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Abstract: Crop recognition with high accuracy at a large scale is hampered by the spatial hetero-
geneity of crop growth characteristics under the complex influence of environmental conditions.
With the aim to automatically realize large-scale crop classification with high accuracy, this study
proposes an automatic crop classification strategy considering spatial heterogeneity (ACCSH) by
combining the geographic detector technique, random forest average accuracy model, and random
forest classification model. In ACCSH, spectral and textural indexes that can quantify crop growth
characteristics and environmental variables with potential driving effects are first calculated. Next,
an adaptive spatial heterogeneity mining method based on the geographic detector technique is
proposed to mine spatial homogeneous zones adaptively with significant differentiation of crop
growth characteristics. Subsequently, in view of the differences in crop growth characteristics and
key classification indexes between spatial homogeneous zones, correlation analysis, and random
forest average accuracy are combined to optimize classification indexes independently within each
zone. Finally, random forest is used to classify the target crop in each spatial homogeneous zone
separately. The proposed ACCSH is applied to automatically recognize crop types, specifically wheat
and corn, in northern France. Results show that kappa coefficients of wheat and corn using ACCSH
are 15% and 26% higher than those of classifications at the global scale, respectively. In addition,
the index optimization strategy in ACCSH shows apparent superiority. Kappa coefficients of wheat
and corn are 5–18% and 9–42% higher than those of classifications based on non-optimized indexes,
respectively. In general, ACCSH can automatically realize crop classification with a high precision
that suggests its reliability.

Keywords: crop classification; spatial heterogeneity; automatic; spectral indexes; textural indexes

1. Introduction

Spatial distribution of crop planting is crucial to achieve accurate agricultural man-
agement and production guidance. Crop classification with high precision is in demand.
The current widely used method is crop classification based on remote sensing image data,
given its capacity to obtain the spatial distribution of a crop planting structure [1].

In most relevant studies, crop classification based on remote sensing data is carried out
from a global perspective of the study area [2,3]. However, crop growth characteristics are
highly related to increasing environmental conditions. Under the driving effects of multiple
key environmental factors, crop growth characteristics inevitably exhibit strong spatial
heterogeneity, especially at large scale, which can give rise to barriers for precise crop
classification. Thus, considering spatial heterogeneity is an important research direction to
improve crop classification accuracy.
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Several researchers proposed layered strategies [4–8] to address spatial heterogeneity’s
influence on crop classification, which can be generally divided into two types: methods
based on climatic conditions and those based on management zones. Hao et al. [4] di-
vided China into eight zones based on its geographic position and climate and established
classification guidelines for each zone. The zoning method effectively increases crop classi-
fication accuracy. Aparecido et al. [6] divided their study area into sub-regions according
to segmentation temperature and precipitation. NDVI index segments were used by Chen
et al. [7] and Santos et al. [8] to create management zones for multilayer crop classification.
The zoning classification strategy [4–8] can also successfully reduce the effect of spatial
heterogeneity on crop classification. The accuracy of crop recognition based on spatially
homogeneous zones is higher than that of the global scale. However, existing studies
on the layered crop classification of zones generally use artificial division with sufficient
prior knowledge, which are effective in certain situations, especially when researchers
possess sufficient prior knowledge of the study area. However, at times, prior knowledge
is difficult to obtain. Additionally, crop growth is highly relevant with complex multiple
environmental variables, under which current approaches face difficulties to adaptively
mine the spatial heterogeneity patterns and mechanism of crop growth characteristics.
Thus, the effects of multiple environmental influences on crop growth necessitates an
adaptive layered crop classification approach that considers geographical heterogeneity.

The geographic detector (GD) model proposed by Wang et al. [9] can effectively detect
the key driving factors that cause certain spatial heterogeneities. The GD has been widely
and successfully applied in many fields [9,10]. Meng et al. [11] used the GD to explore the
internal driving factors of vegetation change in Inner Mongolia, effectively detecting and
analyzing the driving effects of terrain, climate, annual precipitation, and other factors.
Han et al. [12] successfully used a GD to explore the influence of environmental factors
on soil-total phosphorus content in soil at different erosion levels. Given its established
advantages and wide applicability in mining key factors and spatial homogeneous zones,
the GD shows potential in detecting spatial heterogeneity characteristics and mechanisms
of crop growth characteristics under the influence of multiple environmental variables.

Proper indexes are crucial for effective crop classification. Spectral features have
proven effective and are widely used to measure crop growth characteristics [13–15]. In
addition, several scholars carried out crop classification based on textural features that can
effectively reflect crop characteristics and distinguish between crops [16–18]. The present
study intends to integrate spectral and textural features as potential classification indexes.
However, specific spectral or textural features in specific months reflect differences in key
growth characteristics between crops and may vary with crop growth spatial homogeneous
zones. Therefore, classification indexes must be optimized to further reduce redundancy
and successfully improve accuracy. Index optimization strategies based on correlation and
machine learning, such as the average accuracy reduction (RFAA) method, are confirmed
to be effective in obtaining key indexes and improving crop identification accuracy. These
strategies are used to optimize the indexes for crop classification in this study [19,20].

