.7-1.754 m) x 1.124 m, from the GF-3 satellite. At present, there are
few works pertaining to aircraft recognition, with some studies relying on the SAR images
of aircraft targets acquired from satellite platforms [23,24]. Aiming at the classification task
of airborne high-resolution SAR slices of aircraft, this paper introduces the SPHS8 dataset,
which contains multi-angle SAR slices of eight types of small aircraft, to breathe new life
into this field.

2.2. SAR-Optical Image Fusion

Various sensors mounted on the remote-sensing platform possess unique characteris-
tics that complement each other in collecting object information. A comparison between
SAR imaging and optical imaging highlights the importance of this complementarity. On
one hand, SAR imaging captures texture, geometry, and moisture-sensitive information
of the surface under all-day and all-weather conditions, but the SAR image is affected
by speckle noise and is difficult to understand. Optical imaging, on the other hand, col-
lects spectral information, which is influenced severely by solar illumination and weather
conditions. Therefore, the association, correlation, and combination of SAR and optical
data have garnered extensive interest [25]. Recent efforts demonstrate that deep learning
models have dominated the SAR-optical image fusion task. At GARSS 2017, Ref. [26]
verified that cGAN-based Pix2Pix can translate a despeckled SAR image from TerraSAR-X
to grayscale optical representation by referring to optical images from PRISM in farmland
areas. Then, the grayscale bidirectional translation between high-resolution airborne SAR
images and GoogleEarth optical images with a classic CycleGAN network [2], as well as the
520 translation from ALOS-PALSAR SAR images to Terra-ASTER optical images with three
channels: R, G, and NIR [27], were displayed at GARSS 2018. Additionally, in the same year,
Ref. [28] published the SEN1-2 dataset, including 282,384 pairs of matched SAR and optical
image patches, which were collected from Sentinel-1 and Sentinel-2, respectively. SEN1-2
have greatly fostered the development of SAR-optical translation technology. Ref. [3] is
dedicated to unpaired SAR-optical image translation with unsupervised learning, and the
evaluation of the translation results based on feedback from experts in SAR remote sensing
indicates the superiority of image fusion. Four baseline networks, Pix2pix, CycleGAN,
Pix2pixHD, and FGGAN, were tested in the SAR-optical image fusion task in [29], and
several IQA methods were adopted in various scenes to select a suitable method for more
accurate image translation. The parallel feature fusion generator, multi-scale discriminator,
and chromatic aberration loss were exploited for improving the contour sharpness, the
texture fine-graininess, and the color fidelity of translated optical images, respectively,
in [4]. The introduction of new supervised learning loss, such as SSIM, is used in [30,31] for
retaining more structural information and the connection between generated optical images
and original SAR images, which brings new ideas of loss function design for improving the
performance of SAR-to-optical image translation.

In terms of practical application, Ref. [32] focuses on the analysis of SAR-optical image
fusion for removing both thin and thick clouds in optical remote-sensing images, which can
generate not only RGB images but also other spectral bands. Aiming at the same goal of
cloud removal, Refs. [33-36] modified the network architecture, loss function, and dataset,
which greatly enhanced the ability to generate multi-temporal cloud-free optical images.
In an effort to achieve high-precision building extraction, Ref. [37] proposed a progressive
fusion-learning framework that uses phase as a modal invariant between optical and SAR
images and realizes fusion through multi-stage learning. Ref. [38] generated optical images
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from SAR images by using cGAN as a way to extract common features for multi-modal
image alignment. For change detection in heterogeneous images, Ref. [39] trained an
unsupervised CycleGAN for SAR-optical image bidirectional translation and implemented
change detection between real and translated images in both the SAR and optical image
domains. The final change detection result was obtained from the image fusion of the
results of the two domains. Another work [40] used a supervised CD network that utilizes
deep context features to carry out pixel change detection after translating images to a
unity domain. Other applications also benefit greatly from SAR-optical image fusion, such
as crop classification [41], wildfire monitoring [42], vegetation monitoring [43,44], road
extraction [3], etc.

However, there are few studies applying SAR-optical image fusion in SAR ATR;
there are mainly two reasons for this: firstly, the majority of SAR images used for SAR-
optical image fusion are obtained from satellite platforms that show severe information
loss for small targets. As a result, existing SAR-optical image fusion works are restricted
to the applications of large-scale scenes. Our last work [5] overcomes this limitation by
building a new high-resolution SAR-optical image dataset of targets for SAR-optical image
fusion. Secondarily, the dissimilarity between SAR and optical images impedes their
fusion, particularly in areas where ground features undergo significant changes. In order
to illustrate this, the results in S20 translation [3,27,29,45] are better in mountains, rivers,
forests, farmland, and other natural scenes, whereas man-made scenes like buildings and
vehicles are hard to restore. In this paper, the high-resolution SAR-optical image dataset
of targets is further expanded to reduce the difficulty of image fusion, and a carefully
designed image fusion network is explored to facilitate high-quality SAR-optical image
bidirectional translation of targets.

2.3. SAR Data Generation

SAR applications based on deep learning require a substantial amount of data to
support network training. However, SAR images are difficult to acquire, understand, and
process, resulting in limited datasets that meet the requirements [46]. Some computer
simulation methods [47,48] have been implemented to directly calculate target SAR images
using ray-tracing algorithms combined with the computer-aided design (CAD) models
of the targets. This is due to the fact that high-frequency electromagnetic waves exhibit
similar scattering characteristics to light. The simulated images, although having similar
radiometric representation to SAR images, are quite different in detail and texture and,
thus, are often used to help understand SAR images rather than extend training datasets.
Data augmentation is often used to alleviate the problem of data scarcity. While SAR
images are mappings of target-scattering characteristics in the Range-Doppler domain,
their expression is closely related to imaging bands, the azimuth angles of target orientation,
and other factors. Traditional data augmentation methods, such as random rotation, fail to
introduce new reference patterns to SAR datasets. Since the amazing results of generative
adversarial networks were demonstrated [6], deep learning-based generative models have
been used to generate high-quality, pattern-rich image data. Hence, the need to augment
SAR datasets for ATR gave rise to a growing corpus of GAN-based SAR target image
generation methods.

