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Abstract: The monitoring of crop phenology informs decisions in environmental and agricultural
management at both global and farm scales. Current methodologies for crop monitoring using remote
sensing data track crop growth stages over time based on single, scalar vegetative indices (e.g., NDVI).
Crop growth and senescence are indistinguishable when using scalar indices without additional
information (e.g., planting date). By using a pair of normalized difference (ND) metrics derived from
hyperspectral data—one primarily sensitive to chlorophyll concentration and the other primarily
sensitive to water content—it is possible to track crop characteristics based on the spectral changes
only. In a two-dimensional plot of the metrics (ND-space), bare soil, full canopy, and senesced
vegetation data all plot in separate, distinct locations regardless of the year. The path traced in the
ND-space over the growing season repeats from year to year, with variations that can be related to
weather patterns. Senescence follows a return path that is distinct from the growth path.

Keywords: ND-space; crop phenology; remote sensing; normalized difference; two-dimensional;
scatterplot; NIR; SWIR; crop monitoring; vegetation index; growth stages; corn; soybean

1. Introduction

Crop phenology, the physiological stages of crop growth and development from
planting to harvest, is impacted by genetics, environment, and the management practices
imposed on a crop [1]. Accurate monitoring of crop phenology throughout the crop
growing season can serve multiple purposes at both global and farm scales. It can be a
good indicator of large-scale trends, such as carbon, water, and energy fluxes, and can also
provide key information at the farm scale, dictating the timing of several crop management
interventions [2–4]. Remote sensing data appear to be well adapted to the large-scale,
near-real-time monitoring of crop phenology when supported by field observations and
the modeling [5] of a plant’s physiological stages. However, current methodology for
measuring crop phenology with remote sensing based on scalar vegetation indices limits
the potential of this approach. This study explores the potential of the newly defined
ND-space to better track crop phenology [6].

1.1. Crop Phenology: Importance from the Farm Level to the Global Level

Crop phenology monitoring is a valuable tool at the global scale for producing national
crop production forecasts and allowing private sectors and countries to better prepare for
over- or under-production of food, feed, fiber, and fuel [7,8]. It is also an effective way to
closely monitor the impacts of weather extremes and climate change in space and time,
allowing for a better understanding of the impacts of climate changes on future food
supplies [2]. Monitoring crop phenology can also enable the near-real-time ground truthing
of crop models and significantly improve the accuracy of these models [9]. For instance,
mechanistic crop models enable the estimation of crop physiological stages throughout the
crop growing season and thus allow for biomass and yield forecasting. Providing in-season
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data to calibrate a model could thus help to improve accuracy in production forecasting. At
the farm scale, crop phenology monitoring allows farmers to precisely plan their operations,
prioritizing fields that are more advanced before proceeding toward fields or sub-fields that
show delay in their physiological stage. Certain operations, such as herbicide application,
require precise assessment of both crop and weed growth stages to optimize the efficiency
of the product applied [4,10]. Being able to map crop phenology across the entire farm
could help prevent suboptimal application and better plan purchases of the appropriate
products. Similarly, side-dress fertilizer application in corn (Zea mays L.) is an operation
that would benefit from being performed as late as possible to coincide with the rapid N
uptake period of the growing season, but if performed beyond a certain crop height, it can
result in significant yield loss due to crop damage by the tractor axle.

In-season crop phenology monitoring at every farm location can also help detect
anomalies, allowing farmers to intervene in time to prevent yield loss [11]. As opposed
to a snapshot in time, typical of a “health map” generated using remote sensing, a crop
phenological time series could provide more robust anomaly detection. For example, if an
area of the field appears problematic on a “health map”, a map of crop phenology can help
verify if the growth curve shows anomalies or if it is progressing normally but at a slower
pace than other areas of the field. Benchmarking the growth curve of each pixel against
other areas of the farm/region and against other regions would enable a new way to detect
anomalies in real time. Another way to use in-season crop phenology monitoring is to
provide additional layers of data for on-farm experimentation. On-farm experimentation
is often conducted under conditions where external factors cannot be controlled by the
researcher or farmer. In this case, monitoring external factors such as crop phenology is
a way to improve the reliability of the experimentation process by better contextualizing
the observations.