In the study area, we propose a novel adaptive crop clustering strategy (ACCSH)
comprising three phases to achieve satisfactory crop classification considering the spatial
heterogeneity of crop growth characteristics. In phase 1, an adaptive spatial heterogeneity
mining method (SHGD) is proposed to mine spatial homogeneous zones of crop growth
characteristics by combining a GD and clustering. In phase 2, classification indexes are sep-
arately optimized in each spatial homogeneous zone. On this basis, the classification model
using random forest is constructed in phase 3. The remainder of this paper is organized
as follows. Section 2 describes the study area and dataset. Section 3 elaborately illustrates
the proposed algorithm and the corresponding accuracy analysis. Section 4 presents the
experiments on real-world applications that are carried out to test the proposed method.
Finally, the discussion and conclusion are presented in Sections 5 and 6, respectively.
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2. Study Area and Dataset
2.1. Study Area

The study area is the northern part of the French mainland, excluding Corsica (Figure 1),
which is relatively flat. This area experiences warm weather and some rains all year round
and is thus suitable for the growth of various crops. Agriculture is well developed with
a high degree of modernization. The main crops widely grown are wheat, corn, and
sugar beet. Since France is an important supplier and exporter of agricultural and sideline
products globally, efficient and accurate monitoring of crops in this region is essential.
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2.2. Data Acquisition and Analysis

The sample dataset with crop types and geographical location information is derived
from the 2009 European LUCAS dataset (Figure 1). Wheat and corn are the two main crops
concentrated in northern France and are therefore used as the study crop types. For the
study area, 325 wheat samples, 600 non-wheat samples, 213 corn samples, and 545 non-corn
samples were obtained. The remote sensing data are obtained from the 2009 MODIS13Q1
product (Figure 2). The Savitzky–Golay smoothing filter is used to reduce noise and
retain effective spectral information. The environmental data (topography, temperature,
precipitation) are obtained from WorldClim [21] (https://www.worldclim.org/data/index.
html (accessed on 29 November 2009)), where the monthly average image data are selected
for climate and precipitation. The spatial resolution is 2.5 min (~12 km2).

https://www.worldclim.org/data/index.html
https://www.worldclim.org/data/index.html
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Figure 2. Preprocessed remote sensing data with NDVI value.

Phenology refers to the cyclical changes of crops in response to external environmental
conditions. The varying phenological information and growth characteristics among crops
are the key to their differentiation. The relevant phenological information on crops in the
study area is obtained through a series of previous studies [22–24]. Figure 3 shows that the
growth cycle of wheat is from October to July, and corn is from April to November. These
months of the growth cycle must be included in the calculation of classification indexes.
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3. Methodology

Spectral and textural indexes that can characterize crop features are discussed in
Section 3.1. Environmental variables related to spatial heterogeneity are given in Section 3.2.
The proposed ACCSH to classify crops is explained in Section 3.3. The classification
evaluation indicators for assessing the classification effect are described in Section 3.4. The
procedure is given in Figure 4.
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3.1. Construction of Classification Indexes
3.1.1. Construction of Spectral Indexes

The MODIS13Q1 product captures images across five bands, including NDVI, red,
blue, near-infrared (NIR), and middle-infrared (MIR), which were adopted as spectral
indexes for 12 months in 2009. Additionally, different growth characteristics between
crops are mainly reflected in the NDVI time series curves (Figure 3) in terms of spectral
information [25–27]. Two quantitative indexes [26,27], curve trend Ti and curve difference
Di, are proven to be effective to distinguish different crops. Ti and Di are then calculated
based on the NDVI values of crop phenology according to the equations in Table 1. Ti
reflects the fluctuating trend of crop growth change and measures the correlation with the
pseudo phenology curves [26]. High Ti means more similarities between the sample i and
the target crop. Di measures the distance difference with the pseudo phenology curves and
judges the difference between curves [27]. Low Di indicates a small difference between
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sample i and the target crop. In summary, spectral bands, Ti and Di were used as spectral
indexes in this study.

Table 1. Spectral indexes and interpretation.

Indicator Calculation Formula Meanings

n-NDVI - The NDVI value in month n.
n-RED - The value of red band in month n.

n-BLUE - The value of blue band in month n.
n-NIR - The value of NIR band in month n.
n-MIR - The value of MIR band in month n.

Ti(j) Ti(j) = ∑ (Pin−Pi)(Tjn−Tj)√
∑(Pin−Pi)

2
∑(Tjn−Tj)

2

Similarity between sample i and crop type j in
NDVI index, j is the target crop.