When exploiting DCGAN to generate MSTAR data, Ref. [7] jointly used two discrimi-
nators to recognize the generated results, and the recognition results are backpropagated to
the generator to enhance its performance. This method can be well adapted to the proposed
task of semi-supervised learning in the case of fewer labeled samples. Ref. [9] adopted a
c¢GAN to generate SAR target images with a noise + latent variable input, and information
theory was adopted by adding a CNN, fitting the mutual information item between the
generated images and the latent variable. The CNN kept calculating the lower bound and
forcing the GAN to optimize itself to reach the lower bound, which can help to increase
sample diversity. In [49], which had the same goal, real SAR target images from MSTAR
were encoded to feature codes and were mixed with noise and category labels. The mixed
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feature codes, as input, trained multiconstraint GAN outputs generated SAR target images
with high sample diversity, SAR feature similarity, and correct categories. In order to
complement the azimuth interpolation of the SAR target datasets, Refs. [10,11,50] improved
the generation ability of SAR images under specific azimuth angle labels; among them,
Ref. [11] trained a generator, the inputs of which contain four kinds of condition informa-
tion: azimuth angle, elevation angle, target type, and image resolution for SAR deceptive
jamming with high fidelity. Aiming to generate highly realistic simulated SAR images,
Ref. [8] fused the simulated SAR target image from OpenSARSim and the background
image from MSTAR and fine-tuned the fused image on a CycleGAN-based image-to-image
translation network. The recognition results showed that the network is able to preserve
the label information of targets and improve the realism of images simultaneously. Based
on these examples, it can be found that there are two primary issues in current SAR data
generation: firstly, the baseline dataset is single, while most of the works are based on
MSTAR. Secondarily, The conditional label information input to a cGAN is complex, and a
cGAN is unable to generate valid data beyond labels. In this paper, we build a new SAR
dataset containing eight aircraft targets as the baseline dataset, which extends the scope
of SAR data generation. Moreover, the image-to-image translation architecture is used to
translate the optical image obtained by computer simulation into the corresponding SAR
image. By utilizing simulated optical images as conditional information, generated SAR
images of those targets that are not included in the training set can be obtained.

3. Methods

The proposed SAR ATR system in this study comprises two components: SOIF-
CycleGAN for achieving 520 and O2S translation and a deep network for SAR ATR.
The processes of image fusion and SAR ATR are illustrated in Figure 1a,b, respectively.
Both SOIF-CycleGAN and the SAR ATR network are trained on the SPHS8 dataset. In
order to improve the accuracy of SAR ATR, we choose two entry points for using the
SAR-optical image fusion: SAR-optical co-registration image recognition and SAR data
augmentation. In terms of SAR-optical co-registration image recognition, the simulated
optical target image possesses the ideal quality and abundant features for recognition,
which can be utilized as a complement to the SAR image that is input into the SAR ATR
network to achieve more effective feature extraction. As shown in Figure 1b, only real
SAR target images are available for regular SAR ATR tasks. The S20 translation path of
SOIF-CycleGAN is trained to translate the real SAR image into the optical image domain
and generate the corresponding artificial optical image. The final input of the SAR ATR
network is the co-registration image, which consists of two channels: a real SAR image and
an artificial optical image. With regard to SAR data augmentation, computer simulation
can offer optical target images of arbitrary aircraft types from any viewpoint at a very low
cost, whereas the type and the viewpoint of the data in SAR target datasets are usually
limited. The O2S translation path of SOIF-CycleGAN is trained to translate the real optical
image obtained by computer simulation into the corresponding artificial SAR image. These
artificial SAR images containing the complete viewpoint interpolation of targets are used
as extra training data for the SAR ATR network. The two aforementioned entry points for
enhancing SAR ATR accuracy can be concurrently leveraged.
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Figure 1. Entire recognition system. (a) Processes of image fusion with SOIF-CycleGAN; (b) processes
of SAR ATR with a deep network. The artificial optical image and the artificial SAR image output by
SOIF-CycleGAN are introduced into the SAR ATR. 0 to 7 in Type represent eight types of aircraft
targets, respectively.

3.1. Bidirectional Translation Network

With a series of modifications, SOIF-CycleGAN is proposed based on CycleGAN to
achieve high-quality bidirectional image translation. These modifications will be covered
below in the introduction to the network architecture and loss function.

3.1.1. Network Architecture

SOIF-CycleGAN consists of two paths, S20 and O2S, and its architecture is fully
illustrated in Figure 2. The S20 path will be introduced first, which contains an 520
generator and an S20 discriminator. The S20 generator has the input of the real SAR
image and the output of the corresponding artificial optical image, which adopts the
encoder-decoder structure and contains nine residual blocks in the middle of the network.
Its network composition is presented in Table 1; first, the input single-channel grayscale
image 256 x 256 in size is normalized to the interval [—1, 1] and is encoded by three
groups of convolution + instance normalization + ReLU. This process conducts dimension
compression and channel expansion for feature maps. The parameter C of the convolutional
layers in Table 1 represents the number of output channels, K the size of convolution kernels,
S the stride, and P the padding. Instancenormalization normalizes each sample, which is
often used in style transfer tasks [51]. Next, the following series of residual blocks help
to optimize even large networks with inputs and outputs of the same size [52]. Finally,
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the decoding process adopts upsampling layers to expand the dimension and convolution
groups to realize the compression of the channel, which restores the feature map to the size
of the input image. Note that the image is finally normalized to the range [—1, 1] by the
Tanh activation function [53].