1.2. Current Methodologies for Monitoring Crop Phenology Are Cost-Prohibitive

Measuring crop phenology can be performed in multiple ways and at various scales
depending on the objectives, the level of accuracy required, and the resources available.
It can be measured by hand, which is precise and accurate but requires qualified human
resources and significant time for a limited footprint. This method remains the reference
for developing, calibrating, and validating crop phenological models. The Pan European
Phenology Database (PEP725) [12] promotes and facilitates crop phenology research by
providing an open database on manual crop phenology measurements for research and
education purposes, and it is considered a reference for the European region. Manual mea-
surement of crop phenology remains the prevailing method despite being labor-intensive
and time-consuming because it is considered to be the most reliable [13]. Several techniques
have been developed to estimate crop phenological stages for both decreasing the cost of
measurement and expanding the number of crop phenological data in space and time.

Proximal sensing employs ground-based sensors to collect crop data that are indicative
of crop phenology. Over recent decades, crop-breeding programs have engaged in the
development of crop phenotyping platforms enabling high-throughput estimation of crop
traits [14]. These platforms can be carried around in a field while logging a large amount
of data (e.g., RGB imagery, Lidar, thermal, etc.) about the crop. An early example of
using a time series of ground-based vegetation index observations to map phenological
changes is illustrated in Figure 1 [15]. Here, a vegetation index (NDVI) is plotted against
the day of year (DOY), yielding a time series that is characteristic of crop phenology. The
NDVI, which was measured in the field using a hand-held radiometer (circles), is tracked
over the growing season for several different crops. This allows for the identification
of characteristic phenological stages based on changes in the reference index over time.
Under stable growing conditions, the track can be modeled (solid line in Figure 1), and
characteristic times in crop development can be modeled and identified [16].
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Figure 1. Phenological tracks of several crops based on a vegetation index. Such tracks allow for the
identification of characteristic times in crop development: emergence, full canopy, senescence, etc.
The circles represent field observations; the solid line is a model fit [15]. Reprinted with permission
from Ref. [15]. 2023, Elsevier.

Data of quality appropriate to support a detailed model typically require careful
control of the study area, and if the data are collected with a satellite or aircraft platform,
sufficient cloud-free conditions are necessary during each overpass. This is often not a
realistic expectation and is a major drawback to using remote sensing for tracking the
phenological stage of a crop [5]. Even when coarse-scale remote data are reliably available
at weekly intervals, as with 5-day composite Advanced Very-High-Resolution Radiometer
(AVHRR) data, the growth and senescence phases of individual crops cannot be distin-
guished using satellite data alone. AVHRR data have the further drawback of low spatial
resolution, making it impossible to sample single crops [15].

When coupled with advanced machine learning and data processing, phenological
tracking such as that in Figure 1 provides a reliable way of monitoring crop phenology [17].
However, scaling the process to commercial farms is cost- and skill-prohibitive, and it
remains a tool specialized for crop-breeding programs. Other systems use low-cost cameras
installed in the field called PhenoCams, which monitor the growth stages of the crop in
real time [18,19]. While being more affordable and potentially more distributed than the
high-throughput phenotyping platforms used in breeding programs, PhenoCams provide
a localized estimation of crop phenology but still require development for adaptability
to different environments, crop variety, crop status (e.g., healthy vs. stressed), etc. Using
Unmanned Aerial Vehicles (UAVs) is yet another way to monitor crop phenology and is an
approach that can achieve high levels of accuracy [20,21]. This platform also faces the same
limitations in scalability when confronting ground and proximal sensing platforms, due to
cost and skill requirements.

1.3. Challenges for the Remote Monitoring of Crop Phenology

Spectral imagery collected with satellites (or drones) remains a promising choice for
the cost and scalability of crop phenology monitoring. However, certain challenges remain.
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Zeng et al. [16] provide a review of the phenological metrics derived from satellite data,
concluding that the primary limitation is temporal resolution, which is seriously limited
by the presence of cloud cover. Even if the temporal resolution issue can be overcome, the
spatial resolution—necessary for the observation of single crops—remains an issue.