Di(j) Di(j) =

√
∑
(

Pin − Tjn

)2 Difference between sample i and crop type j in
the NDVI index, j is the target crop.

i is the label of the classified sample; Tj is the average NDVI value of samples of crop type j during the phenological
period of crop type j. Tjn represents the average NDVI value of the crop type j in the month n. n is the label of
each month during the phenological period of crop type j. Pi is the average NDVI value of sample i during the
phenological period of crop type j, and Pin represents the NDVI value of sample i in the month n. Time phase
number n in this study is calculated using the phenological period of crop j.

3.1.2. Construction of Textural Indexes

As a commonly used texture algorithm, a gray-level co-occurrence matrix [28] was
adopted to calculate textural indexes based on the images in Figure 2. Textural indexes
include the mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment,
and correlation (Table 2). The mean reflects the relationship between the brightness of the
target pixel and its neighbors. Variance indicates the degree of grayscale variation in the
local area of the image. Homogeneity shows the concentration of pixels in the matrix. The
contrast reflects the degree of gray difference in the local area. Dissimilarity is the linear
correlation of the contrast of pixels in the local area. Entropy was used to measure the
textural information, and the richer the textural information, the larger the entropy value.
The second moment was used to describe the distribution of image brightness. Correlation
reflects the interrelation between the target pixel and its neighbors, and the correlation is
strong if the interdependence is large.

Table 2. Textural indexes and interpretation.

Index Meaning

i− B1 The value of textural index mean in month i
i− B2 The value of textural index variance in month i
i− B3 The value of textural index homogeneity in month i
i− B4 The value of textural index homogeneity in month i
i− B5 The value of textural index dissimilarity in month i
i− B6 The value of textural index entropy in month i
i− B7 The value of textural index second moment in month i
i− B8 The value of textural index correlation in month i

i is calculated using the phenological period of the target crop. When the target crop is wheat,
i = {10, 11, 12, 1 · · · , 7 }; when the target crop is corn, i = {4, 5, · · · , 11}.

3.2. Construction of Environmental Variables

The crop growth characteristics significantly vary under different environmental
conditions. In the study area, the main environmental variables [29,30] affecting crop
growth were as follows: (1) temperature, (2) precipitation, (3) slope, and (4) aspect (see
Table 3). Temperature and precipitation were downloaded from WorldClim 2 [21]. Slope
and aspect were calculated on the basis of the Shuttle Radar Topography Mission [31].
Details of data processing and calculation of environmental variables were obtained from
previous studies [32,33].
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Table 3. Environmental indicators highly related to crop growth.

Index Meaning

Slope Degree of surface inclination
Aspect Orientation of the topographic slope

Y− Precipitation Mean precipitation during phenological period
Y− Temperature Mean temperature during phenological period

3.3. ACCSH Method

This study proposed an ACCSH, which consists of three separate phases, as described
below in Sections 3.3.1–3.3.3. Phase 1 aims to mine the spatial heterogeneity patterns of crop
growth characteristics under the effects of multiple environmental variables. An adaptive
spatial heterogeneity mining method (SHGD) presented in Section 3.3.1 was put forward
on the basis of the geographical detector technique. In Phase 2, the classification indexes
were optimized. As the crop growth characteristics differ in each spatial homogeneous zone
obtained via SHGD, the key indexes for classification vary from zone to zone. Therefore, a
separate index optimization in each spatial homogeneous zone must be performed to obtain
effective classification indexes and reduce data redundancy. The optimization strategy
is described in Section 3.3.2. In Phase 3, we constructed the classification model while
considering the spatial heterogeneity, as explained in Section 3.3.3. The procedure is given
in Figure 5.
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3.3.1. Spatial Heterogeneity Patterns Mining

The geographical detector technique was proven effective for mining the spatial
heterogeneity patterns under the effects of driving variables [10,11], but only discrete
variables were suitable. Additionally, with numerous driving variables and categories,
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the spatial homogeneous zones may be too broken, which is inconvenient for subsequent
classification operations. We addressed the abovementioned problems using an improved
SHGD. The flow chart of SHGD is given in Figure 6, and its detailed procedure is as follows:
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Step 1: Discretize continuous variables.
Environment variables driving the spatial heterogeneity of crops are mainly continu-

ous measurements. The K-means method can segment continuous variables into several
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classes with similar intra-class distributions and different inter-class distributions. How-
ever, the number of classes in this method needed to be set. The NbClust package, which
was developed to choose the optimal number of clusters for the dataset, was verified to be
effective [34,35]. Hence, this study used the K-means function in the NbClust R package to
obtain the optimal discrete categories.

Step 2: Determine key driving environmental variables.
The factor detector of the GD was adopted to mine the key driving environmental

variables. However, highly correlated driving environmental variables need optimization.
The detailed operations are as indicated below.