$20 Supervised
Learning Loss

Corresponding
Real Optical

S20 GAN Loss
$20-025
Cycle-consistency
Loss

Real

Fake

Artificial Optical Real SAR Reconstructed SAR
$20 Discriminator $20 Generator

Noise Injection

b

E(‘
Reconstructed Optical Real Optical Artificial SAR
02S Generator 02S Discriminator

02S GAN Loss
025-520
Cycle-consistency
Loss

Real

025 Histogram
GAN Loss

8{ @\‘ Real
9 io‘ Q
H“i;to’g‘r“a’m 02S Histogram Discriminator
Figure 2. Architecture of SOIF-CycleGAN.
Table 1. Architecture of generators.
Layer Information Output Shape
Cov(C64, K7, S1, P3) + InsNorm + ReLU (64 x 256 x 256)
Cov(C128, K3, S2, P1) + InsNorm + ReLU (128 x 128 x 128)
Cov(C256, K3, S2, P1) + InsNorm + ReLU (256 x 64 x 64)
ResBlock(C256) (256 x 64 x 64)
Upsample(S2) (256 x 128 x 128)
Cov(C128, K3, S1, P1) + InsNorm + ReLU (128 x 128 x 128)
Upsample(S2) (128 x 256 x 256)
Cov(Cé4, K3, S1, P1) + InsNorm + ReLU (64 x 256 x 256)
Cov(C1, K7, S1, P3) + Tanh (1 x 256 x 256)

The artificial optical image output by the S20 generator has three destinations: (1) the
artificial optical image is fed into the S20 discriminator, which is trained to try to distinguish
artificial optical images from real ones. Table 2 shows the structure of the S20 discriminator.
Four groups of convolution + instance normalization + LeakyReLU transform images into
feature maps with 512 channels and a size of 16 x 16. Using LeakyReLU activation in the
discriminator follows the guidelines for stable deep convolutional GANs in [53]. Through
a final convolutional layer with one output channel, the output is a 15 x 15 matrix, in which
each value in the matrix represents the correctness of the corresponding local patch. The
MSE error between this matrix and the real or fake labels of the input optical image is
the GAN loss of S20. No sigmoid is added after the final convolutional layer borrowing
from Wasserstein GAN [54]. (2) Through supervised learning, the error is calculated for
the artificial optical image and its corresponding real optical image, which is named S20
supervised learning loss. This supervised learning loss will also be backpropagated to
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the S20 generator to adjust the parameters, making the output closer to the real optical
image. The reason for adding supervised learning is elaborated in Section 3.1.2. (3) The
artificial optical image is fed into the O2S generator, translating images from the optical
image domain into the SAR image domain to output the reconstructed SAR image. The
error between the reconstructed SAR image and the real SAR image is named S20-O25
cycle-consistency loss, the reduction of which represents the improvement of the joint
performance of the two generators. The O2S generator has the same structure as the 520
generator, except that noise injection [55] is added after the last two convolutions to increase
the diversity of the output artificial SAR images.

Table 2. Architecture of discriminators.

Layer Information Output Shape
Cov(C64, K4, S2, P1) + InsNorm + LeakyReLU (64 x 128 x 128)
Cov(C128, K4, S2, P1) + InsNorm + LeakyReLU (128 x 64 x 64)
Cov(C256, K4, S2, P1) + InsNorm + LeakyReLU (256 x 32 x 32)
Cov(C512, K4, S2, P1) + InsNorm + LeakyReLU (512 x 16 x 16)

Cov(C1, K4, S1, P1) (1 x15x 15)

As for the O2S path, it is totally the same in the calculation of both GAN loss and
cycle-consistency loss using the S20 path, with a discriminator of the same structure.
Nevertheless, instead of using supervised learning, the O2S path adopts a histogram
discriminator to determine whether the statistic of artificial SAR images conform to the
distribution in real SAR. The function that directly computes the histogram of images
is not continuously derivable, which will prevent backpropagation. Therefore, we set
a sigmoid function as the threshold for counting the number of points in each interval,
and the resulting histogram is an approximation of the true histogram of the image. The
structure of the histogram discriminator adopts a multi-layer perceptron, which is presented
in Table 3. The whole SOIF-CycleGAN exploits the adversarial learning between the
generators and the discriminators, the joint learning between the S20 and the O2S paths,
and the combination of supervised and unsupervised learning, to improve the performance
of both the generators and the discriminators together. Eventually, a powerful SAR-optical
image bidirectional translation capability is acquired.

Table 3. Architecture of histogram discriminators.

Layer Information Output Shape
Linear(C512) + LeakyReLU (1 x512)
Linear(C256) + LeakyReLU (1 x 256)

Linear(C1) (1x1)

3.1.2. Loss Function

The 520 and O2S translation need to be discussed and designed separately due to the
huge difference in target characteristics caused by the distinct mechanisms of SAR imaging
and optical imaging. The optical image obtained by computer simulation contains complete
target structure information and rich details without noise. The SAR image from the real
SAR system has inevitable speckle noise and clutter, with the target structure information
emerging or disappearing with the change in the viewpoint. Meanwhile, because the
SAR image is a combination of scattering points, the target details are difficult to identify.
Therefore, the SAR image and the optical image cannot be considered equivalent from
the perspective of the target structure restoration through image translation. The target
structure information contained in SAR images is usually a subset of that found in optical
images. In other words, the O2S translation is an overdetermined problem that can be
addressed via unsupervised learning with weaker constraints. While the S20 translation
is underdetermined, additional constraints need to be incorporated to ensure that the
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network is effectively trained, such as supervised learning. Therefore, as shown in Figure 2,
in the O2S translation path, the network is trained with the unsupervised GAN loss and
the cycle-consistency loss in typical CycleGAN. In contrast, supervised loss functions are
added to the S20 translation path to constrain the training of the network. The test results
obtained using different loss functions separately in Section 6.1 further support the above
inferences. All the losses used in SOIF-CycleGAN will be described as follows.

Think of it in terms of the loss function, where the trainable discriminator evaluating
whether the output of the generator is close enough to the real samples is essentially an
adaptive loss function, which is known as GAN loss. GAN loss usually achieves better
results than a fixed loss because its objective function adjusts as the discriminator becomes
more powerful during training, forcing the generator to move towards a higher standard
of performance. Equation (1) shows the total GAN loss in SOIF-CycleGAN, where the real
optical image O and the real SAR image S follow the distribution probabilities of pata (O)
and pgata (S), respectively.