An effective approach that maintains both spatial and temporal resolution is to com-
bine data from multiple satellites with comparable spatial resolution [22]. This approach
increases the number of overpasses and reduces the problem of cloud cover while main-
taining a reasonable spatial resolution, although there remain issues with radiometric
calibration to account for differences in the spectral band placement and with the geometric
registration of the ground sample points. As with the ground monitoring cited above, there
have also been significant advances in applying machine learning to modeling remote
sensing metrics to detect vegetation trends and fill gaps in remote sensing data [23,24].

A more fundamental problem, the problem addressed here, is the association of
the phenological model with the day of year when considering growth patterns over
multiple years or larger areas. This is illustrated in Figure 2 with NDVI data collected
by the Hyperion imaging system on the EO-1 satellite from multiple corn fields over an
80-mile swath near Champaign, Illinois [25]. Each vertical set of points represents data
from corn fields collected on a single day of the same year, with each point representing
a single field. The spread of the data is indicative of differences in management (date
of planting, irrigation, fertilization, etc.). While Hyperion data are capable of resolving
individual fields and the general growth and decline of the corn crop is apparent, it
would be impossible to extract any subtle details from this data presentation without other
ground-based biophysical properties (e.g., planting date). Even at higher resolution and
higher frequency, the land surface phenological stages are roughly estimated (e.g., “Start of
greenness rising Season” or “End of greenness falling Season”), and their accuracy remains
limited. Diao and Li (2022) Showed r2 values of 0.64 for detecting emergence and 0.58 for
detecting crop maturity using PlanetScope data [26]. The limited accuracy obtained when
using single-index approaches without ground-based biophysical properties seems to be
linked to all indices following an increasing and decreasing trajectory that fully overlaps
(i.e., a scalar quantity).
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Figure 2. NDVI observations from the Hyperion scanner on the EO-1 satellite collected over a 7-year
period [25]. Each vertical collection of points is from a single year. The variability (e.g., average
NDVI decreasing and increasing again) is mainly due to differences in day of planting across the
different years.

1.4. Using Paired Normalized Spectral Indices in ND-Space Can Significantly Improve Crop
Phenology Monitoring Performed Using Remote Sensing

A notable difficulty in the use of vegetative indices in general has been the focus on
reducing the description of the crop state to a scalar quantity. Even a two-dimensional
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map can facilitate modeling and classification [27]. A two-dimensional index would allow
for the characterization of distinct crop characteristics and has the potential to be much
more descriptive overall [6]. The hypothesis is that by using both a canopy chlorophyll
content index (e.g., NDVI) and a canopy water content index (e.g., NDWI) in a two-
dimensional normalized difference space (ND-space), one can classify crop phenological
stages significantly better than by using either of these indices alone. This has the additional
advantage of avoiding the constraint imposed by tying the phenology to the day of year
(DOY) or Julian day (JD).

The Normalized Difference Vegetation Index (NDVI), typically used for estimating
crop properties, is primarily sensitive to the pigment concentration and cell structure of
plants [28]. It is most typically used as a measure of vegetation density, but the relationship
is non-linear and thus not consistent throughout the crop growing season [29]. The NDVI is
also indirectly sensitive to water content [30] and has been used as an indirect indicator of
water stress (e.g., [31]). Used alone, the NDVI is thus not sufficient for reliably estimating
crop phenology, because the same NDVI value can indicate different growth stages (e.g.,
an NDVI value of 0.7 could mean late growth or early senescence, or late growth under
water stress).

Another way of monitoring a crop is to use the shortwave infrared (SWIR), which
can be linked to the water content in the pixel [32]. The basis of this approach is that
greater biomass translates into more water in the pixel, which can be detected using
satellite-based SWIR. The SWIR part of the spectrum has also been used to estimate non-
photosynthetic vegetation cover relative to soil cover, which may indicate that chlorophyll-
based vegetation indices (e.g., NDVI) and SWIR-based vegetation indices may follow
different time series [33]. As with the NDVI, SWIR measurements would not be able to
distinguish between a young plant and a senescing plant if both exhibited comparable
water content on a pixel basis. Accordingly, a study using hyperspectral data and machine
learning found that important wavebands for predicting crop phenological stages are
700–800 nm and 800–1300 nm, and the results seemed to indicate that both wavebands play
a role in adequately measuring crop phenological stages [34].

