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Abstract: Infrared small target detection technology is widely used in infrared search and tracking,
infrared precision guidance, low and slow small aircraft detection, and other projects. Its detection
ability is very important in terms of finding unknown targets as early as possible, warning in time,
and allowing for enough response time for the security system. This paper combines the target
characteristics of low-resolution infrared small target images and studies the infrared small target
detection method under a complex background based on the attention mechanism. The main contents
of this paper are as follows: (1) by sorting through and expanding the existing datasets, we construct
a single-frame low-resolution infrared small target (SLR-IRST) dataset and evaluate the existing
datasets on three aspects—target number, target category, and target size; (2) to improve the pixel-
level metrics of low-resolution infrared small target detection, we propose a small target detection
network with two stages and a corresponding method. Regarding the SLR-IRST dataset, the proposed
method is superior to the existing methods in terms of pixel-level metrics and target-level metrics
and has certain advantages in model processing speed.

Keywords: infrared image; small target detection; deep learning; self-attention

1. Introduction

Compared with visible light imaging detection and active radar imaging detection,
infrared imaging detection technology has the following characteristics [1]: unaffected by
light conditions, works in all types of weather, works passively, has high imaging spatial
resolution, adapts to various environments, has strong anti-electromagnetic interference
ability, has a simple structure, is small in size, and easy to carry and hide. Benefiting from
the above advantages, infrared detection and imaging technology has been widely used
in infrared search and tracking, infrared precise guidance, low and slow small aircraft
detection and identification, and other projects [2].

In some cases that need to be pre-judged, the target to be detected is far away from
the infrared detection imaging system, and the image shows a dim and small target,
often lacking texture information. The targets to be detected are usually aircrafts, drones,
missiles, ships, vehicles, and other fast-moving objects [3,4], so the outlines of the imaging
targets are fuzzy. In addition, as they are affected by the surrounding environment and
detection equipment, small infrared targets are easily submerged in noise and complex
backgrounds [5]. All these factors bring challenges to infrared small target detection.

At present, there are many infrared detection devices with low imaging resolution that
are applied in various fields [6]. Therefore, it is of practical significance to design a method
for small target detection in low-resolution infrared images to improve the small target
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detection performance. The number of pixels occupied by the target in the low-resolution
infrared small target image is low [7], and a more accurate prediction of each pixel of the
small target (that is, improving the pixel-level metrics of the low-resolution infrared image
small target detection) can significantly improve the target detection performance.

Research on infrared small target detection is divided into single-frame image target de-
tection and multi-frame image target detection [2]. This paper focuses on the former. Early
researchers mainly proposed model-driven methods. Filter-based methods [8,9] require
determining the filtering template in advance based on the structural characteristics of the
image, so it has poor adaptability to complex background environments. Methods [10–13]
based on local contrast are suitable for situations where there is a significant difference in
grayscale between the target and surrounding background, but they are prone to missed
detections and misjudgments. Low-rank-based [14,15] and tensor-based [16–18] methods
can achieve good results, but the computational cost is high, and hyperparameters are
more sensitive to image scenes.

With the development of deep learning, some data-driven methods and infrared small
target datasets [7,19–22] have emerged in recent years. Considering the weak and small
characteristics of infrared small targets, infrared small target detection is usually modeled
as a semantic segmentation problem. In order to ensure that the features of small targets
are not submerged, some methods [7,19,22,23] have been used to enhance the fusion of
features at different layers of the network. Based on the small proportion of small targets
in the overall image, some methods [24,25] solve the problem with infrared small target
detection by suppressing the background area to make the network pay more attention
to the target area. There are also some studies [26–29] that consider how to improve and
innovate based on classic encoding and decoding structures.

The existing single-frame infrared small target detection methods [7,23,24] have prob-
lems in terms of poor adaptability and high false-alarm and missed detection rates when
they are used to detect infrared small target images with low resolution. This is not only
because the quality of the existing dataset is not high, which leads to unsatisfactory training
of the network, but also related to the large number of parameters in the existing network
structure or the insufficient local attention to small targets.

Therefore, in view of the problems in the existing datasets, we propose corresponding
improvement strategies. Then, we construct a single-frame low-resolution infrared small
target image dataset with high quality and a large amount of data called SLR-IRST. At the
same time, we design a central point-guided circular region local self-attention network
(CCRANet) for low-resolution infrared image small target detection. The CCRANet detects
small targets in the image in two stages from coarse to fine. In the coarse stage, multiple
circular regions of interest of fixed size are obtained by a center point-guided circular region
of interest suggestion (CCRS) module. In the fine stage, the local feature information of
small targets is further extracted in a share params local self-attention (SPSA) module, and
each pixel is predicted. In the SLR-IRST dataset, the CCRANet can significantly improve
the target detection effect on small targets. Compared with the present methods, the pixel-
level metric, IoU, is improved by about 3%, the nIoU is improved by about 6%, and the
target-level metric probability of detection (Pd) is improved by about 6%.

2. Related Works
2.1. Infrared Small Target Datasets

The Society of Photo-Optical Instrumentation Engineers (SPIE) defines infrared small
targets as having a total spatial extent of less than 81 pixels (9× 9) in a 256× 256 image [30]—
that is, the proportion of small targets in the entire image is less than 0.12%. In addition,
the size of small infrared targets varies greatly, ranging from only one pixel (i.e., dot target)
to dozens of pixels (i.e., expanded target) [29].

In recent years, some scholars have done a lot of work on the collection and production
of infrared small target datasets and have publicly released these datasets, which include
single-frame datasets [7,19–22] (see Table 1) and multi-frame datasets [31–33] (see Table 2).



Remote Sens. 2023, 15, 5539 3 of 21

Table 1. Details on the present single-frame infrared small target datasets.