LeaN = Eon g, (0) [Dszo(o)z} + Espgaa (5) {1 - Dszo(Gszo(S))z}

)
+ Espyn(S) [Dozs(S)z} +Eompy, (0) [1 - Dozs(Gozs(O))z]
In the O2S translation path of SOIF-CycleGAN, the histogram discriminator for mon-
itoring the statistical parameters of the generated image is also adopted. A derivable
histogram calculation function is designed by using a steep Sigmoid function instead of the
activation function at the thresholds. The approximate number of points in each histogram
interval can be denoted as Equation (2), where b represents the width of the intervals, m is
the sequence number of the intervals, I represents the image, N represents the number of
pixels in the image, S represents the Sigmoid function, and W is its weight parameter. The
histogram GAN loss in the O2S translation path can be denoted as Equation (3):

Histy, (I) = i S(I(n) —m - b) — % S(I(n) — (m+1) - b)
n=1

n=1

@)
1

S = Tiews

Lhiist = Espy(S) {DHist(HiSt(S))z] + Eo~pgaa (O) [1 - DHist(HiSt(GOZS(O)))z} ®)

When calculating cycle-consistency loss, the original image passes through a pair
of opposite generators in turn, and the output reconstructed image is obtained. Then,
the reconstructed image is compared with the original image using a fixed loss function
(usually L1). Cycle consistency loss provides constraints on the two generators during
training so that their functions remain symmetric. Using it in isolation from other loss
functions is not effective. The total cycle-consistency loss in SOIF-CycleGAN is denoted by
Equation (4).

Leyde = Espyua(s)[1G025(Gs20(S)) = Sll1] + Eompyor, (0)[1Gs20(Go2s(0)) = Ofl1]  (4)

The artificial optical image output in the S20 translation path is also directly compared
with the corresponding real optical image through supervised learning. The supervised
learning loss combines the L1 loss that focuses on the whole and the LPIPS loss that focuses
on the local (demonstrated in Section 6.1), which is denoted as Equation (5). L1 loss is
one of the most commonly used loss functions for image translation tasks and is obtained
by taking the L1 norm of two images pixel by pixel and then averaging this. Learned
perceptual image patch similarity (LPIPS) loss [56] compares the two input images by a
neural network that has been fully trained on an optical image dataset for feature extraction.
AlexNet trained by ImageNet is used when computing LPIPS in this paper. The outputs of
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each layer of AlexNet are activated, normalized, and weighted. Then, the spatial-average
L2 norm is calculated and averaged to obtain LPIPS. The calculation process of LPIPS is
shown in Figure 3.
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Figure 3. The calculation process of LPIPS.
Lsuper = Egpy..(5)[1Gs20(S) — Oll1] + Eseepy,. (s) [LLPips(Gs20(S), O)] (@)

SOIF-CycleGAN optimizes all the loss functions in each learning epoch. The identity
loss commonly used in CycleGAN can help keep the hue of RGB images stable. In this
study, the SAR image and the optical image obtained by simulation with reference to active
infrared imaging do not contain color information, so this loss is not used.

3.2. Recognition Network

A modified LeNet network is adopted as the recognition network. LeNet uses the
classical convolutional layer + linear layer architecture, and most mainstream image recog-
nition networks are extended and improved based on this architecture. The objective of this
study is to verify that SAR-optical image data fusion can enhance the performance of SAR
ATR rather than be used to explore the upper limit of accuracy achievable by various SAR
ATR methods in the proposed SPH8 dataset. We finally chose a concise network because an
excessively intricate structure runs the risk of masking the benefits derived from the data.

4. Experiments

In this section, the source and composition of the SPHS8 dataset are presented in
detail first. Next, the training parameters and hardware configuration in the experiments
are provided.

4.1. Dataset

A new SPHS dataset containing paired, as well as unpaired, SAR-optical target images
is created for the SAR-optical image fusion by using the combination of supervised and
unsupervised learning in this paper. The targets in SPHS8 cover five types of fixed-wing
aircraft (Quest Kodiak 100 Series 1I, Cessna 208B, Air Tractor 504, PC-12, and Beech King Air
350) and three types of helicopters (Ka-32, AW 139, and AS350). The SAR image in SPHS8
contains HH, HV, and VV polarization modes, with a resolution of 0.3 m x 0.3 m, which is
obtained from a UAV-borne Ku-band SAR for the multi-angle imaging of ground aircraft
targets, with a center frequency of 14.6 GHz, a bandwidth of 600 MHz, a sideways viewing
Angle of 45°, and a flight altitude of 150 m. Due to the small sideways viewing angle and
the range-based imaging mechanism, the target in the original SAR image is inverted with
the layover effect, which is not in accordance with the perspective used by optical imaging
and human vision. Thus, the SAR image in SPHS is the result of flipping the original SAR
image upside down; that is, the upper end of the image is proximal, and the lower end
is distal. The optical images are obtained through a ray-tracing algorithm referring to
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active infrared imaging. As active infrared imaging actively emits electromagnetic waves
and receives the echoes for imaging just like SAR imaging, they share similar radiation
expression. The noncoherent imaging mechanism of active infrared imaging enables it
to avoid the speckle noise in an SAR image. The elaborate CAD models of the targets
are established based on prior knowledge, with their surfaces programmed to be smooth,
referring to the strong specular reflection of the metal shells to microwaves. The creation
of the dataset is shown in Figure 4, with the illustration of UAV SAR imaging of the real
scene and the simulated active infrared imaging of the CAD scene. The aircraft position
during SAR imaging is obtained, and a camera is set at the corresponding position in the
CAD scene as the UAV works at a fixed altitude (H = 150 m) and the multi-view routes are
known. Analogous to the electromagnetic plane wave in the far field, the light source is
set to parallel the infrared rays with the same 6 = 45° as the viewpoint of SAR imaging in
the CAD scene. The ray-tracing algorithm tracks the incoming ray backwards at each pixel
of the image received by the camera and calculates the reflection and refraction of the ray
according to the target and generates optical images, which are then matched with SAR
images.

UAV SAR

SAR Imaging

SAR Images of
HH, HV, and VV

Real Scene
Matching

Simulated SPH8-P Dataset
Optical Imaging

Optical Image

CAD Scene

Figure 4. Creation of the SPHS8-P dataset.