There is significant precedent for multi-dimensional analyses with remote sensing
data [35]. The triangle method, introduced by Price [36] and developed by several oth-
ers [37], uses a scatterplot of surface radiant temperature vs. a vegetation index to estimate
soil surface wetness and evapotranspiration fraction from satellite imagery. Spectral mix-
ture analysis is often used with hyperspectral data to characterize pixels representing
multiple pure materials as well as discriminating mixtures of those materials [38,39]. Par-
ticularly relevant to the work presented here is the use of spectral mixture analysis to
discriminate among bare soil, vegetation, and non-photosynthetic vegetation [40] by con-
trasting the NDVI with the cellular absorption index (CAI), a shortwave infrared index
designed to track the depth of the cellulose absorption band [41]. Guerschman et al. [40]
used this approach to estimate the fractional cover of bare soil, and photosynthetic and
non-photosynthetic vegetation in the Australian tropical savanna region and expanded
the analysis to three dimensions using a ratio of the SWIR bands from MODIS. A similar
approach was taken more recently to assess crop leaf chlorophyll content and fractional
cover, using angular measures in the 2D scatterplot space [27].

While this is only a sampling of the work that has been carried out using multi-
dimensional analyses, all of the work has focused on analysis of single images; to our
knowledge, none have addressed time-varying characteristics appropriate to phenological
modeling. In this paper, we examine the possibility of using the relatively simple ND-space
defined with the NDVI and a second SWIR-NIR index to track the time-varying reflectance
that changes associated with crop phenology. The specific objectives of this study are
(1) to observe if using the ND-space can provide additional information for monitoring
crop phenology and (2) to interpret observations and pose research questions that could
allow for further exploration of this new approach. Although only four wavebands are
ultimately required, we explore the possible wavelength combinations using hyperspectral
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data, since this allows for consideration of many more possible band combinations. The
goal of this publication is to demonstrate a new way of looking at remote sensing data time
series for crop phenology monitoring.

2. Materials and Methods
2.1. Crop Phenological Data
2.1.1. The GHISA Spectral Data Set

The work described here relies on the Global Hyperspectral Imaging Spectral library of
Agricultural crops (GHISA) [25,42] data collected by the Hyperion hyperspectral imaging
sensor aboard the EO-1 spacecraft. At the time of writing this article, GHISA is the only
known database that is publicly available and analysis-ready for application to a crop
phenology study integrating both spectral and ground observations. The spectral range of
the imaging system spans the visible, near-infrared (NIR), and shortwave infrared (SWIR),
with a spatial resolution of 30 m. GHISA products provide radiometrically calibrated and
atmospherically corrected reflectance spectra covering the spectral range 437–2345 nm and
are spectrally sorted into 5 categories representing the 5 leading crop types in the world:
corn, soybean, winter wheat, rice, and cotton. Data were collected throughout the growing
season on cloud-free days and are broadly categorized by growth stage. The year, Julian
date, and location of each sample spectrum is provided. The crop type for each field was
retrieved from the USDA Crop Data Layer (CDL) database [43].

While there are known difficulties in the radiometric and wavelength calibration
of Hyperion data, reflectance time series have been shown to be stable and suitable for
monitoring vegetation functional parameters, including NDVI, EVI, feature depth, and 1st
derivatives [44]. Some of the Hyperion data acquired with the EO-1 satellite suffered a drift
from sun synchronous precession orbit when the satellite ran out of onboard maneuvering
fuel in 2011, which can result in reduced signal quality associated with weaker irradiance
and a longer atmospheric path for radiance to traverse [45,46]. However, the data show
that “no marked trend in decreasing quality in Hyperion is apparent through 2016, and these data
remain a high quality resource through the end of the mission” [45]. The Hyperion data used here
include images collected between 2009 and 2015 from a single EO-1 path over Champaign
County in Illinois, USA, in an area where corn and soybeans are grown. The locations
of the individual fields are shown in Figure 3. Spectral data from 22 separate overpasses
were associated with both the corn and soybean crops (Figure 4). As there is only a very
rough indication of the crop status for individual fields for any given overpass in the CDL
database, it is necessary to rely on the spectral reflectance to sort the data into a sequence
of growth stages.