Step 2.1: In Equation (1), environmental variables are labeled as X = {x1, x2, · · · , xm}
and the main classification index measuring crop growth characteristics is set as Y. Tempo-
ral NDVI can quantify crop growth characteristics to a large extent [36,37], and therefore,
the mean NDVI of crop phenology is calculated as Y in Equation (1). The environmental
variables with a significant p-value less than 0.05 of q in Equation (1) are selected as key
factors using the GD [38]. 

q(xi) = 1− SSW
SST i = 1, · · · , m

SSW = ∑L
h=1 Nhσ2

h
SST = Nσ2

, (1)

where m is the number of potential driving environmental variables X; L is the class number
of the environment variable xi; Nh is the number of samples in class h of xi; σ2

h are the
variance of Y in the area of class h of xi; σ2 is the variance of Y in the whole region; and
SSW and SST are the within and the total sum of squares, respectively. The value range of
q is [0, 1], and a large q indicates the strong ability to reveal the spatial heterogeneity of Y.

Step 2.2: Environmental variables are optimized. The Pearson’s correlation coefficients
between key factors obtained in step 2.1 were calculated. Two variables with a Pearson’s
correlation coefficient larger than 0.8 and a significance value smaller than 0.05 were
regarded as highly correlated [39]. If two variables are highly correlated, only the variable
with higher q-statistic significance in the GD result is retained. The reserved variables are
labeled as V.

Step 3: Merge classes of environmental variables to eliminate invalid division.
If classes A and B simultaneously meet the following rule, they can be merged.
Rule: Classes A and B are from the same environmental variable. Y in class A is

similar to that in class B, which can be measured using a t-test value of the risk detector of
the GD result.

Step 4: Interaction of environmental variables. The detailed procedure is as follows.
Step 4.1: Classes in V = {v1, v2, · · · vk} are labeled as v1 =

{
Cv1−1, Cv1−2, · · ·Cv1−n1

}
,

v2 =
{

Cv2−1, Cv2−2, · · ·Cv2−n2

}
, · · · , vk =

{
Cvk−1, Cvk−2, · · ·Cvk−nk

}
.

Step 4.2: Select two variables vi and vj to construct interactive classes.

vi =
{

Cvi−1, Cvi−2, · · ·Cvi−ni

}
and vj =

{
Cvj−1, Cvj−2, · · ·Cvj−nj

}
can be interacted with as

new classes vij =
{

Cvi−1∩vj−1, Cvi−2∩vj−1, · · ·Cvi−ni∩vj−nj

}
. vij is placed into V, and vi and

vj are deleted from V.
Step 4.3: Go to step 4.2. The procedure is continued until only one element remains

in V.
Step 5: Merge classes obtained by step 4. The difference of Y between classes in V

is assessed using the t-test value of the risk detector of the GD result. Classes with no
significant difference of Y are merged.

Step 6: Calculate the spatial homogeneous zones. Locations of classes that remain after
step 5 are the eventual spatial homogeneous zones S = {s1, s2, · · · , sk}, where k is their
number. In these zones, Y have remarkable differences driven by multiple environmental
variables. That is, crop growth characteristics significantly differ between zones, and the
samples were extracted for the following independent classification operation.



Remote Sens. 2023, 15, 5550 10 of 24

3.3.2. Index Optimization

Index optimization is generally carried out from two aspects. The first is to reduce the
redundancy of indexes, commonly performed by assessing Pearson’s correlation coefficient.
The second is to retain importance indexes to improve the efficiency of the classification
model. RFAA is one of the typical methods for retaining importance indexes. RFAA can
provide a feature ranking based on the contribution of each feature and selects optimal
indexes by measuring the change in model performance when the order of each feature is
disrupted. RFAA has been widely used and proven effective for index optimization [40,41].

In this study, correlations may exist among the spectral and textural indexes of the
crops and indicate that indexes contain duplicate information or are prone to redundancy.
In addition, the growth characteristics between a particular crop and other types are
concentrated on specific spectral or textural features in certain months. Therefore, to further
effectively reduce redundancy and improve accuracy, we optimized the classification
indexes using not only Pearson’s correlation coefficient but also RFAA. Additionally, given
the distinct variabilities in crop growth characteristics within each spatial homogeneous
zone, index optimization was carried out individually. The detailed procedure of the index
optimization strategy is explained below (Figure 7).
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Step 1: Select one unlabeled spatial homogeneous zone for labeling.
Step 2: Perform correlation screening of indexes.
A Pearson’s correlation analysis was carried out for spectral and textural indexes. The

correlation between indexes was considered high when the coefficient was larger than 0.8,
and the significance value was smaller than 0.05 [39]. When indexes were highly correlated,
only one index was retained.

Step 3: Perform optimal classification index mining.
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RFAA is widely used in index screening, in which indexes are selected by measuring
the variation of model performance when the order of each index is disrupted. Indexes
were selected by evaluating their importance. The optimal combination of indexes can
contribute the most to crop classification and was retained [42,43].

Step 4: Go to step 1 until classification indexes in all spatial homogeneous zones are
optimized. Optimized indexes in each spatial homogeneous zone were saved and used for
the following operations.

3.3.3. Classification Model Construction

The crop growth characteristics differ between spatial homogeneous zones, and the
main indexes distinguishing between crop types vary in each spatial homogeneous zone.
Hence, the crop classification must be separately carried out in each spatial homoge-
neous zone.