The paired data, named SPH8-P, are the SAR image and the corresponding optical
image under the same viewpoint. Samples from SPHS8-P and photos of the corresponding
targets are shown in Figure 5. Among them, the SAR images with three polarization modes
under the same viewpoint are given a category; they share one simulated optical image
as an independent sample to give the network the ability to process SAR images with
different polarization modes. There is high consistency between the SAR images and the
corresponding simulated optical images. SPH8-P contains 269 categories, with a total of
807 SAR-optical image pairs. Besides, the optical images of the eight targets under the
angle views of 0-355°, with 5° interpolation (some samples are shown in Figure 6) are
named SPHS8-U, which formed the unpaired data with the SAR images in SPH8-P. As
the viewpoints of SAR imaging are not comprehensive due to the limitation of field test
conditions, SPH8-U makes a supplement. All images are converted into 8-bit grayscales
with a size of 256 x 256 pixels and are labeled according to the type of the single aircraft
target they contain.
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Figure 5. Samples of SPH8-P and photos of the targets. Columns (a—h) show one of the categories of
the Quest Kodiak 100 Series II, Cessna 208B, Air Tractor 504, PC-12, Beech King Air 350, Ka-32, AW
139, and AS350, respectively. Images of each row from top to bottom belong to SAR images in HH,
SAR images in HV, SAR images in VV, optical images, and photos of the targets, respectively.
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Figure 6. Samples of SPH8-U. The sample images of eight types of aircraft are arranged into an
ellipse according to their poses, with their backgrounds removed. In fact, the computer simulation
can generate optical images of any type of target under any viewpoint.

4.2. Implement Details

All the optimizers used for training the networks are Adam. The initial learning
rate is 0.0002, which becomes one-tenth of the previous learning rate every 100 epochs.
The decreasing learning rate allows the network training to go from drastic changes to
fine-tuning and helps the network converge reach a better result.

Using both supervised and unsupervised learning, SOIF-CycleGAN requires paired
and unpaired data for training simultaneously. Each training or test requires a pair of SAR-
optical images from SPH8-P and an optical image from SPH8-U. Thus, SPHS is randomly
divided into five nearly equal groups, each containing 1/5 SPH8-P and 1/5 SPHS8-U. It
takes five trials to translate all images of SPHS in the test, using five sets as test data in turn
and using the others as training data. The images of the three different polarization modes
contained in each category in SPHS are similar. Images from one category appearing in the
training dataset and the test dataset at the same time should be avoided. Thus, the category
is used as the smallest unit to split the groups.

Data augmentation is exploited to expand the number of patterns in the training
data, which can avoid overfitting. Random cropping and random horizontal flipping are
considered reasonable because data augmentation should simulate what would happen in
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a real situation. SAR and optical image pairs from SPHS8-P are subjected to exactly the same
data augmentation in one round of training to keep their semantics consistent. In addition,
the values of the images in both the training and test data are normalized to the interval
[—1, 1]. The total number of parameters for both the S20 generator and O2S generator is
43.36 MB. ALL the experiments are implemented based on an Intel(R) Xeon(R) Gold 5218R
CPU at 2.10 GHz and an NVIDIA GeForce RTX 3090 GPU with a dedicated GPU memory
of 24.0 GB. The training time of the whole SOIF-GAN for 500 epochs is 10.5 h. All the codes
are written in Python 3.8.5 (A programming language first released by Guido van Rossum
as Python 0.9.0 in Amsterdam) , using the deep learning tools of the Pytorch 1.7.1 (An
open-source machine learning framework developed by Meta Al) package in Anaconda.

5. Results and Analysis

In this section, the results of data fusion are presented and evaluated through both
human vision and IQA methods. Subsequently, the results of the SAR ATR experiments
enhanced by image fusion are shown.

5.1. Results of Image Fusion

In this study, the artificial optical image and the artificial SAR image output by SOIF-
CycleGAN are introduced into the SAR ATR. The quality of the translated images is the
key to achieving the improvement of accuracy. By exploiting the grouping method in
Section 4.2 to train and test SOIF-CycleGAN, translated images corresponding to all the
SAR images and optical images are obtained. Each training lasted 500 epochs. Due to the
diversity of image fusion tasks, there is no uniform standard to evaluate the quality of the
image fusion results. We chose human vision and IQA methods to evaluate the quality of
SAR-optical image fusion combined with practical application and mathematical analysis.

Samples of the 520 translation results are shown in Figure 7. Firstly, by identifying the
local features in the SAR image and translating them into the corresponding expression in
the optical image, the set of scattered points in the target is transformed into a continuous
region with the chiaroscuro added, and the speckle noise in the background is purified.
These changes improve the image quality and make the artificial optical image very suitable
for human eye observation. Some clutter caused by the SAR imaging process, such as bright
stripes in the background in the HV SAR image of Figure 7e and the HH, VV SAR images
of Figure 7g, are effectively judged as noise and eliminated. Even some extreme clutter,
such as the aircraft propeller in the HH, VV SAR images of Figure 7b, and the aircraft tail
in all SAR images of Figure 7c (the formation of the angular reflection structure brings the
strong trailing appearing near the strong scattering point), are not misjudged as entities.
Secondarily, the main bodies of the aircraft targets, including fuselages, wings, and tail fins
(and including the horizontal stabilizer fin and the vertical fin), are successfully restored to
their optical counterpart. Thanks to the abundant prior information from the optical image,
any missing and distorted details, like undercarriages and wing radars, are also recovered.
Structure reconstruction and detail recovery can effectively enhance the recognition of
aircraft types. For instance, when distinguishing the target types in Figure 7a,b, it is difficult
to judge when using the SAR images because they are both high-wing. However, with
the ratio of wings and tails, the aspect ratio, the size of undercarriages, and the position
of wing radar in the artificial optical images, we can effectively distinguish them. In fact,
these artificial optical images can greatly reduce the difficulty of manual interpretation
and recognition. Moreover, there are usually slight pose differences between the targets
in the artificial optical images and the optical images, which is particularly obvious in
Figure 7b,e. When using computer simulation, due to the difference in mapping geometry
and the minor error of viewpoint, the target poses in some generated optical images are
different from those in SAR images. Even if there are semantic information errors in
the training data, with the help of unsupervised learning, SOIF-CycleGAN fully respects
the semantic information in the SAR images to complete the S20 translation task. This
indicates the network possesses an excellent local feature reconstruction ability without
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overfitting. These positive results verify the effectiveness of the S20 translation path of
SOIF-CycleGAN. In practical applications, S20 translation can also effectively facilitate
human interpretation and improve the efficiency of annotating SAR images, resulting in a
more efficient dataset construction process.