Data Type Dataset Image Num Image Size Provided Label Target True Class Background Type

Real
SIRST [19] 427

96 × 135 to
388 × 418

Pixel/Box Aircraft/Drone/Ship/Vehicle Cloud/Grass/River

IRSTD-1k [20] 1001 512 × 512 Pixel Drone/Bird/Animal Cloud/Building/Grass/River/Lake

Synthetic
MFIRST [21] 10,000 128 × 128 Pixel - Cloud/Road

NUDT-SIRST [7] 1327 256 × 256 Pixel - Cloud/Building/Vegetation
IRST640 [22] 1024 640 × 512 Pixel - Cloud/Building

real/synthetic
SLR-IRST

(our)
2689 256 × 256 Pixel/Box/Center Aircraft/Drone/Ship/Vehicle/Bird/Animal

Cloud/Building/Grass/River/Lake/
Vegetation

Table 2. Details on the present multi-frame infrared small target datasets.

Data Type Dataset Sequence Num Image Num Image Size Target True Class Background Type

real
Dataset in [31] 6 342 318 × 256 to

540 × 398 Drone City/Building/Tower Hanger

ISATD [32] 22 16177 256 × 256 Drone Sky/Field/Building

real/synthetic IRDST [33] 401 142727 720 × 480/
934 × 696 Aircraft/Drone Clouds/Trees/Lakes/Buildings

In Tables 1 and 2, it can be seen that the sample size of real single-frame infrared small
target data is relatively small, but the sample size of multi-frame infrared small target
data is rich, which can be used to expand single-frame data. Constructing a single-frame
infrared small target dataset with a larger data volume and higher quality can promote the
development of single-frame infrared small target detection.

2.2. Infrared Small Target Detection Methods

In recent years, deep learning has developed rapidly in terms of solving visual tasks
such as image classification, object detection, and semantic segmentation. Some methods
based on deep learning have also emerged for infrared small target detection.

Due to their “weak” and “small” characteristics, infrared small targets are easily
overwhelmed by a network’s high-level features. However, if only low-level features are
used, it is not possible to fully comprehend semantic information, making it easy to miss
detection and raise false alarms. Therefore, some researchers have combined attention
mechanisms to study methods for enhancing feature fusion at different layers. Dai et al.
proposed a bottom-up channel attention modulation method [23] (ACM) to preserve and
highlight infrared small target features in high-level layers. Thereafter, Dai et al. [19]
modularized local contrast measurement methods [10] from traditional methods in the
network to design a model-driven deep learning network (ALCNet). Li et al. [7] proposed
the use of DNANet to achieve progressive information interaction between high-level and
low-level features through densely nested modules (DNIM). Chen et al. [22] introduced
the self-attention mechanism of a transformer into the designed IRSTFormer to extract
multi-scale features from the input image through the overlapping block self-attention
structure of the hierarchy.

Based on the small proportion of small targets in the overall image, some researchers
solve the problem with infrared small target detection by suppressing the background area
so that the network pays more attention to the target area. Wang et al. [24] proposed a
coarse-fine two-stage network, IAANet. In the coarse stage, the candidate target regions are
obtained by the region proposal network (RPN), and in the fine stage, the global features
of all candidate target regions in the image are extracted by the attention encoder (AE).
In IAANet, the hard decision method is used to suppress the background regions to the
greatest extent. Cheng et al. [25] designed a supervised attention module trained by small
target diffusion maps in the proposed LPNet to suppress most of the background pixels
irrelevant to small target features in a soft decision manner.

It has been proved that the classical encoder-decoder structure can achieve better
results in the semantic segmentation task [34], and some researchers have carried out
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work on the improvement and innovation of the classical codec structure. Tong et al. [26]
proposed MSAFFNet, which introduced the EIFAM module containing edge information
based on the codec structure and constructed multi-scale labels to focus on the details of
target contour and internal features. Wu et al. [27] proposed UIU-Net (U-Net in U-Net).
It imparts a tiny U-Net into a larger U-Net backbone network to realize multi-level and
multi-scale representation learning of objects. Chen et al. [28] proposed a MultiTask-UNet
(MTUNet) with both detection and segmentation heads. By sharing the backbone, the
similar semantic features of the two tasks are fully utilized. Compared with the compound
single-task model, MTUNet has fewer parameters and faster inference speed. Wu et al. [29]
proposed a multi-level TransUNet (MTU-Net). In the encoder, the features extracted by
convolution are passed through a multi-level ViT module (MVTM) to capture remote
dependencies.

The networks that combine the attention mechanism and multi-scale feature
fusion [7,19,22,23] enhance the network’s ability to extract image features, but the local
attention to small targets in the image is not enough and the network’s ability to detect
small targets is not enough to be improved. The networks that focus on the localized
region of small targets [24,25] have a problem: the number of network parameters and
computational amount are larger, and the network prediction speed is slower.

2.3. Evaluation Metrics

The output of the infrared small target detection network is pixel-level segmenta-
tion. Therefore, it is common to use semantic segmentation metrics to evaluate network
performance, such as precision, recall, F1 score, ROC curve, and PR curve.

Precision and recall refer to the proportion of correctly predicted positive samples out
of all predicted positive samples and all true positive samples, respectively. The F1-Score is
the harmonic mean of precision and recall. The definitions of P (precision), R (recall), and
F1 − P (F1 score) are as follows:

P = TP
TP+FP

R = TP
TP+FN

F1− P = 2P·R
P+R

(1)

where T, P, TP, FP, and FN denote the true, positive, true positive, false positive, and false
negative, respectively.

The receiver operating characteristic (ROC) curve shows how the model performs
across all classification thresholds. The horizontal coordinate of the ROC curve is the
false positive rate (FPR), and the vertical coordinate is the true positive rate (TPR). It goes
through the points (0, 0) and (1, 1). The horizontal coordinate of the precision-recall (PR)
curve is the recall rate, which reflects the classifier’s ability to cover positive examples. The
vertical coordinate is the precision, which reflects the accuracy of the classifier’s prediction
of positive examples.

However, as a target detection task, some researchers have proposed pixel-level and
target-level evaluation metrics based on existing metrics to better evaluate the detection
performance of infrared small targets.