RF is a comprehensive learning algorithm based on decision trees, which has been
widely used in various classification and regression fields [44,45]. The RF classification
model was constructed using the training set in each spatial homogeneous zone based on
the optimized indexes. The classification accuracy was evaluated using the validation set
in each separate spatial homogeneous zone. The validation set construction strategy and
classification evaluation indexes are given in Section 3.4.

3.4. Accuracy Evaluation

The Kennard–Stone (KS) algorithm can effectively select the training and validation
sets with sufficient regional representation of classification indexes and was adopted in
this study [46]. Among the sample crops, 70% were chosen as the training set, and the
remaining 30% were utilized as the validation set [47]. The classification performance
was eventually evaluated using the kappa coefficient, F1 score, and accuracy, which are
commonly used and verified to be effective [48]. The F1 score is aimed at dichotomies and
reflects the classification effect of target-type crops, which is the harmonic value of recall
and precision. Additionally, accuracy signifies the percentage of the correctly predicted
rate of the whole sample [49]. The kappa coefficient is a comprehensive index to evaluate
the classification performance of the model as a whole.

4. Results

Wheat and corn are two crop types used in this study, and the classification results
using ACCSH are given in Sections 4.1 and 4.2, respectively.

4.1. Crop Classification of Wheat

The SHGD in ACCSH is used to mine the spatial heterogeneity patterns of wheat. The
mean NDVI is used as Y in Equation (1). Factor detection using steps 1 and 2 of SHGD
indicates that Y− Precipitation, which is divided into three classes, has a significant effect
on the spatial heterogeneity characteristics of wheat growth (Table 4). Risk detection using
step 3 of SHGD in Table 5 indicates that the crop growth characteristics of wheat in classes
2 and 3 of Y − Precipitation have no significant difference. As such, classes 2 and 3 of
Y− Precipitation can be combined as shown in Table 6, and the whole area is divided into
spatial homogeneous zones I and II, respectively (Table 6 and Figure 8).

Table 4. Factor detection result using the GD model for wheat classification.

Statistical Variable Y − Precipitation Y − Temperature Aspect Slope

q statistic 0.10 0.01 0.01 0.00
p-value 0.00 0.14 0.43 0.94
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Table 5. Risk detection result of classes of Y− Precipitation using the GD model for wheat classification.

Classes Class 1 Class 2 Class 3

class 1
class 2 Y
class 3 Y N

Y represents the remarkably different crop growth characteristics between classes and vice versa anti.

Table 6. Optimized classes of Y− Temperature for wheat classification.

Classes Optimized Classes Values Spatial
Homogeneous Zones

class 1 A Y− Precipitation between 43.0
and 57.0 I

class 2 B Y− Precipitation between 57.0
and 68.8 II

class 3 B Y− Precipitation between 68.8
and 109.6 II
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Figure 8. Spatial homogeneous zones of wheat.

According to Section 3.1, spectral and textural indexes during the phenological period
(Figure 3) are calculated for wheat classification. The index optimization strategy described
in Section 3.3.2 is carried out on the spectral and textural indexes. The results in Table 7
show that the optimal index sets of wheat vary within each spatial homogeneous zone,
further verifying the necessity of index optimization.

The ACCSH based on the optimized classification indexes is carried out, and the
corresponding classification evaluation indicators are shown in Figure 9. The ACCSH in
zones I and II show F1 scores of 0.94 and 0.95, respectively; the values of classification
accuracy are 0.93 and 0.93, respectively, and the kappa coefficients are 0.86 and 0.84,
respectively. The evaluation indicators indicate that ACCSH exhibits high stability and
classification ability and can be utilized to classify wheat in a large-scale region with
significant spatial heterogeneity.
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Table 7. Optimized classification indexes of wheat.

Region Index Type Index Name

Global region

Spectral indexes

1-NDVI, 5-NDVI, 7-NDVI, 8-NDVI
5-BLUE, 8-BLUE

7-NIR,12-NIR
8-MIR
Ti, Di

Textural indexes

6-B4, 7-B4, 12-B4
12-B5
7-B6
6-B7
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Table 7. Cont.