(a) (b) (c) (d) (e) () (8) (h)

Figure 7. Samples of S20 translation results. Columns (a—h) show the results of different categories,

respectively, among which (a) belongs to Quest Kodiak 100 Series 1II, (b) Cessna 208B, (c) Air Tractor
504, (d) PC-12, (e) Beech King Air 350, (f) Ka-32, (g) AW 139, and (h) AS350. The first row shows
optical images, then SAR images in HH, SAR images in HV, and SAR images in VV, each followed by
the corresponding artificial optical images.

In order to numerically evaluate the results of S20 translation, we used the three IQA
methods of SSIM, PSNR, and LPIPS. SSIM evaluates an image from the perspective of
human visual perception, considering the brightness, contrast, and structure of the image,
which is defined as Equation (6). yx and yy represent the mean values of images X and Y,
respectively, ox and oy the variances of images X and Y, respectively, oxy the covariance of
images X and Y, and C1, C2, and C3 are the constants for avoiding the denominator being
0. A higher SSIM means lower image distortion.

SSIM(X,Y) =1(X,Y)-¢(X,Y)-s(X,Y)
2uxuy + C C( ) 20x0y + Cy

, Y) = ——7+—=,5(X,Y
i+ 12+ G 0%+ 02+ G (X.Y)

~ 20xy + G5 (6)

I(X,Y) = -
( ) oxoy + C3

PSNR, denoted as Equation (7), is defined by the mean square error (MSE), which
calculates the difference between the corresponding pixels in the images point by point.
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MAX? means the maximum value of the image pixels, which is 255 in the 8-bit grayscales
used in this paper. The higher the PSNR value, the less distortion appears.

@)

MAX?
PSNR = 10log;, (MSEI>

Since most images generated by GAN are too smooth, traditional evaluation methods
may lose accuracy in terms of the assessment of image quality [56]. In order to solve this
problem, the use of LPIPS [56] is proposed to compare the quality of two images by using a
trained deep network, which is more in accordance with the assessment of human vision.
The method to compute the LPIPS of two images has been presented in Section 3.1.2.

Table 4 displays a comparison of the S20 results between SOIF-CycleGAN and Pix2Pix
in the previous work [5]. In that, the SSIM, PSNR, and LPIPS are obtained by using
the corresponding real optical image as references and taking the average result after
calculation. As can be seen from the table, when compared to Pix2Pix, which only uses
supervised learning, SOIF-CycleGAN combines supervised and unsupervised learning,
gives the target clearer main bodies and more realistic details with lower noise, and
improves the SSIM, PSNR, and LPIPS significantly. These evaluations further validate the
advancement of SOIF-CycleGAN in the S20 translation task.

Table 4. Comparison of S20 results between SOIF-CycleGAN and Pix2Pix. The number in bold
indicates that one is better in the evaluation of the translation results.

SAR Pix2Pix SOIF-CycleGAN Optical
SSIM 1 0.4312 0.7420 0.8000 1
PSNR?T 18.1603 21.4738 22.5710
LPIPS| 0.4253 0.1236 0.0855
Samples

Figure 8 illustrates the results of the O2S translation and the real HH SAR images
under similar viewpoints. As shown in Figure 8, the O2S translation path of SOIF-Cycle
can accurately predict the distribution of scattering intensity on the target from different
viewpoints and successfully restore the point scattering characteristics of SAR images.
For example, in the SAR target image in Figure 8c, the body, tail, and wing ends of the
target have strong scattering, and these parts are also prominently emphasized in the
corresponding artificial SAR image. Meanwhile, the special effects in SAR images, such as
the secondary scattering formed by the wing and the ground in Figure 8a and formed by
the tail and the ground in Figure 8h, are also accurately restored in the artificial SAR images.
The details in the real SAR images are complex, which is expressed differently in the SAR
images obtained in polarization modes. The current network is unable to fully restore
the speckle noise texture and distinguish between polarization modes, resulting in slight
differences in the appearance and the histograms of the artificial SAR images compared
to the real SAR images. However, these artificial SAR images do partially capture SAR
target features under different viewpoints, thereby increasing the diversity of the patterns
in the training data and contributing towards the improved performance of SAR ATR. The
specific verification will be detailed in the next subsection.
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(a) (b) () (d) (e) () (8) (h)
Figure 8. Samples of S20 translation results. Columns (a-h) show the results of different categories
respectively, among which (a) belongs to the Quest Kodiak 100 Series II, (b) Cessna 208B, (c) Air
Tractor 504, (d) PC-12, (e) Beech King Air 350, (f) Ka-32, (g) AW 139, and (h) AS350. The first row
shows optical images, then the corresponding artificial SAR images, followed by the real SAR images,

and finally, the comparisons between the histograms of the real and the artificial SAR images.

5.2. Results of SAR ATR Enhanced by Image Fusion

SAR-optical co-registration image recognition and SAR data augmentation are the two
entry points for using SAR-optical image fusion to enhance SAR ATR. In order to verify
the effectiveness of the two entry points for improving SAR ATR accuracy, an ablation
study is conducted based on the modified LeNet network. In the baseline experiment
labeled as Experiment 0, all the SAR images in SPHS are randomly divided into equal sets
with no overlap in categories. Each group is used as the test set of LeNet and the other
as the training set in turn. The average test accuracy obtained from these two (training
and test) is used as the final accuracy. On the basis of Experiment 0, Experiment 1 uses
SAR-optical co-registration images as the input of the two-channel LeNet. In order to
simulate a realistic situation, the two channels of training data are the real SAR image and
the real optical image, whereas the two channels of test data are the real SAR image and
the artificial optical image. In addition, the test data consist of the real SAR image and
the real optical image, and this is also used to test the network as a control. Experiment
2 added artificial SAR images to the training data based on Experiment 0. Experiment
3, which uses both SAR-optical co-registration images and SAR data augmentation, is a
synthesis of Experiment 1 and Experiment 2. In order to exclude uncertainties in training,
each experiment is repeated five times, and the highest accuracy rates achieved are used as
the final results.