The 14 mean corn crop spectra representing the progression from bare soil (thick
brown line) to maximum vegetation (thick green line) are shown in Figure 4a for corn
and in Figure 4b for soybean. Individual spectra are numbered in chronological order by
Julian day (JD). Since the data span seven years and growing conditions vary from year to
year, JD is not a precise measure of crop status from year to year. Yearly variations explain
the early-season spectra for both corn and soybean, in that the mean spectrum for JD 135
from 2013 (thick brown line) appears to be more characteristic of bare soil than the mean
spectrum for JD 134 from 2012 and, in the case of the soybean crop, JD 130 from 2014.

The spectral change during the latter half of the growing season, from mature crop to
non-photosynthetic vegetation (NPV; thick gold line) is shown for corn in Figure 4c and
for soybean in Figure 4d, again represented by the mean spectra for each JD. In this case,
there is an 18 JD day gap (JD 249 to JD 267) from early senescence to late senescence for
corn—likely due to problems with cloud cover—that appears as a gap in the spectra in the
NIR range (Figure 4c). The same time gap exists in the soybean data (Figure 4d) but is not
obvious in the spectra.
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Figure 4. Averaged spectra collected during each EO-1 overpass: (a) progression from bare soil
(brown) to maximum corn vegetation (green); (b) progression from bare soil (brown) to maximum soy-
bean vegetation (green); (c) progression from maximum corn vegetation (green) to non-photosynthetic
vegetation (NPV; yellow to brown); (d) progression from maximum soybean vegetation (green) to
non-photosynthetic vegetation (NPV; yellow to brown).
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The mean spectra for bare soil in both the corn and soybean fields are very similar
(Figure 4a,b). The full canopy spectra for corn and soybean are nearly identical in the
visible, but the soybean spectrum is consistently brighter throughout the infrared. The
spectra of late-season senesced vegetation, which we designate as NPV (thick orange
curve in Figure 4c,d), look very similar to the bare soil spectra (thick brown curve). For
corn, the bare soil and NPV spectra (Figure 4c) are nearly identical in the visible and near
infrared (VNIR) but differentiate in the SWIR. For soybean (Figure 4d), the NPV reflectance
is brighter than the bare soil reflectance in the VNIR while the two are very similar in
the SWIR.

2.1.2. Pigment, Cell Structure, and Water Content

Pigment concentration is characterized by absorption (decrease in reflectance) in the
visible spectrum (400–700 nm). In the NIR and the shorter wavelength range of the SWIR
(700–1300 nm), light is scattered very effectively, but there is relatively little absorption
either by plant pigments or by water [47]. In the far-SWIR (1300–2500 nm), scattering
is still effective, and there is no absorption by pigments; however, absorption by water
increases dramatically with wavelength [48]. A straightforward approach to capturing
these differences is to focus on the changes in spectral slope: the increase in slope from
the red to the infrared is tied to the increase in absorption by plant pigments in the visible
and the increase in scattering in the NIR and is well represented by the NDVI. A similar
normalized difference metric contrasting the NIR/near-SWIR with the far-SWIR has the
potential to capture the changes in water content.

2.2. Normalized Difference Metrics

A previous paper [6] made the case for using pairs of normalized difference (ND)
metrics for capturing and analyzing spectral change in multi- and hyperspectral images.
ND metrics are essentially scaled slopes and are insensitive to changes in brightness that
confound the characterization of color changes. This property underlies the effectiveness
of the NDVI and many other related scalar indices [17]. The NDVI, a parameter first
used in the early years of satellite image data [49], is valued for its sensitivity to biomass
or vegetation density, and its insensitivity to soil moisture. It is, however, insensitive to
leaf water content and is also unable to distinguish between soil and NPV, limiting its
potential for tracking a full crop life cycle. While the NDVI is proven to saturate for grass
crops, it was used for the purpose of this demonstration study because it is a well-known
index for characterizing chlorophyll concentration, and saturation does not prevent the
demonstration in this case [50]. Red and NIR wavelengths were chosen within the Hyperion
data and define the NDVI in Equation (1).