IoU and nIoU are pixel-level metrics. IoU represents the ratio of intersection and union
between the predicted and true results:

IoU =
TP

T + P− TP
(2)

nIoU [19] is the numerical result normalized by the IoU value of each target, as shown
in (3), where N represents the total number of targets.

nIoU =
1
N

N

∑
i

TP[i]
T[i] + P[i]− TP[i]

(3)
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Pd (probability of detection) and Fa (false-alarm rate) are target-level metrics [22]. Pd
measures the ratio of the number of correctly predicted targets to the number of all targets.
Fa measures the ratio of incorrectly predicted pixels to all pixels in the image.

Pd =
# num of true detections
# num of actual targets

(4)

Fa =
# num of false predicted pixels

# num of all pixels
(5)

3. SLR-IRST Dataset

This section introduces the construction process and statistical characteristics of the
single-frame low-resolution infrared small target image dataset (SLR-IRST).

3.1. Construction of the SLR-IRST Dataset

Unlike traditional model-driven methods, deep learning is a data-driven method.
It requires a large amount of diverse data training to improve the generalization ability
of the network [35]. At present, few real single-frame infrared small target images have
been published publicly [19,20], and the resolution of the images is inconsistent. The
published synthetic single-frame infrared small target images have high similarity and
low synthesis quality [21,22]. All these problems affect the training coupling process and
the final performance of the network [7]. Therefore, we constructed a single-frame low-
resolution infrared small target image dataset (SLR-IRST) based on the existing infrared
small target datasets and other infrared datasets through data collation and data expansion.

The generation process of the SLR-IRST dataset is as follows (as shown in Figure 1).
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1. Data Source: The data in the SLR-IRST dataset are from a single-frame infrared small
target dataset (SIRST, IRSTD-1k, IRST640, SIRST-v2 [36]) and a multi-frame infrared
small target dataset (IRDST [25]). There is a serious shortage of maritime target
data in the existing dataset (see Table 3), so some waterborne target images were
extended in the SLR-IRST dataset from this infrared dataset (http://iray.iraytek.com:
7813/apply/Sea_shipping.html/ (accessed on 10 December 2021)).

http://iray.iraytek.com:7813/apply/Sea_shipping.html/
http://iray.iraytek.com:7813/apply/Sea_shipping.html/
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Table 3. Real target class statistics of the SLR-IRST dataset and other mainstream infrared small
target datasets.

Dataset Airborne Target Waterborne Target Ground Target

SIRST 394 15 18
IRST640 1024 0 0

IRSTD-1K 516 87 398
SLR-IRST 1960 312 417

2. Data Cleaning: The collected images were first data cleaned. The images that did not
meet the small target definition [30] or had obvious synthetic traces were removed.
The frequency of image extraction in the multi-frame dataset, IRDST, is 1 for every
50 images. In order to ensure the diversity and balance of the data in the dataset,
the structure similarity index measure (SSIM) value [37] was used to evaluate the
similarity between the images. Highly similar images with SSIM values greater than
0.85 (for simple backgrounds) and 0.90 (for complex backgrounds) were discarded.

3. Image Scaling: The resolution of the images in the existing infrared small target
dataset is inconsistent. Under normal circumstances, the images in the dataset would
be directly resized to the specified resolution before training and testing [19]. However,
the direct resize operation causes the target to deform and the label to no longer be
binarized, which introduces additional errors when network testing. Therefore, the
resolution of images in SLR-IRST was unified by an undistorted method [38]. Zero
was filled below or to the right of the original image to make it match the aspect ratio
of the specified resolution, and then resized to the specified resolution. By referring
to the common resolution of infrared detection equipment and parameters of other
datasets [32], the unified resolution of images in SLR-IRST was 256 × 256.

4. Data Label: The images, after the unified resolution, were re-labeled. The small target
in the infrared image was fuzzy and the edge was difficult to define. The Canny
function [39] helps to define the boundaries of small targets and reduce manual
labeling errors. The SLR-IRST dataset has pixel-level labels, bounding box labels, and
center point labels. The boundary box label and center point label are determined by
calculating the boundary and center point of the pixel-level label.

5. Data Check: Finally, all the marked data was checked again to ensure that the labels
are correct and the data format is correct.

6. Divide Dataset: When dividing the dataset, all the synthesized data was divided in
the training set. All real data was evenly divided into training, validation, and test
sets depending on the source of the data.

3.2. Construction and Characterization of the SLR-IRST Dataset

Table 4 presents some basic statistics of the SLR-IRST dataset and other mainstream
infrared small target datasets. In addition, all single-frame infrared small target datasets
are evaluated in terms of target number, target category, target size, etc.

Table 4. Basic statistics of the SLR-IRST dataset and other mainstream infrared small target datasets.

Dataset SLR-IRST SIRST IRST640 IRSTD-1K

image size 256 × 256 96 × 135 to 388 × 418 640 × 512 512 × 512
image num 2689 427 1024 1001
target num 3586 533 1662 1495

target pixel range
(average)

1~367
(15.48)

4~330
(32.86)

1~51
(27.73)

1~1065
(50.11)

target size range
(average)

1 × 1~14 × 34
(3.33 × 4.58)

2 × 2~14 × 34
(5.62 × 6.94)

1 × 1~9 × 8
(6.11 × 6.33)

1 × 1~56 × 53
(7.69 × 8.74)

target SCR range
(average)

0.004~70.35
(7.46)

0.17~42.81
(9.20)

0.04~70.34
(4.93)

0.004~68.76
(7.13)

The SLR-IRST dataset has the following characteristics.
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1. More data: In Table 4, it can be seen that the SLR-IRST dataset has a much larger
amount of data (2689 images, 3586 targets). As can be seen in Table 1, the scene types
and target types in the SLR-IRST dataset are more abundant.

2. Smaller target: As can be seen in Table 4, targets in the SLR-IRST dataset are smaller,
occupying only 15.48 pixels on average and sized 3.33 × 4.58 on average. As can be
seen in Figure 2a, compared with other datasets, more targets in the SLR-IRST dataset
accounted for less than 0.005% of the total image.
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3. More balanced distribution of data categories: Figure 2b shows the statistical distri-
bution of targets in different datasets against the real categories. The distribution
of target categories in the SLR-IRST dataset is more balanced. The sample size of
the waterborne targets was expanded from 87 (8.7%) in IRSTD-1k to 313 (11.3%) in
SLR-IRST, which is a nearly three-fold increase. This greatly alleviates the problem of
sample scarcity in the waterborne target category.