The results of the ablation study are presented in Table 5. First of all, by compar-
ing the results of Experiment 1 and Experiment 0, it can be concluded that SAR-optical
co-registration images as the input of the recognition network can improve the accuracy
outstandingly. Secondly, in Experiment 1 and Experiment 3, the test results using the
artificial optical image and the artificial optical image have small differences, which indi-
cates that the artificial optical image is quite close to the real optical image in the view of
the recognition network. The high-quality S20 translation ability of the proposed SOIF-
CycleGAN is further demonstrated. Next, when comparing the results of Experiment 2
and Experiment 0, the accuracy of the network trained by using SAR data augmentation is
improved, although not significantly. The accuracy of Experiment 2 is lower than that of
Experiment 0 in a few tests. It was found that although the artificial SAR image restores
the structure and radiometric expression of the target in SAR images, the details are still
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a certain distance from the real SAR image. In order to achieve higher accuracy, the 025
translation of SOIF-CycleGAN has room for improvement. Finally, based on the compre-
hensive results, two entry points of using SAR-optical image fusion to enhance SAR ATR
are both valid and can be used jointly to further improve the performance of SAR ATR.

Table 5. Results of ablation study. The data types connected by a | means they compose the SAR-
optical co-registration image as different channels, and with a +, this means additional data are added.

Experiment Input Channel Training Data Test Data Accuracy
0 One Real SAR Real SAR 79.92%
. Real SAR | Real optical 86.00%
! Two Real SAR | Real optical Real SAR | Artificial optical 85.50%
2 One Real + Artificial SAR Real SAR 81.54%
i . Real SAR | Real optical 87.61%
3 Two Real + Artificial SAR | Real optical Real SAR | Artificial optical 86.25%

6. Discussion

In this section, we first show the effect of different loss functions on the results of S20
translation, which justifies our adoption of the joint loss function. Then, the effect of the
differences in the sample sizes among target types on image fusion is discussed. In the end,
the robustness of S20 translation is demonstrated by displaying some special cases.

6.1. Effect of Loss Functions on S20 Translation

In order to test the effect of the loss functions, both in supervised learning and un-
supervised learning, on the S20 translation results and to select a better loss function
combination, a series of experiments were conducted. All training in the experiments lasted
150 epochs using the same training set, and the trained networks were tested on the same
test set.

On the one hand, CycleGAN loss (a combination of GAN losses and cycle consistency
loss), L1 loss, SSIM loss, and LPIPS loss are used to train SOIF-CycleGAN, respectively.
Firstly, as per the average IQA values and result samples shown in Table 6, L1 loss achieves
better SSIM and PSNR, and LPIPS loss performs better on the LPIPS. Subsequently, when
used alone, CycleGAN loss can restore the local features of the targets well, such as with
the continuous regions and realistic chiaroscuro, whereas it is not accurate for the main
bodies and contours of the targets, which is caused by the weak constraint of unsupervised
learning. In contrast, the three losses using supervised learning: L1 loss, SSIM loss, and
LPIPS loss, can restore the main bodies of the targets better. Thirdly, by observing the
training process and the corresponding result samples in Table 6, it can be found that the
networks using L1 loss and SSIM loss first learn the low-frequency main-body information
to obtain the fuzzy target body and then gradually optimize the high-frequency infor-
mation. Conversely, the network using LPIPS loss first learns the high-frequency detail
information and then optimizes the contour. This phenomenon is related to the different
optimizing methods of the networks using different loss functions. As L1 loss and SSIM
loss optimize the average of all pixel errors, the low-frequency components that account
for the vast majority of errors are optimized first. Whereas, as LPIPS loss calculates the
average error after decomposing the image through convolution kernels, the learning of
the reference image is limited to the range of each convolution kernel, so the image is
optimized locally first.

On the other hand, when combining supervised and unsupervised learning, Cycle-
GAN loss is combined with L1 loss, SSIM loss, and LPIPS loss, respectively. The three
IQA values of CycleGAN + L1 loss, CycleGAN + SSIM loss, and CycleGAN + LPIPS loss
comprehensively improve compared to using only supervised losses, which is thanks to Cy-
cleGAN loss. In addition, the combination of whole-focused loss and local-focused loss can
take into account both the main bodies and details of the target in each round of learning,
which can greatly shorten the period required for training. Therefore, two combinations
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of CycleGAN + L1 + LPIPS loss and CycleGAN + SSIM + LPIPS loss were tested. Among
them, CycleGAN + L1 + LPIPS loss obtains the highest SSIM while maintaining better
PSNR and LPIPS, according to Table 6, the result samples of which have targets with clear
edges and rich details. Based on the above experimental results and analysis, CycleGAN +
L1 + LPIPS loss is determined as the final joint loss in this paper.

Table 6. Test result of S20 translation trained with different loss function combinations for 150 epochs.
The number in bold indicates that one is better in a set of comparisons in the evaluation of the
translation results. CycleGAN + L1 + LPIPS is the final loss combination.