Region Index Type Index Name

Zone I

Spectral indexes

3-NDVI, 4-NDVI, 5-NDVI, 7-NDVI,
8-NDVI
10-RED
4-NIR
5-MIR
Ti, Di

Textural indexes

8-B1
9-B2

10-B6
9-B8, 12-B8

Zone II

Spectral indexes

5-NDVI, 7-NDVI, 8-NDVI
7-RED, 8-RED, 9-RED

8-BLUE, 9-BLUE
8-MIR, 9-MIR

Ti, Di

Textural indexes

7-B1, 8-B1
7-B4, 8-B4
7-B6, 8-B6
8-B7, 9-B7

4.2. Crop Classification of Corn

SHGD is used to mine the spatial heterogeneity patterns, and the mean NDVI of
corn during the phenological period is used as Y in Equation (1). The results indicate that
Y − Precipitation and Y − Temperature can be divided into three classes using K-means.
Then, key driving environmental variables are obtained, and both Y− Precipitation and
Y − Temperature show significant effects (p < 0.05) on the spatial heterogeneity of corn
growth characteristics according to the factor detection result in Table 8. According to step
3 of SHGD, the risk detection results are given in Tables 9 and 10, respectively, and classes
of Y − Precipitation and Y − Temperature are optimized as classes in Tables 11 and 12,
respectively, and are further interacted according to step 4. The risk detection of interaction
classes is subsequently executed (Table 13), which manifests their remarkable variation in
crop growth characteristics. Therefore, the locations of interaction classes are considered as
the eventual spatial homogeneous zones (Table 14 and Figure 10).

Table 8. Factor detection result using the GD model for corn classification.

Statistical Variable Y − Precipitation Y − Temperature Aspect Slope

q statistic 0.01 0.04 0.02 0.00
p-value 0.02 0.02 1.00 0.83

Table 9. Risk detection result of classes of Y− Precipitation using the GD model for corn classification.

Classes Class 1 Class 2 Class 3

class 1
class 2 Y
class 3 Y N
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Table 10. Risk detection result of classes of Y− Temperature using the GD model for corn classification.

Classes Class 1 Class 2 Class 3

class 1
class 2 N
class 3 N Y

Table 11. Optimized classes of Y− Precipitation for corn classification.

Classes Optimized Classes Values

1 C Y− Precipitation between 48.5 and 60
2 D Y− Precipitation between 60 and 71.8
3 D Y− Precipitation between 71.8 and 95.5

Table 12. Optimized classes of Y− Temperature for corn classification.

Classes Optimized Classes Values

1 E Y− Temperature between 10.0 and 13.3
2 E Y− Temperature between 13.3 and 14.2
3 F Y− Temperature between 14.2 and 15.5

Table 13. Risk detection result of interaction classes using the GD model for corn classification.

Classes Class 1 Class 2 Class 3 Class 4

class 1
class 2 Y
class 3 Y Y
class 4 Y Y Y

Table 14. Interaction classes of Y− Precipitation and Y− Temperature for corn classification.

Classes Interaction
Information Values Spatial

Homogeneous Zones

1 C∩ E

Y− Precipitation between 48.5
to 60 and

Y− Temperature between 10.0
and 13.3

Zone I

2 C∩ F
Y− Precipitation between 48.5

to 60 and Y− Temperature
between 14.2 and 15.5

Zone II

3 D∩ E

Y− Precipitation between 60
to 95.5 and

Y− Temperature between 10.0
and 14.2

Zone III

4 D∩ F

Y− Precipitation between 60
to 95.5 and

Y− Temperature between 14.2
and 15.5

Zone IV
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Spectral and textural indexes of corn during its phenological period are calculated
according to methods in Section 3.1. Similar to the results for wheat, the optimized clas-
sification indexes in spatial homogeneous zones and global areas vary (Table 15), setting
barriers to the high accuracy of crop classification at the global scale.

Table 15. Optimized classification indexes of corn.

Region Index Type Index Name

Global region

Spectral indexes

5-NDVI, 7-NDVI
7-RED, 8-RED

5-BLUE
9-NIR
5-MIR
Ti, Di

Textural indexes

5-B1, 6-B1, 12-B1
7-B3
7-B7
6-B8

Zone I

Spectral indexes

5-NDVI, 7-NDVI, 8-NDVI
5-RED, 8-RED
5-MIR, 6-MIR

Di

Textural indexes

1-NDVI, 2-NDVI, 3-NDVI,
7-NDVI, 11-NDVI, 12-NDVI

2-B6
7-B7

4-B8, 6-B8
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Table 15. Cont.

Region Index Type Index Name

Zone II

Spectral indexes

5-NDVI, 6-NDVI, 7-NDVI,
8-NDVI
7-RED

7-BLUE, 8-BLUE
7-NIR
7-MIR

Textural indexes

2-B1, 5-B1, 6-B1, 12-B1
1-B2
2-B4
1-B6
1-B7

Zone III
Spectral indexes

11-NDVI
5-RED, 7-RED, 8-RED

4-BLUE, 5-BLUE, 8-BLUE
7-NIR

4-MIR, 5-MIR, 8-,MIR
Di

Textural indexes
5-B1
2-B2

Zone IV
Spectral indexes

6-NDVI, 8-NDVI
4-RED, 5-RED, 6-RED, 7-RED,

8-RED, 11-RED
4-BLUE, 5-BLUE

7-NIR
5-MIR

Di

Textural indexes
3-B1, 7-B1

7-B3

Figure 11 presents the classification evaluation indicators of corn. Results show that
the F1 scores and accuracy indicators of ACCSH in zones I–IV are all higher than 0.9,
verifying its effective crop classification ability with high accuracy in a large-scale region
with significant spatial heterogeneity.
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5. Discussion
5.1. Comparison Results of ACCSH with Classical Methods for Crop Classification

The classification effectiveness of ACCSH’s zoning strategy is further verified by
comparison at the global scale; that is, the classification is constructed using RF combined
with optimized classification indexes at the global scale in the study area. The validity
of the index optimization operation can be verified using ACCSH and ACCSH with non-
optimized indexes. Additionally, one of the widely used deep learning methods, the 1D
Convolutional Neural Network (1D-CNN), is used for comparison. The comparative results
are given and analyzed below.