In addition, as can be seen in Figure 2c, images with no more than 3 small targets
account for more than 98% of all datasets. It shows that the small target in the infrared
image has sparsity. As can be seen in Figure 2a, the small target in the infrared image has
more targets than 0.03% of the image. It indicates that the small target in the infrared image
is very small.

The SCR value [14] is the normalized value of the difference between the gray value of
the target and the surrounding background area. The SCR value can be used to describe the
difficulty of infrared small target detection. The larger the SCR value, the easier the target
is to detect, and the smaller the SCR value, the harder it is to detect. As seen in Table 4,
the average SCR value across all datasets is less than 10. It indicates that there is a large
number of weak targets that are difficult to detect in the infrared small target dataset—that
is, the small targets in the infrared image are weak.

We selected state-of-the-art (SOTA) networks, DNANet and ALCNet, and compared
their IoU metric results in the SLR-IRST dataset and the SIRST dataset. As shown in Table 5,
both DNANet and ALCNet showed a large degree of performance degradation in the
SLR-IRST dataset. This shows that the SLR-IRST dataset presents a new challenge. It is
necessary to design a network according to the characteristics of low-resolution infrared
small target images to improve the detection ability of the network.

Table 5. Comparison of IoU metrics between the SOTA networks in the SIRST and SLR-IRST datasets.

Method SIRST SLR-IRST

ALCNet 0.7570 0.7077
DNANet 0.7757 0.7076



Remote Sens. 2023, 15, 5539 8 of 21

4. Methodology

This section introduces specific information on the proposed CCRANet. First, Sec-
tion 4.1 introduces the overall architecture of the CCRANet. Then, Section 4.2–4.4 introduce
the specific structure of the network in detail.

4.1. Overall Architecture

Small targets in low-resolution infrared images are small in size, faint, and sparse.
Combining these characteristics, we designed a central point-guided circular region lo-
cal self-attention network (CCRANet) suitable for low-resolution infrared small target
detection.

As shown in Figure 3, the CCRANet consists of a center point-guided circular region
of interest suggestion (CCRS) module, a U-shaped feature extraction (U-FE) module, and a
share params Local self-attention (SPSA) module. The entire working process is as follows:
for the input image, X ∈ RH×W , firstly, multiple central points of interest in the image are
generated by the CCRS module, and the position information b of the circular regions of
interest guided by the central points is generated. The non-interest region is the output as
the background in the prediction result. At the same time, feature extraction is carried out
on the input image through the U-FE module to obtain the feature map, X̂. By combining
b and X̂, the local feature information, x, of multiple regions of interest is obtained. It
will be fed into the SPSA module for self-attention calculations within each local region
to obtain the feature map, x̂. Finally, the feature map, x̂, is used to predict the regions of
interest using multi-layer perceptron (MLP). The three modules in the network are further
described below.
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4.2. Center Point-Guided Circular Region of Interest Suggestion Module

The small target in the infrared image only accounts for a very small part of the image,
and most of the regions in the infrared image are redundant and interference information.
At the same time, because of the long detection distance, the shapes of small targets in
infrared images are almost round. Therefore, we designed a center point-guided circular
region of interest suggestion (CCRS) module to obtain multiple centers of interest points in
the image through a simple network. Under the guidance of these central points, multiple
circular regions of interest are generated. Regions of non-interest are directly considered as
the background.

In CCRS, the input image is progressively reduced by multiple convolutional layers
(MCL) to obtain the feature map, xd ∈ Rh×w×c. xd has a step size of 16 relative to the
input image. As shown in Figure 4, MCL has a similar structure to ResNet18 [40] and
uses ResNet18’s pre-training weight information. Then, after a convolution with a kernel
size of one, the number of channels of xd is reduced to three. Let (cx, cy) represent the
spatial position of a point in the feature map, xd. s represents the subsampling multiple of
the feature map, xd, corresponding to the original image. tx, ty, and to represent the three
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parameters corresponding to the three channels in the feature map, xd. The calculation
method for the location information and confidence of the center point predicted by the
network is as follows:

ĉx = (2σ(tx)− 0.5 + cx)× s
ĉy = (2σ(ty)− 0.5 + cy)× s

ô = σ(to)
(6)

where ĉ represents the predicted center point. (ĉx, ĉy) and ô represent the coordinates and
confidence of the predicted central point, respectively. σ stands for the sigmoid function.
For an input image with a resolution of 256 × 256, 256 predicted centers of interest will
be generated.
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In the CCRS module, there is a confidence threshold, conf. The center point with
confidence above conf is considered as the interest center point that is needed. At the
beginning of training, the number of retained centers of interest is variable. It may be
the case that a large number of central points are retained or that no central points are
retained. So, the CCRS module sets an additional hyperparameter, k, which represents
the maximum number of retained center points of interest. When the number of center
points higher than conf exceeds k or is 0, the first k center points with higher confidence are
retained. In addition, there is another hyperparameter, l, which is the radius of the circular
region of interest generated based on the central point guidance. The central coordinate
information of the circular regions of interest generated by the CCRS is expressed as
bbox ∈ Rn×2 (0 ≤ n ≤ k).