Type SSIM? PSNR? LPIPS| Samples
SAR 0.4312 18.1603 0.4253
CycleGAN 0.6575 20.0650 0.1673
L1 0.7830 22.2319 0.1262
SSIM 0.7412 21.7073 0.1417
LPIPS 0.7765 21.8677 0.0894
CycleGAN + L1 0.7917 22.5961 0.1122
CycleGAN + SSIM 0.7589 22.3098 0.1169
CycleGAN + LPIPS 0.7880 22.0856 0.0857
CycleGAN + L1 + LPIPS 0.7999 22.4452 0.0879
CycleGAN + SSIM + LPIPS 0.7975 22.4793 0.0881

6.2. Effect of the Unequal Sample Number on Image Fusion

In the translation results shown in Section 5.1, the Quest Kodiak 100 Series II, Cessna
208B, Air Tractor 504, and Ka-32 achieve satisfactory outcomes. However, the PC-12, Beech
King Air 350, AW 139, and AS350 only just obtained acceptable results. This problem
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is mainly caused by the small sample number in the latter four types of targets. Due to
the irresistible factor in field experiments, the number of various types of targets in the
available SAR images varies greatly. In order to quantitatively represent the relationship
between the sample number and the image translation performance, three IQA methods
were used to evaluate the S20 translation results for eight types of targets, respectively.
Regarding the relationship between the three IQA values and the sample number shown
in Figure 9, there is a strong positive correlation between the sample number and the
quality of the artificial optical images. Furthermore, in addition to the difference in the
number of samples between types, the image translation performance is also affected by
the quality of the sample images, the total number of fixed-wing aircraft samples and
helicopter samples, and other factors. For example, Air Tractor 504, which does not have
a maximum sample number, also achieves the top three average IQA values, as most of
its samples belong to successful SAR imaging results. Whereas, because the total sample
number of fixed-wing aircraft is significantly larger than that of helicopters, the overall
translation results of the three helicopters Ka-32, AS350, and AW 139 are relatively poor.
The above analysis also demonstrates that the network, trained on a substantial amount of
data, exhibits adaptability to new target types with small sample numbers. Therefore, it
is reasonable to anticipate that the image fusion performance of SOIF-CycleGAN will be
further improved with the continued implementation of field experiments and expansion
of the number of samples.
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Figure 9. Scatter diagram of the three IQA values versus the number of samples of eight types of
targets. (a) SSIM, with the linear correlation coefficient of 0.9195; (b) PSNR, with the linear correlation
coefficient of 0.8050; (c) LPIPS, with the linear correlation coefficient of —0.7517.

6.3. Spacial Cases

Robustness is crucial for image fusion networks, which denotes the network’s ability
to maintain a stable output despite disturbances in the input image. Simulating the distur-
bances encountered by SAR images in practical applications using precise mathematical
methods can be challenging. Fortunately, there are some disturbed samples in the SAR
images of SPHS8, which can aid our understanding of the performance of SOIF-CycleGAN.
These special cases of S20 are shown in Figure 10, including the S20 translation results
under four different types of disturbances: azimuth ambiguity, azimuth ghosting, extra
bright strips, and missing structures.

1.  Azimuth ambiguity. The results of the samples with azimuth ambiguity are shown
in Figure 10a,b. The severe ambiguity makes the target in the SAR image difficult to
recognize, which also affects the artificial optical image, resulting in slight geometric
distortions and missing structures, such as the tail in Figure 10a,b. Nevertheless, the
target can be effectively recovered in artificial optical images, which greatly facilitates
target recognition.

2. Azimuth ghosting. As shown in Figure 10c,d, azimuth ghosting appears in the SAR
images, which is caused by the periodic high-frequency vibration of the platform.



Remote Sens. 2023, 15, 5569

21 of 24

Despite the extra entities in the SAR images causing the translation network confusion,
it still adheres to the prior knowledge and avoids generating an aircraft with four
wings. However, the extra fuselage still results in an elongated nose on the aircraft.
Extra bright strips. In Figure 10e—i, bright strips can be classified into two types:
periodic and aperiodic. The periodic bright stripes are well eliminated in Figure 10e f,
which hardly affect the results of the transformation. However, the aperiodic bright
strips in Figure 10g and the HH SAR image in Figure 10h show the target structure
missing in the same place as the artificial optical images. The bright stripes in the tail
of the SAR images in Figure 10i arise from the secondary scattering of the rotor and
the ground, which are regarded as an entity and added to the tails of the aircraft.
Missing structures. Due to the edge of the imaging area, the targets in Figure 10e,i
have missing wings. With the help of prior information, the translation network
restores the wings of the aircraft but with a slight distortion. Proper incomplete
information completion is also highly advantageous for target recognition.

(d) (e) () (8) (h) ® () (k)

Figure 10. Special cases of S20 translation results. Columns (a,b) show the results of sam-

ples with azimuth ambiguity, columns (c,d) show the results of samples with azimuth ghosting,
columns (e—i) show the results of samples with extra bright strips, and columns (j,k) show the results
of samples with missing structures. The first row shows optical images, then SAR images in HH, SAR
images in HV, and SAR images in VV, each followed by the corresponding artificial optical images.

7. Conclusions

The experimental results and analysis presented in this paper verify that SAR-optical

image fusion can significantly enhance the performance of SAR ATR. We propose a SAR-
optical image fusion network named SOIF-CyleGAN for high-quality image bidirectional
translation. New constraints, such as supervised learning and additional discriminators,



Remote Sens. 2023, 15, 5569 22 of 24

are introduced into the training process of SOIF-CyleGAN by analyzing the characteristics
of 520 and O2S image translation tasks separately. A joint loss function that addresses both
the whole and local considerations was adopted to further improve the training efficiency
and translation performance of the network. The network proposed in this paper exhibits
significant improvements in terms of both visual effects and IQA values compared to
previous works. The artificial optical image and the artificial SAR image obtained through
image bidirectional translation can result in 1.62% and 5.58% accuracy improvements,
respectively, when introduced into SAR ATR, and this value reaches 6.33% when the two
are used simultaneously, as the ablation study results show. Meanwhile, a new approach
for constructing SAR-optical image pairs of targets is proposed and validated, with the
optical images generated by the computer simulation referring to active infrared imaging,
which yields highly consistent semantic information with the corresponding SAR images.
Based on this approach, a new multi-view SAR-optical image dataset named SPHS has
been created, which can support various tasks, such as SAR ATR, SAR-optical image fusion,
and multi-polarimetric SAR information fusion, whether supervised or unsupervised.
Additionally, the exploration of the impact of diverse loss functions and sample number
discrepancies among different types on the SAR-optical image fusion holds a high reference
value for future studies.

In future research, the focus will be on improving the performance of O2S translation.
In addition, the ability to generate SAR images with specific polarization modes will also
be implemented with the further expansion of the dataset.
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