Figure 12a shows the evaluation indicators of wheat. The results show that the kappa
coefficients of ACCSH in zones I and II are 16% and 14% higher than that of the classification
at the global scale, respectively. Figure 12b presents the classification evaluation indicators
of corn. The results show that the kappa coefficients of ACCSH in zones I–IV are all higher
than those at the global scale. Thus, Figure 12 indicates that the index optimization strategy
combining correlation screening and RFAA in Section 3.3.2 can effectively improve crop
classification accuracy. Classification based on an index set optimized using correlation
screening can improve the accuracy compared with that based on a non-optimized index
set. Accuracy can be further improved based on the index set optimized using correlation
screening followed by RFAA, and the index optimization strategy is adopted in ACCSH
as described in Section 3.3.2. The index optimization strategy adopted in ACCSH can
improve the kappa coefficient of classification effect by 5–18% for wheat and 9–42% for
corn. The combination of correlation screening and the RFAA index optimization strategy
can effectively screen the key classification indexes. In summary, the index optimization and
spatial zoning strategies of ACCSH can improve crop classification. The kappa coefficient of
ACCSH is improved by 20–67%, and the F1 score of ACCSH is improved by 6% compared
with that of the global classification and classification based on non-optimized index sets,
respectively. The ACCSH can perform crop classification with relatively high ability and
can meet actual demand in large areas with significant spatial heterogeneity.
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The kappa coefficients of wheat and corn using 1D-CNN classification are 0.72 and
0.58, respectively, which are significantly lower than those of ACCSH. The possible reason is
that the training of deep learning models requires a large number of datasets [50,51]. When
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the sample size is limited, the machine learning-based ACCSH can achieve a relatively
good classification accuracy.

5.2. Analysis of the Spatial Heterogeneity Patterns of Crop Growth

According to Section 4.1, precipitation has a significant effect on wheat growth. The
mean annual precipitation in zone II is higher than that in zone I (Table 4), and the mean
NDVI value of wheat in zone II is higher than that in zone I during the planting and
growth period of wheat (Figure 13a). That is, in the study area, precipitation has a positive
driving effect on wheat growth, which may be the reason why a certain level of high
precipitation results in better soil moisture reserves, contributing to better conditions.
According to Section 4.2, the growth characteristics of corn significantly vary within spatial
homogeneous zones driven by precipitation and temperature (Figure 13b). The higher
precipitation during the growth period of corn in zones III and IV causes better growth
than in zones I and II, and this finding is highly consistent with the relationship between
precipitation and wheat growth. Additionally, for corn, the higher temperature in zones II
and IV reduces the NDVI values compared with zones I and III during the planting period.
High temperature increases the evaporation of water and reduces humidity, resulting in
difficulties for emerging seedlings and the water loss of pollen. The interaction of these two
factors shows that the combination of high precipitation and low temperature in zone III
contributes to the best corn growth, whereas the combination of low precipitation and high
temperature are the worst conditions. In summary, SHGD in ACCSH can mine the spatial
heterogeneous characteristics of crop growth. To further demonstrate the efficacy of SHGD,
we use the typical layered approaches, such as that based on management zones [7,8]
and on segmented single climatic variables (i.e., temperature or precipitation) in place of
SHGD in the ACCSH. The results in Figure 14 indicate that ACCSH based on SHGD has
the highest classification accuracy, demonstrating its power to mine spatial heterogeneous
patterns for crop classification. Specifically, the best wheat zoning outcome depends on the
precipitation segmentation that SHGD adaptively mines.

Remote Sens. 2023, 15, x FOR PEER REVIEW 21 of 25 
 

 

Figure 12. Evaluation indicators of wheat and corn classifications under different index optimiza-
tion strategies. (a) is the classification evaluation indicator of wheat; (b) is the classification evalua-
tion indicator of corn. Index 1 is the non-optimized index set. Index 2 is the correlation screening 
index set. Index 3 is the optimized index set using the strategy in ACCSH. 

The kappa coefficients of wheat and corn using 1D-CNN classification are 0.72 and 
0.58, respectively, which are significantly lower than those of ACCSH. The possible reason 
is that the training of deep learning models requires a large number of datasets [50,51]. 
When the sample size is limited, the machine learning-based ACCSH can achieve a rela-
tively good classification accuracy. 