4.3. U-Shape Feature Extraction Module

The U-shape feature extraction (U-FE) module is parallel to the CCRS module, and
its overall structure is U-shaped, which is similar to that of the U-Net network [34]. In the
U-FE module, the downsampling times are reduced to two times to prevent the feature
information of the small target being drowned in the deep feature. The downsampling
operation is implemented using MaxPool, and the upsampling operation is implemented
using ConvTranspose. As shown in Figure 5, for the input infrared image, X ∈ RH×W , after
passing through the U-shaped subnetwork, the feature map, X̂ ∈ RH×W×D, is obtained.
Among them, D = 64.
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4.4. Share Params Local Self-Attention Module

According to the output, bbox ∈ Rn×2 and X̂ ∈ RH×W×D, of the first two stages, the
characteristic information, xi ∈ Rπl2×D(i = 1, 2, . . . , n), of each circular region of interest is
obtained first (see Figure 6). Then, all xi is spliced together along the new dimension to
obtain x ∈ Rk×πl2×D, which is the feature information of all circular regions of interest in
the image. (When n < k, the data size is kept consistent by filling 0 (x0 ∈ Oπl2×D)).

x = concat(x1 + x2 + . . . + xn + x0 + . . .︸ ︷︷ ︸
k

) (0 < n ≤ k) (7)
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The SPSA module uses the self-attention mechanism to further extract features from
the regions of interest because the self-attention mechanism has a global receptive field
and is better able to capture the internal correlation between features. The traditional self-
attention computing process is proportional to the square of the length of the input feature
sequence [41,42]. Considering that there are many feature sequences for self-attention
calculation, the calculation amount is large. The SPSA adds scaling down operations to the
traditional multi-head attention layer (MHA).

As shown in Figure 6, the feature sequence, x, is first restored to the form of a two-
dimensional feature map along the spatial dimension. Since the region of interest is circular,
when restoring along the spatial dimension, 0 is added around the circular region to make it
square, and the feature map, xK ∈ Rk×2l×2l×D, is obtained. The scaling operation is carried
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out in the spatial dimension through a layer of convolution. Let the scaling reduction factor
be s—that is, the kernel size and step size of the convolution are both s. The feature map,
xs ∈ Rk×2l/s×2l/s×D, is obtained by scaling down the feature map, xK. The feature sequence,
x′K ∈ Rk×N×D (N = 4l2

)
, x′s ∈ Rk×N′×D (N′ = 4l2/s2

)
, is obtained by flattening xK, xs

along the spatial dimension. The keyword (K) and the value (V) are generated from
the scaled feature sequence, x′s, through two sets of linear projections. The query (Q) is
generated from the unscaled feature sequence, x′, through a set of linear projections.

Q = Linear(Flatten(xK))
K = Linear(Flatten(Convs (xK)))
V = Linear(Flatten(Convs (xK)))

(8)

where, Flatten represents flattening feature maps along the spatial dimension, Convs
represents a convolution of both kernel size and step size with s, and Linear represents a
linear layer.

As shown in Figure 7, the calculation of multi-head self-attention is as follows:

MultiHead(Q, K, V) = concat(head1, . . . , headh)WO

where headi = Attention(Qi, Ki, Vi) = softmax(QiKT
i√

dk
)Vi

(9)

and where WO ∈ RD×D, Qi ∈ Rk×N×d, Ki ∈ Rk×N′×d, Vi ∈ Rk×N′×d, and d = D/h.
h represents the number of heads. The scaling operation does not change the length and
dimension of the output feature sequence but only reduces the computation amount in the
process of self-attention calculation.
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Other visual task algorithms [24,43,44] usually splice the features in the same image
along the spatial dimension because it is believed that the features in the same image are
related and influence each other. It is worth noting that in the SPSA, feature splicing of
multiple regions of interest in the same image is performed in a new dimension. In this
way, self-attention calculation is only confined to the interior of each region of interest,
and no self-attention calculation is performed among features of different regions. We
believe that the infrared small target task has different characteristics from other vision
tasks. The infrared small targets in images are small and sparse and have obvious locality.
The features of other regions in the image have little relevance to the prediction of small
targets and are redundant information. Therefore, it is unnecessary to concatenate the
features in the infrared small target image along the spatial dimension, as it will increase
the amount of calculation. In addition, in the SPSA, the process of calculating self-attention
for different regions of interest is parallel, and the parameters are shared. Since there is
no need to calculate the self-attention between different areas of interest, the amount of



Remote Sens. 2023, 15, 5539 12 of 21

computation and the number of parameters in the process of self-attention calculation are
greatly reduced.

For k input regions of interest with radius l and number of channels D, the compu-
tational complexity of the calculation using the SPSA, or the standard multi-head self-
attention mechanism (TE) are as follows:

Ω(TE) = 2k2π2l4D + 4kπl2D2 (10)

Ω(SPSA) =
8kl4D

s2 + 4kl2D2s2 (11)

Of the two items that make up computational complexity, the former contributes the
vast majority of the computational effort. Using the SPSA for self-attention computation
can greatly reduce the computation of the former and speed up the reasoning speed of
the network.

5. Experiments

In this section, the experimental setup is introduced first, including implementation
details and evaluation metrics. Then, the ablation experiments on the loss function, hy-
perparameter setting, and network structure design are shown to verify the rationality of
the network design. Then, the proposed CCRANet is compared with other state-of-the-art
(SOTA) methods to verify the effectiveness of the network. Finally, the CCRANet and other
SOTA methods are compared in actually collected infrared small target images to show
that the network has better generalization ability.

5.1. Experimental Setting
5.1.1. Implementation Details

In the network training stage, the optimizer is the adaptive gradient (AdaGrad) [45]
method, and the method to initialize the weight and bias of the model is Xavier [46]. The
CCRS module has a learning rate of 0.01, and the rest of the network has a learning rate of
0.001. The first epoch of network training trains only the CCRS module. The batch size and
epoch are set to 16 and 500, respectively. All networks rely on PyTorch [47]. The computer
used in the experiment has an Intel(R) Core (TM) i9-10920X @ 3.50 GHz CPU and a Nvidia
RTX 3090 GPU. All experiments were trained and tested on the SLR-IRST dataset, and the
number of images in the training set, verification set, and test set were 1616, 533, and 540,
respectively, with a partition ratio of about 6:2:2. The SLR-IRST dataset and CCRANet will
be made public on https://github.com/wangwjinggg/CCRANet.

