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Abstract: Guilin is situated in the southern part of China with abundant rainfall. There are 137 reser-
voirs, which are widely used for irrigation, flood control, water supply and power generation.
However, there has been a lack of systematic and full-coverage remote sensing monitoring of reser-
voir dams for a long time. According to the latest public literature, high-resolution unmanned aerial
vehicle (UAV) remote sensing has not been used to detect changes on the reservoir dams of Guilin.
In this paper, an intelligent segmentation change detection method is proposed to complete the
detection of dam change based on multitemporal high-resolution UAV remote sensing data. Firstly,
an enhanced GrabCut that fuses the linear spectral clustering (LSC) superpixel mapping matrix and
the Sobel edge operator is proposed to extract the features of reservoir dams. The edge operator is
introduced into GrabCut to redefine the new energy function’s smooth item, which makes the seg-
mentation results of enhanced GrabCut more robust and accurate. Then, through image registration,
the multitemporal dam extraction results are unified to the same coordinate system to complete the
difference operation, and finally the dam change results are obtained. The experimental results of
two representative reservoir dams in Guilin show that the proposed method can achieve a very high
accuracy of change detection, which is an important reference for related research.

Keywords: enhanced GrabCut; LSC superpixel segmentation; dam change detection; UAV
remote sensing

1. Introduction

Guilin has a tropical monsoon climate. According to the average annual statistics,
the number of precipitation days is about 160 days, the rainfall is 1887.6 mm, and the rain
collecting area is 19,288 square kilometers. According to the statistical document issued by
the Guilin Municipal Bureau of Statistics, the land used for water conservancy facilities
in Guilin has reached a high proportion of 60% of the urban land. At present, there are
137 reservoirs in Guilin, which are used for irrigation, flood control, water supply and
power generation.

For a long time, there has been a lack of systematic and full-coverage remote sensing
safety monitoring for all reservoir dams in Guilin. It is a new and effective technical method
to realize the change detection of reservoir dams based on high-resolution unmanned
aerial vehicle (UAV) remote sensing. UAV remote sensing has the advantages of a good
maneuverability, a high resolution, and a high timeliness.
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In recent years, some scholars have conducted research on UAV remote sensing
change detection, such as Wei et al. [1], Dong et al. [2], Lu et al. [3] and Zhong et al. [4].
Change detection refers to the extraction of change information of objects in different time
phases and in the same geographical area [5]. Change detection is commonly used in
urban planning [6,7], land use [8,9], vegetation cover [10,11], disaster detection [12–14], etc.
However, as of now, there are few studies using UAV images to detect changes in dams,
especially lacking a well-developed technical process.

This paper proposes an intelligent segmentation change detection method for reservoir
dams based on UAV remote sensing, which realizes the fusion of linear spectral clustering
(LSC) and enhanced GrabCut, completes the UAV high-resolution remote sensing flight
experiments of two representative reservoir dams, and finally, conducts a multitemporal
and multiscale model evaluation and a precision analysis.

This research includes the following parts:

(1) The acquisition and image preprocessing of high-resolution UAV remote sensing data.
Through the actual survey of multiple reservoirs in Guilin, the remote sensing data of
two typical reservoir dams were collected by using high-resolution UAV. The data are
unique and diverse.

(2) An enhanced GrabCut that fuse with the LSC superpixel mapping matrix and the
Sobel edge operator is proposed to extract the features of reservoir dams. The edge
operator is introduced into GrabCut to redefine the new energy function’s smooth
item, which makes the segmentation results of enhanced GrabCut more robust and
accurate. Then, through image registration, the multitemporal dam extraction results
are unified to the same coordinate system to complete the difference operation, and
finally, the dam remote sensing image change results are obtained.

(3) A precision analysis and evaluation of the experimental results.

2. Related Work

Many scholars have done a lot of research on the detection of feature changes based
on remote sensing images. For example, Kim studied the change detection of floods using
Sentinel-1 synthetic aperture radar (SAR) satellite images [15]; Adediji used satellite remote
sensing images to detect changes in major dams in the United States region [16]; Al-Obaidi
used satellite images and GIS technology to detect changes on an Iraqi dam lake in the
northern part of the country [17]; etc. These studies are mainly divided into conventional
image detection methods and deep-learning-based detection methods [18,19]. Further, we
list some representative change detection methods, including change detection method
based on principal component analysis (PCA) and K-means [20,21], a deep learning model
based on reconstruction loss (DLMRL) [22,23], the OTSU image difference method [24], the
robust change vector analysis (RCVA) detection method [25–27] and differential principal
component analysis (DPCA) [28].