NDVI = (NIRa − Red)/NIRa + Red)
Red = 681 nm, NIRa = 854 nm

(1)

Combining the NDVI with an ND metric that is sensitive to leaf water content would
have the potential to discriminate between growing and senescing crops. Multiple indices
have been proposed for representing the moisture content of vegetation. It has long been
recognized that the sensitivity to the presence of water is better at NIR and SWIR wave-
lengths [51,52] due to strong absorption by water at these wavelengths, but algorithms
were initially restricted by the spectral bands available on the multispectral imaging satel-
lites of the time. With the increasing availability of hyperspectral imagery, several newer
vegetation water indices have been proposed with more precise band selection both in the
NIR [53] and in the SWIR [54]. Indices relying on the NIR are advantageous because of the
insensitivity of normalized difference indices to soil moisture in this spectral range [55],
as well as the broader availability (and lower expense) of hyperspectral sensors covering
this range [56]. On the other hand, the water absorption coefficient increases by orders
of magnitude between 900 nm and 2500 nm [48], suggesting that SWIR bands are likely
to provide more sensitivity, although a normalized difference index in this spectral range
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may be affected by both leaf and soil water contents [57]. We define NDSW, a normalized
difference metric that contrasts the reflectance at the long-wavelength end of the visible
and near-infrared with the reflectance at the long-wavelength end of the SWIR:

NDSW = (SWIR − NIRb)/SWIR + NIRb)
NIRb = 912 nm, SWIR = 2103 nm

(2)

NDSW is presumed here to be primarily sensitive to vegetation water content, whether
the vegetation is still growing or is senescing.

In selecting band pairs for the normalized difference, it is the slope of the line con-
necting the two chosen bands that is the most important. Figure 5 illustrates the slopes
represented by the NDVI and NDSW. The NDVI provides a strong contrast between the
vegetation, and both bare soil and NPV, and a smaller slope difference between soil and
NPV. The slopes represented by NDSW also differentiate among vegetation, soil, and NPV;
however, there is also a small but significant difference in the slopes of bare soil (positive)
and NPV (negative). Note that the slopes of each of the three targets are similar for both
corn and soybean spectra in Figure 5b, although the reflectance magnitude is different.
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Figure 5. Spectral slopes of soil, vegetation, and NPV (non-photosynthetic vegetation) represented
by the NDVI and a normalized difference (NDSW) linking the near-infrared at 912 nm (nirb) and the
shortwave infrared at 2103 nm (swir) for corn (a) and soybean (b).

3. Results

An ND-space plot of NDVI and NDSW for the full GHISA corn and soybean data sets
for the Illinois Hyperion path reveals a progression throughout the growing season from
bare soil to mature crops, then from senescence to NPV, and finally returning to bare soil
(Figure 6). The data representing the progression from bare soil (JD 135) to full vegetation
(JD 211) are bounded with green lines; the data representing the progression from full
vegetation to NPV (JD 268) are bounded with brown lines. The lines are exponential
functions similar to those derived in [6], connecting representative samples (e.g., bare
soil and full canopy). The NDVI represents the contrast in absorption by photosynthetic
pigments in the visible with the increase in scattering in the near-infrared. NDSW is
presumed to represent the change in water content.

The plot for the corn data (Figure 6a) follows a nearly linear track (cluster bounded
by green lines) throughout the growing season from bare soil (brown) to mature (green)
crop. A similar linear pattern is seen for the return to NPV (cluster bounded by brown
lines). When the crop is at full canopy, there appears to be an initial shift in the NDVI while
NDSW remains stable—possibly the result of tasseling. The corn tassels at the top of the
plant would present a non-photosynthetic surface and partially block the light reflected
from the leaves below.
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Figure 6. ND-space (NDVI vs. NDSW) representations of the complete GHISA data set for corn
(a) and soybean (b) crops in the Illinois study area. Similarly shaped data points represent data from
the same year. Colors are intended to represent growth stages. The mean spectra of these data sets
are the spectra displayed in Figure 4. Red symbols indicate data recorded during the 2012 exceptional
drought event. Solid and dashed lines are exponential functions fit to representative bounding values
(e.g., bare dry soil, dense vegetation) to provide a visual guide.