Before the training began, data enhancement was performed on the training data. The
input images were scaled at a random scale. The aspect ratio of the scaled image ranged
from 0.58 to 1.85. The length of the longer side of the scaled image ranged from 0.5 to
2 times the original width and height. The scaled image was uniformly and arbitrarily
cropped to a 256 × 256 size. In addition to this, data enhancement strategies also include
random horizontal flipping and random superimposed Gaussian noise.

5.1.2. Evaluation Metrics

Infrared small target detection networks based on deep learning [7] usually use
both pixel-level and target-level metrics to comprehensively evaluate the performance of
the network.

Previously, the false-alarm rate (Fa) of the target-level metrics (see Formula (5)) rep-
resented the ratio of the wrongly predicted pixels to all pixels of the image and did not
really measure the false-alarm situation of the network from the target-level. Therefore, we
redefined the Fa as follows:

Fa =
# num of false detections

# num of predicted targets
(12)

https://github.com/wangwjinggg/CCRANet
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In addition, we also defined the Md (miss detection rate), the Pa (probability of accu-
racy), and the F1 − T (F1 score) of the target-level evaluation metrics:

Md =
# num of not detections
# num of actual targets

(13)

Pa =
# num of true detections

# num of predicted targets
(14)

F1− T =
2Pd · Pt

Pd + Pt
(15)

where Pd represents the probability of detection (see Formula (4)). When the center of the
predicted target is within d pixels of the center of the real target, the target is considered to
be correctly detected. The threshold d is set to two in this paper. The F1− T takes both recall
and accuracy into account to measure target-level prediction. A method is considered good
when high values are obtained on Pd (↑), Pa (↑), F1 − T (↑), and low values are obtained on
Md (↓), Fa (↓).

The pixel-level metrics used for evaluation include IoU, nIoU, R (Recall), P (Precision),
and F1 − P scores. In addition, the receiver operating characteristic (ROC) and precision-
recall (PR) curves are used to further demonstrate the overall detection effect, target
detection capability, and background suppression capability.

5.2. Loss Function Experiments

Loss in the CCRANet consists of two parts including the loss of regression learning
from the predicted center point in the CCRS module and the loss of regression learning from
the predicted pixel-level segmentation results. The regression learning of the predicted
center point includes two parts: location information learning and confidence learning. The
BCEWithLogits loss function is used to monitor the learning of confidence and the L1 loss
function to monitor the learning of location information. The metrics results for monitoring
learning of pixel-level segmentation results with four different loss functions are compared
in this section, including BCEWithLogits, Soft-IoU [19], Focal [48], and Mixed. The Mixed
loss function is defined as follows:

LMixed = LBCEWithLogits + LSoft−IoU (16)

In order to suppress the imbalance of positive and negative samples, the balance
coefficient is set when using the BCEWithLogits loss function. Among them, the bal-
ance coefficient is set to a = 10 in central point regression learning and a = 3 in semantic
segmentation learning.

It can be seen from Table 6 that BCE obtained better index results. It shows that
the BCEWithLogits loss function, after the balanced adjustment of positive and negative
sample proportions, has a better monitoring ability in terms of binary classification tasks.
Based on the above experimental results, the loss function used in the CCRANet training is
as follows:

L = (LMixed)for seg + 0.5× (LL1 + LBCEWithLogits)for center (17)

Table 6. Comparison of pixel-level metrics for networks trained with different loss functions. The
best result values are marked in bold.

Seg Loss Center Loss nIoU (↑) IoU (↑) R (↑) P (↑) F1 − P (↑)

BCE L1+BCE 0.7340 0.7286 0.8562 0.8275 0.8416
Focal L1+BCE 0.7398 0.7216 0.7988 0.8703 0.8330

Soft-IoU L1+BCE 0.7359 0.7178 0.8069 0.8366 0.8215
Mixed L1+BCE 0.7579 0.7398 0.8324 0.8694 0.8505
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5.3. Hyperparameter Experiments

This section conducts comparative experiments on the values of the two hyperparam-
eters k and l in the CCRS module, and the experimental results are compared in Table 7.

Table 7. Comparison of pixel-level and target-level metrics of the CCRS module hyperparameters
under different settings. The best result values are marked in bold.

k l
Pixel-Level Metric Target-Level Metric

nIoU (↑) IoU (↑) R (↑) P (↑) F1 − P (↑) Pd (↑) Md (↓) Pa (↑) Fa (↓) F1 − T (↑)
3 10 0.7348 0.7271 0.8682 0.8119 0.8391 0.9587 0.0413 0.8256 0.1744 0.8872

10 10 0.6764 0.6941 0.8853 0.7498 0.8119 0.9516 0.0484 0.7286 0.2714 0.8253
5 10 0.7579 0.7398 0.8324 0.8694 0.8505 0.9659 0.0341 0.8773 0.1227 0.9194
5 5 0.7216 0.6658 0.7681 0.8287 0.7973 0.9516 0.0484 0.8253 0.1747 0.8840
5 20 0.7395 0.7287 0.8234 0.8296 0.8265 0.9559 0.0441 0.7936 0.2064 0.8672

It can be seen that the metrics results are the best when k = 5 and l = 10. When k = 3, the
metrics drop slightly, and when k = 10, they drop sharply. This is because when the number
of circular regions of interest is too large, some background regions containing suspected
target characteristics are also preserved. This introduces interference information, which
causes the precision (P) and Pa of the network to decrease significantly. Metrics at l = 5
and l = 20 both decreased compared with those at l = 10. This indicates that when the
circular region of interest is too small, some small targets are not fully wrapped, resulting
in a significant decrease in the network pixel-level recall rate (R) metric. When the circular
region of interest is too large, it contains more interference information, resulting in a
significant decrease in the target-level probability of accuracy (Pa) metric of the network.
To sum up, the values of the two hyperparameters in the CCRS module are set to k = 5 and
l = 10.