Superpixel segmentation is an image segmentation method that allows the image
to be split into large blocks of pixels, each of which has approximately the same texture
inside, while still maintaining the edges of similar objects very well. In this paper, the use
of superpixels is not only beneficial in achieving a fast processing of images but also in
maintaining the edge contours of dams, which is especially beneficial in segmenting precise
dam targets. The generation of superpixels includes graph theory methods and gradient
descent methods. Graph theory methods can usually maintain better segmentation edges,
but it is difficult to achieve real-time processing due to the high computational complexity.
Superpixel segmentation methods based on graph theory generally include normalized cut
algorithm [29], graph-based algorithm [30] and LSC [31]. Gradient descent methods can
improve computational efficiency but may lead to blurred boundaries or oversegmentation.
Gradient descent algorithms generally include Turbopixel [32], simple linear iterative
cluster (SLIC) [33], superpixels extracted via energy-driven sampling (SEEDS) [34], etc.

GrabCut is a very effective energy optimization algorithm proposed by Carsten Rother,
Vladimir Kolmogorov and Andrew Blake at the Microsoft Research Center in the UK [35,36].
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By combining hard constraints (energy function) and local constraints (flow minimization,
local penalties, etc.), iterative graph cuts are used for interactive foreground extraction,
which has excellent performance and convenient operability.

3. Methods

In order to realize the intelligent extraction of the reservoir dams proposed in this
paper, firstly, UAV remote sensing was used to collect multitemporal and high-resolution
image data of the reservoir dams, and then the image calibration preprocessing was
completed, including image distortion correction, orthorectification, rotation cropping and
color equalization.

Secondly, superpixels were used instead of pixels as the smallest unit of image pro-
cessing in GrabCut to reduce the amount of computation. By analyzing the defects and
deficiencies in GrabCut, edge operators were introduced to redefine the energy function of
GrabCut to make the segmentation results more accurate and segmented edges smoother
and more robust.

Finally, image registration was used to unify the extracted mask results of multiple
time-phase data under the same coordinates and obtain the change results of reservoir
dams with a differential operation.

The overall technical route of this paper is shown in Figure 1. Through route planning,
airborne camera and scene parameter settings, the UAV could realize a fully automated
flight, which greatly saved the cost of the experiment, and allowed us to complete the
multitemporal remote sensing change detection of the Guilin reservoir dam.
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3.1. Image Preprocessing

Firstly, the camera distortion model with the internal and external parameters was
applied to restore the original features of the UAV remote sensing images; secondly, or-
thorectification was used to complete the tilt and projection correction in order to acquire
the orthophoto with the characteristics of the mapping and remote sensing image; thirdly,
rotating the image to the horizontal direction made the quality of the subsequently gener-
ated superpixel blocks higher, the blocks less in number, and better in visual perception;
finally, histogram equalization and normalization were used to unify the color of the mul-
titemporal UAV remote sensing image, so as to reduce the influence of changes in color,
brightness, contrast and other color factors in different temporal phases.

The processing of distortion correction, orthorectification and color equalization was very
conventional. The handling details of the rotation and interception is shown in Figure 2.
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3.2. The Fusion of Sobel Edge Operator and Enhanced GrabCut

As an interactive segmentation algorithm, GrabCut can effectively separate the target
area from the background and can continue to segment the target multiple times by
supplementing the background or foreground labels. However, this algorithm uses the
region information and gray value features in the image and does not take into account
the edge information that may exist between adjacent pixels. Especially when the target
in the selection area is continuously segmented, if there is too much color difference, the
segmented target may be removed, resulting in a hole inside the segmented target. At the
same time, the nonsegmented objects in the selection area are retained due to the obvious
regional characteristics, resulting in noise outside the nonsegmented objects.

In view of the above problems, this paper introduced the edge operator into GrabCut.
By redefining the new energy function’s smooth term, the enhanced GrabCut segmentation
results are more robust and accurate. In this paper, the Sobel operator based on the
weighted difference of adjacent pixels in the image was a discrete differential operator
that combined Gaussian smoothing and differential derivation. It had the advantages of a
strong anti-noise ability, high operating efficiency, and fast speed. The specific process of
the 3 × 3 Sobel operator acting on the image was as follows:

Gx = I(x, y)
⊗−1 0 1
−2 0 2
−1 0 1


Gy = I(x, y)

⊗ 1 2 1
0 0 0
−1 −2 −1

 , (1)
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In Formula (1), ⊗ is the convolution operation. It indicates that the Sobel operator
convolution operation is performed on the image I in the x and y directions, respectively.

|G| ≈
√

Gy
2 + Gx

2, (2)

where Gx represents the gradient in the x direction, Gy represents the gradient in the
y direction, and G is the approximate value of the gradient. I(x, y) is an image pixel, and
the convolution kernel is generally an odd number. Typically, when the gradient value
changes abruptly in both directions, it is considered as an edge. Thus, when the gradient G
is greater than a certain threshold, the point is considered as an edge point.