5.2. Analysis of the Spatial Heterogeneity Patterns of Crop Growth 
According to Section 4.1, precipitation has a significant effect on wheat growth. The 

mean annual precipitation in zone II is higher than that in zone I (Table 4), and the mean 
NDVI value of wheat in zone II is higher than that in zone I during the planting and 
growth period of wheat (Figure 13a). That is, in the study area, precipitation has a positive 
driving effect on wheat growth, which may be the reason why a certain level of high pre-
cipitation results in better soil moisture reserves, contributing to better conditions. Ac-
cording to Section 4.2, the growth characteristics of corn significantly vary within spatial 
homogeneous zones driven by precipitation and temperature (Figure 13b). The higher 
precipitation during the growth period of corn in zones III and IV causes better growth 
than in zones I and II, and this finding is highly consistent with the relationship between 
precipitation and wheat growth. Additionally, for corn, the higher temperature in zones 
II and IV reduces the NDVI values compared with zones I and III during the planting 
period. High temperature increases the evaporation of water and reduces humidity, re-
sulting in difficulties for emerging seedlings and the water loss of pollen. The interaction 
of these two factors shows that the combination of high precipitation and low temperature 
in zone III contributes to the best corn growth, whereas the combination of low precipita-
tion and high temperature are the worst conditions. In summary, SHGD in ACCSH can 
mine the spatial heterogeneous characteristics of crop growth. To further demonstrate the 
efficacy of SHGD, we use the typical layered approaches, such as that based on manage-
ment zones [7,8] and on segmented single climatic variables (i.e., temperature or precipi-
tation) in place of SHGD in the ACCSH. The results in Figure 14 indicate that ACCSH 
based on SHGD has the highest classification accuracy, demonstrating its power to mine 
spatial heterogeneous patterns for crop classification. Specifically, the best wheat zoning 
outcome depends on the precipitation segmentation that SHGD adaptively mines. 

 
Figure 13. Growth characteristics of wheat and corn under different spatial homogeneous zones. (a) 
is the mean NDVI of wheat during the phenological period in each spatial homogeneous zone, and 
(b) is the mean NDVI of corn during the phenological period in each spatial homogeneous zone. 

Figure 13. Growth characteristics of wheat and corn under different spatial homogeneous zones.
(a) is the mean NDVI of wheat during the phenological period in each spatial homogeneous zone,
and (b) is the mean NDVI of corn during the phenological period in each spatial homogeneous zone.
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tends to have a negative effect on crop growth; (3) The accuracies of ACCSH evaluated 
using the kappa coefficient are 15% for wheat and 26% for corn, higher than those of clas-
sification at the global scale; (4) The accuracies of ACCSH are also much higher than those 
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Overall, ACCSH can automatically carry out crop classification under the influence 
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Figure 14. Crop classification based on the following layered method: (a) segmented precipitation
method; (b) segmented temperature method; (c) management zone method; and (d) SHGD.

In summary, ACCSH can be effectively applied to crop classification in large areas,
and the proposed SHGD can mine the driving effects of multiple environmental variables
on the spatial heterogeneity of crop growth characteristics.

6. Conclusions

This study proposes ACCSH to automatically classify crops considering the spatial
heterogeneity of crop growth characteristics under the influence of multiple environmental
factors. Experiments on two real applications are carried out. Comprehensive comparisons
are designed, including classifications at the global scale and based on non-optimized
classification indexes. The proposed ACCSH has the following advantages: (1) The results
of SHGD in ACCSH can reveal the spatial homogeneous zones and mechanism of crop
growth characteristics under the influence of multiple environmental variables. (2) The
index optimization strategy in ACCSH can fully consider the differences between spatial
homogeneous zones by carrying out a separate optimization in each spatial homogeneous
zone and obtaining the key classification indexes to improve classification accuracy. (3)
ACCSH can automatically perform crop classification without sufficient prior knowledge
of the study area.

ACCSH is used for wheat and corn classification in northern France. The following
new findings are obtained from the study: (1) The influence of the mean annual precipitation
on wheat is significantly positive. The better condition for wheat growth is due to relatively
high precipitation; (2) Corn growth is sensitive to both precipitation and temperature,
where the former exhibits an overall positive driving effect, whereas the latter tends to have
a negative effect on crop growth; (3) The accuracies of ACCSH evaluated using the kappa
coefficient are 15% for wheat and 26% for corn, higher than those of classification at the
global scale; (4) The accuracies of ACCSH are also much higher than those of classifications
based on non-optimized classification indexes.

Overall, ACCSH can automatically carry out crop classification under the influence of
multiple environmental factors on crop growth, indicating its potential in crop classification
with relatively high precision. In addition, ACCSH is adaptive and implemented using R
4.3.0 software and Matlab 2014a software, which makes the operation convenient. Future
research can focus on the application and improvement of the ACCSH. The proposed
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method is suitable for single crop classification, and future studies can improve ACCSH to
adapt to multiple and rotation crop classifications. Additionally, if sufficient remote sensing
data with high spatial resolution are available, ACCSH can be carried out at a small scale.
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