5.4. Ablation Study

Some ablation studies were conducted to verify the rationality and validity of the
CCRANet in terms of network structure. As shown in Table 8, the proposed CCRANet is
used as the benchmark network, denoted as A. Based on A, the U-FE module is replaced
with the FPN [49] structure, denoted as B1. The number of feature map channels output in
B1 is set to 64, which is consistent with that in A. On the basis of A, the U-FE module is
replaced with a 7-layer fully convolution FCN structure without downsampling, denoted
as B2. The 7-layer convolution gradually increases the number of channels of the feature
to 256, then maintains the 3-layer convolution, and then gradually reduces the number of
channels to 64, which is consistent with the output in A.

Table 8. Network settings for the ablation experiment.

CCRS U-FE FPN FCN SPSA TSA CONV Name
√ √ √

A (CCRANet)√ √ √
B1√ √ √
B2√ √ √
C1√ √ √
C2

Based on A, the SPSA module was replaced with traditional self-attention (TSA) [41,42],
denoted as C1. In TSA, the feature sequences of multiple circular regions of interest are
concatenated along spatial dimensions. Moreover, there is no scaling down operation
through convolution in the multi-head self-attention of TSA. The self-attention calculation
in TSA is performed among the features of all the circular regions of interest in the image.
Based on A, the SPSA module was replaced with a 4-layer convolution (CONV) structure,
denoted as C2. The CONV convolution has a kernel size of 3 × 3, step size of 2, and



Remote Sens. 2023, 15, 5539 15 of 21

padding of 1 and does not change the number of channels of the original feature map. In
keeping with the residual connection structure in the SPSA, a residual link is also added
here for each layer of convolution. The metrics of the ablation experiment are shown in
Table 9.

Table 9. Comparison of pixel-level and target-level metrics for the ablation experiments. The best
result values are marked in bold.

Method
Pixel-Level Metric Target-Level Metric

nIoU (↑) IoU (↑) R (↑) P (↑) F1 − P (↑) Pd (↑) Md (↓) Pa (↑) Fa (↓) F1 − T (↑)
A 0.7579 0.7398 0.8324 0.8694 0.8505 0.9659 0.0341 0.8773 0.1227 0.9194
B1 0.6795 0.6932 0.8015 0.8117 0.8066 0.9388 0.0612 0.9394 0.0616 0.9391
B2 0.7243 0.6902 0.8317 0.7889 0.8097 0.9516 0.0484 0.7597 0.2413 0.8449
C1 0.7348 0.7278 0.8684 0.8149 0.8408 0.9431 0.0569 0.8328 0.1672 0.8845
C2 0.6691 0.6725 0.8026 0.7935 0.7980 0.9459 0.0541 0.6081 0.3919 0.7403

Compared with the pixel-level metrics results of A, B1, and B2 in Table 9, the U-FE
module obtained the best results. The U-FE module performs more convolution opera-
tions on shallow features and the feature maps at shallow layers provide more detailed
information, which makes U-FE perform better than FPN. The U-FE module performs two
downsampling operations and the receptive field of the convolution kernel is larger and
more global features are extracted, which makes U-FE perform better than FCN. The two
sets of experiments show that both shallow and deep features are important for small target
detection. More downsampling will drown the features of small targets in the deep net-
work. Without downsampling, the convolution receptive field will be limited and semantic
feature information will be missing. Therefore, in order to obtain a better detection effect, it
is necessary to select a suitable number of downsampling operations.

Compared with the pixel-level metrics results of A, C1, and C2 in Table 9, the SPSA
module obtained the best results. Compared to the SPSA, C1 using TSA decreased by about
2% and C2 using CONV decreased by about 7%. The superiority of the SPSA over TSA
indicates the following. Firstly, the scaling down operation in multi-head self-attention
does not result in performance loss. Secondly, the features of different regions of interest
are mutually interfering information, and calculating self-attention locally in the region
of interest can avoid interference from redundant features. The sharp decline of CONV
indicates that compared with the convolution of the local receptive field, the global receptive
field of self-attention can better excavate the internal correlation between features.

Comparing the results of the target-level metrics in Table 9, A achieves the optimum
for Pd and Md and sub-optimum for Pa, Fa, and F1 − T. There is an interesting experimental
result: the B1 network using FPN is poor in pixel-level metrics, but it is optimal in target-
level metrics, Pa and Fa. We analyze that this may be related to the operation of fusing
multi-layer features simultaneously in FPN.

5.5. Comparison with SOTA Methods

To demonstrate the superiority of the proposed CCRANet, we performed a compari-
son to four other methods: the low-rank-based method IPI [14] and three deep learning
methods—ALCNet [19], DNANet [7], and IAANet [24]. The metrics results of the contrast
experiments are shown in Table 10.

As can be seen from Table 10, compared with the model-based method IPI, deep
learning methods have better ability to cope with complex and diverse infrared images.
In deep learning methods, the CCRANet achieves optimality in almost all metrics, and
the improvement is obviously relative to the suboptimal network. In terms of pixel-level
metrics, the CCRANet outperforms the suboptimal DNANet by about 5% on both nIoU
and IoU and by about 3% on F1 − P. In terms of target-level metrics, compared to the
second-best DNANet, the CCRANet improves Pd by about 6%, Pa by about 1%, and F1 − T
by about 3%.
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Table 10. Comparison of pixel-level and target-level metrics for the contrast experiments. The best
result values are marked in bold.

Method
Pixel-Level Metric Target-Level Metric

nIoU (↑) IoU (↑) R (↑) P (↑) F1 − P (↑) Pd (↑) Md (↓) Pa (↑) Fa (↓) F1 − T (↑)
IPI 0.1986 0.1536 0.1689 0.6301 0.2663 0.5846 0.4154 0.4014 0.5986 0.4760

ALCNet 0.6621 0.7077 0.8150 0.8432 0.8288 0.8990 0.1010 0.8393 0.1607 0.8681
DNANet 0.6916 0.7076 0.7751 0.8905 0.8288 0.9047 0.0953 0.8583 0.1417 0.8809
IAANet 0.6724 0.6451 0.7763 0.7925 0.7843 0.7696 0.2304 0.6051 0.3949 0.6775