The overall pattern is somewhat similar for soybean (Figure 6b), but with interesting
differences. During the growth phase, the points again follow a nearly linear track (solid
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green line), but with greater overall variability (curved green line). During senescence,
however, the points follow a noticeably curved path. There is initially a more rapid decrease
in NDSW than in NDVI. The rates of change draw closer together as senescence progresses,
with the path becoming roughly linear toward the end. For both corn and soybean, the
senescence track ends with an NDVI value equivalent to that of bare soil (NDVI ≈ 0.08)
but with NDSW being negative and lower than that for soil, suggesting that NPV initially
maintains some moisture but dries over time.

An interesting complication occurred in 2012 when there was a severe drought in
Illinois (Figure 7). The drought was initially moderate but became increasingly severe in
mid-June 2012 and was declared exceptional in late July 2012 [58]. This pattern is reflected
in the ND-space plots in Figure 6. The early-2012 data (JD 134, 147, and 160) follow the
same pattern as those from other years, but data collected during the serious drought in
mid- to late July (JD 194 and 207) are shifted out of line with data from other years. The
shift corresponds to lower NDSW, consistent with lower water content. It could also be
indicative of a pigment reduction. There are no data from 2012 after JD 207 except for the
one set of corn data at the end of the season, in October (JD 283).
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Figure 7. Drought intensity index on a weekly basis from 2009 to 2015 for the County of Champaign
in Illinois, USA. The legend indicates the following: ND: no drought; D0: abnormally dry; D1:
moderate drought; D2: severe drought; D3: extreme drought; and D4: exceptional drought. Data
source: National Integrated Drought Information System, NOAA, accessible at www.drought.gov
(accessed on 14 November 2023).

The non-drought data presented in Figure 6 show distinct, repeatable patterns, al-
though they represent multiple fields spanning a large area (Figure 3), multiple years, and
presumably a range of soil treatments and management practices on individual farms. The
bare soil points cluster along a vertical line in the ND-space (NDVI ≈ 0.08), most likely
depending on the moisture level, and merge with the NPV points. A mature canopy of the
same crop would be likely to have the same location in the ND-space. In the ND-space
plot for corn and soybean crops (Figure 6), the locus of mature crops differs slightly but
consistently, with the NDVI for corn (NDVI ≈ 0.82) being noticeably lower than that for
soybean (NDVI ≈ 0.87) possibly because of the tassels that remain at the top of the plants.
It is also reasonable to expect that NPV would occupy the same location, regardless of
vegetation types.

Overall, Figure 6 clearly shows that within the ND-space defined by NDVI and
NDSW, each crop exhibits a combination of spectral reflectance properties that are distinct
throughout the crop growing season from planting to senescence. Indeed, as compared

www.drought.gov
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with the scalar NDVI or scalar NDSW, in the ND-space shown here, there is a notable
distinction between the growing and senescence phases, thus providing information on the
stage of the crop (i.e., corn or soybean) at any time of the crop growing season.

4. Discussion

The dominant message of the plots in Figure 6 is that the phenological state is distin-
guishable from emergence through full canopy to senescence. The two-dimensional plot
is essential; neither the NDVI nor NDSW can differentiate between growth or senescence
alone, but the two indices together clearly distinguish the full sequence of growth stages.
There may be more information in this type of plot, however. As suggested in the pre-
sentation, we would like to postulate a more detailed interpretation under the premises
that (a) the NDVI is sensitive to pigment concentration and cell structure but is essentially
insensitive to leaf water content and that (b) NDSW is distinctly sensitive to the presence of
water (whether in soil or vegetation), while its sensitivity to pigment concentration/cell
structure is highly correlated with that of the NDVI. If these premises are true, then a
change along the x-axis of the ND-space plot (Figure 4) indicates a change in pigment
concentration, and a change along the y-axis indicates a change in water content.

The following observations can then be made:

1. During the growth phase, the vertical scatter of data for any NDVI value may indicate
a range of moisture content; the horizontal scatter of data for any NDSW value may
indicate a range of pigment content. This observation is supported by the shift to
lower NDSW values for the data collected during the 2012 drought.