CCRANet 0.7579 0.7398 0.8324 0.8694 0.8505 0.9659 0.0341 0.8773 0.1227 0.9194

In order to comprehensively measure the pixel-level prediction ability of different
deep learning methods, here the PR curve and ROC curve of the CCRANet and the other
three methods (see Figure 8) were plotted. As seen in Figure 8, the CCRANet PR curve can
cover the PR curve of other methods. This shows that the CCRANet’s prediction accuracy
is stronger for positive samples (i.e., the pixels corresponding to the target region in the
image). After the ROC curve stabilized, the recall metric of CCRANet is better, and it is
always better than the other networks under different false-alarm rates.
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The model processing speeds of the CCRANet and other three deep learning methods
are compared in Table 11. The average speed of different methods on the test set of the
SLR-IRST was calculated using the same data computing platform. As seen in Table 11,
the CCRANet is slower than ALCNet in model processing but faster than the other two
methods. Considering the improvement of the CCRANet in terms of prediction indicators,
it can be considered that the CCRANet also has advantages in model processing speed.

Table 11. Comparison of model processing speeds between the CCRANet and contrast networks.

Method ALCNet DNANet IAANet CCRANet

Fps (↑) 111.09 45.68 24.43 66.52

We undertook a comprehensive comparison of pixel-level metrics, target-level metrics,
and the results of model processing speed. It showed that the CCRANet can stably obtain a
better infrared small target detection performance in the SLR-IRST dataset compared with
comparison methods.

In order to observe the prediction abilities of different networks more clearly and
intuitively, the visual prediction results are shown in Figure 9. Three scenarios are selected
randomly from the test dataset, as shown in Figrue 9a. The corresponding labels are shown
in Figure 9b. The visual prediction results of the CCRANet and other four methods are
presented in Figure 9c–g. In Figure 9, the green, red, and yellow circles represent correctly
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detected targets, missed targets, and false targets, respectively. The red box in the lower left
corner is a partial enlargement of the small target.
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In order to further evaluate the prediction performance of the CCRANet for low-
resolution infrared small target images, we collected some real infrared small target images.
The backgrounds of the collected infrared images include the sky, clouds, buildings, trees,
tower cranes, rivers, etc. Acquisition angles include looking up and looking down. Small
targets in the infrared images include small drones, birds, and other creatures. These images
and those in the SLR-IRST were acquired using different devices in different scenarios with
data from different sources, and the correlation is low.

The single-frame collected infrared small target images, and the dataset (SAC-IRST)
with a resolution of 256 × 256 was obtained after the filling and scaling of the images. It
can further evaluate the generalization ability of different network training models. There
are 80 images in the SAC-IRST, including 40 infrared images with targets and 40 infrared
images without targets. There is interference information such as small targets in images
without targets. This can be used to evaluate the ability of different methods to suppress
false alarms. The comparative experimental results are shown in Tables 12 and 13.

Table 12. Comparison of pixel-level and target-level metrics of different methods on the SAC-IRST
dataset (with target images). The best result values are marked in bold.

Method
Pixel-Level Metric Target-Level Metric

nIoU (↑) IoU (↑) R (↑) P (↑) F1 − P (↑) Pd (↑) Md (↓) Pa (↑) Fa (↓) F1 − T (↑)
IPI 0.1907 0.1439 0.2165 0.3003 0.2516 0.8043 0.1957 0.2681 0.7319 0.4022

ALCNet 0.5178 0.4886 0.5584 0.7963 0.6565 0.8478 0.1522 0.7800 0.2200 0.8125
DNANet 0.5331 0.5398 0.5866 0.8714 0.7012 0.9348 0.0652 0.8600 0.1400 0.8958
IAANet 0.5350 0.4673 0.5108 0.8459 0.6370 0.9348 0.0652 0.7818 0.2182 0.8515
CCRANet 0.5555 0.5832 0.6450 0.8588 0.7367 0.9565 0.0435 0.8800 0.1200 0.9167
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Table 13. Comparison of false-alarm number (Fa Num) of different methods on the SAC-IRST dataset
(without target images). The best result values are marked in bold.

Method IPI ALCNet DNANet IAANet CCRANet

Fa Num(↓) 256 16 14 62 10

As can be seen in Tables 12 and 13, the CCRANet has a significant advantage over other
methods in terms of images with targets. The CCRANet also shows better suppression of
false alarms due to untargeted images. The above experiments show that the CCRANet
has good generalization ability.

In order to observe the prediction performance of different methods on actual acquired
images more clearly, two images with targets and two images without targets are randomly
selected (see Figure 10).
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As can be seen from the above results, infrared images from different sources present
new challenges to all methods. Our proposed CCRANet still performs better in the SAC-
IRST dataset due to its excellent network structure. However, false alarms still exist. As
shown by the third line in Figure 10, false alarms are still not avoided for some target-like
point clouds. Additionally, the first line in Figure 10 shows that the prediction of targets
in uneven grayscale is incomplete. The improvement of the prediction integrity of gray
uneven targets is a direction that needs to be considered later.

6. Conclusions

In this paper, we constructed a high-quality and large low-resolution infrared small
target dataset by sorting, improving, and expanding existing datasets. At the same time,
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based on the data characteristics of low-resolution infrared small target images, a coarse-
to-fine two-stage target detection method, CCRANet, is constructed. We fully considered
the small, weak, and sparse characteristics of infrared small targets and designed a local
self-attention network structure with shared parameters, which improves the prediction
results of the method and reduces the number of parameters and calculations undertaken
by the network. To better evaluate the target-level prediction results of the methods used
for infrared small targets, we also proposed two sets of complete target-level evaluation
metrics to measure the target-level prediction abilities of the methods in an all-around way.

For the CCRANet method, there are still some directions for further research. In the
CCRS module, only the regions of interest were reserved for further feature extraction
and prediction. This hard decision method increased the influence of the CCRS module
prediction performance on network results. Therefore, in future research, a soft decision
method should be tried, the weight of the interest regions should be increased, and the
weight of the non-interest regions should be reduced rather than simply discarded. In
addition, the time information in the multi-frame sequence should be introduced to further
enhance the accuracy of network prediction.
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