2. At full canopy, corn appears to lose pigment, while the water content remains stable.
There is no such shift for the soybean crop. This is likely attributable to the formation
of tassels (between JD 211 and JD 225); the chlorophyll content of tassels is lower than
that of leaves, but they have similar water content. Tassels appearing at the top of the
plant may obstruct part of the leaf canopy from the nadir view of the remote sensing
image and may produce a shift in NDVI that is apparent in the ND-space.

3. During senescence, the corn crop appears to lose pigment and water at about the
same rate over the entire senescence period. The resulting senescence track closely
parallels the growth track.

4. During senescence, the soybean crop initially appears to lose pigment, while the water
content is relatively stable, but about midway through senescence, the rates become
more equal.

5. During senescence, the vertical scatter of data for any NDVI value may indicate a
range of moisture content; the horizontal scatter of data for a given NDSW value may
indicate a difference in pigment concentration.

6. When pigments are entirely gone (NDVI ≈ 0.08, no pigment), there is still water
remaining in NPV or soil. As the NPV or soil dries, NDSW approaches the value of
bare soil.

Using the ND-space to observe crop growth opens new perspectives for the use of
remote sensing data to monitor crop phenology and may thus deserve the attention of the
scientific community to develop its potential. There are important aspects of this approach
that require further research to define the expansion capacity and reliability for monitoring
crop phenology in detail.

In this study, the NDVI and NDSW were used to define the ND-space and seem to
have good potential for discriminating growth stages throughout the crop growing season.
This was deemed sufficient for the scope of this study, aiming to present this new way of
using remote sensing data. Other indices may provide more detail; however, normalized
differences have the advantage of simplicity, insensitivity to the magnitude of reflectance,
and scaling in the range [−1, +1]. Optimizing and understanding the choice of ND indices
for discriminating crop phenological stages is important to further develop this approach.

The data set used here provided six (corn) or seven (soybean) broad phenological
stages from emergence to harvest. While this can be useful in general, certain uses may
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require more detailed monitoring of phenological growth stages [59]. Further research
with ground-truth data detailing crop phenological stages (e.g., number of leaves for corn)
would thus be needed to develop an algorithm capable of utilizing the ND-space for this
purpose across different crops.

The two indices used seem to characterize distinct attributes of crop canopy; notably,
the NDVI characterizes its chlorophyll content, and NDSW, its water content. While the
assumption is that both distinctively characterize those components, further research is
needed to establish the specificity and interdependency of those relationships. This requires
actual canopy chlorophyll and water content ground measurements.

5. Conclusions

This paper presents an approach for tracking crop phenology throughout the growing
season, clearly distinguishing between the growth phase and the senescence phase, with
an indication of the possibility of also distinguishing NPV. The analysis relies on a unique
collection of hyperspectral satellite data associated with individual corn and soybean fields
spanning the full crop cycle over seven years. Based on a pair of normalized difference
metrics, the results are independent of the magnitude of reflectance. Band pairs are selected
to highlight spectral differences that are associated with distinct properties: NDVI is
responsive to plant pigment concentration, and NDSW is sensitive to water content.

The resulting plots are very suggestive, indicating that it is not only possible to distin-
guish between growth and senescence but that it is probable that the stage of development
might be retrieved. There are also differences in the shapes of the patterns for corn and
soybean that appear to be characteristic of the individual crops. The fact that the data for
both crops are consistent over a 7-year span covering multiple fields and two distinct crops
suggests that the results are significant and should be repeatable.

Nonetheless, this is essentially an exercise in data mining using a remarkable collection
of hyperspectral satellite data. Conclusions are based only on an identified crop, a Julian
date, and locations for which reflectance spectra are available. There is no ground truth to
verify the crop condition (e.g., plant health, water content, weed cover, etc.). Nor is there
information on the actual growth stage of the crops (e.g., six-leaf corn).

The results are very suggestive, with the ND-space representation of the NDVI–NDSW
pair showing great potential to monitor crop phenology, but require controlled studies to
verify the relationships, especially to verify the water content relationship. The approach
should be further tested to examine the actual relationship of the ND-space patterns and
the precise growth stages and to determine the actual effect of differences in chlorophyll
content and water content. Finally, it remains to be examined how well this approach
would apply to other crops and to consider effects that are specific to a particular crop, e.g.,
the appearance of tassels on corn or flowering on soybean.
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