We rewrote the Gibbs energy function of the entire image in GrabCut.

E(L) = Edata(L) + λEsmooth(L), (3)

where L ∈ {0, 1} represents the data label. E(L) represents the energy function. Edata(L)
is the energy function of the data item, and Esmooth(L) is the energy function of the smooth
item. λ is a balance factor, which is used to balance the weight of data items and smooth
items, and generally it is 0.5.

Edata(L) = ∑
p∈n

D
(
lp, θ

)
(4)

where D
(
lp, θ

)
is a data item, which is used to constrain the consistency between the label

L and the observed data θ.

Esmooth(L) = ∑
{p,q}∈N

S<p,q> × δ
(
lp, lq

)
, (5)

The calculation formulas for the two terms on the right side of the equation are as follows:

S<p,q> = exp
(
−σ
∥∥Fp − Fq

∥∥2
2

)
, (6)

δ
(
lp, lq

)
=

{
0 i f lp = lq
1 i f lp 6= lq

, (7)

Fp and Fq are the grayscale value vectors of the BGR color space, and the L2 norm is used
to measure the similarity of the color features of two pixels. When the two pixels are less
similar, that is, the greater the difference, the more likely they are assigned to different
labels. σ is used to adjust the influence of the contrast of adjacent pixels when the image
contrast is different.

In this paper, the Sobel operator was added to the edge gradients. Among them, the
gradient in the x direction was Gx, and the gradient in the y direction was Gy. G(p, q) was
defined as the possibility value of an edge between pixels p and q, which was replaced by a
gradient approximation.

G(p, q) =
{

Gx(p, q) i f p = (x, y), q = (x + 1, y)
Gy(p, q) i f p = (x, y), q = (x, y + 1)

, (8)

We redefined the smooth term of the new energy function:

S(p,q) = γexp(−σ‖Fp − Fq‖2
2) + (1− γ)exp(−σG(p, q)), (9)

where γ(γ ∈ [0, 1]) is the weighted reconciliation factor of the gray intensity and gradient
intensity in the smooth item. When γ is set to 1, it is the original GrabCut. It is generally
set to 0.5.
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The data items in GrabCut were defined as follows:

D(αn) = −lnPr(zn|αn, θ), (10)

According to the gaussian mixture model (GMM) to estimate the probability of be-
longing to the background or foreground, the specific definition is as follows:

Pr(zn|αn, θ) =
k

∑
k=1

πk∗Pr(zn|αn, θπ), (11)

Pr(zn|αn, θπ) =
1√

2π|∑ k|
∗ e[−

1
2 (αn−µk)

T∑−1
k (αn−µk)], (12)

In Formulas (11) and (12), Pr(∗) is the probability that the current pixel belongs to the
foreground or background, zn is the grayscale value of the pixel in the BGR color channel,
αn ∈ {0 : background, 1 : foreground}; θ is the parameter of the GMM, µ is the mean value,
∑ k is the covariance matrix of the kth GMM, and πk is the weight of the kth GMM.

Finally, we reconstructed the energy function as:

E
(
αn, lp, lq

)
= D(αn) + λS(p,q), (13)

The steps of the LSC superpixel fused with enhanced GrabCut are as follows:

1. Input the image for processing;
2. Perform a superpixel segmentation;
3. Label each pixel block in the superpixel segmentation result, mark the subpixels it

contains and generate a new mapping matrix Inew by arranging the pixels according
to the arrangement rules in the superpixel segmentation result;

4. Input the image Inew into enhanced GrabCut for the interactive segmentation;
5. Obtain the segmentation result, then refill the image based on the subpixels indexed

in the superpixel blocks of the superpixel result to restore the resolution;
6. Output the result.

3.3. Image Registration and Change Detection

Image registration is to match the images of the same ground scene taken by different
perspectives, different time phases and different equipment, so that they can be unified in the
same coordinate system. In this research, the images for the dam area contained obvious feature
points, corner points, edges and other information to complete the detection of dam changes.

The scale-invariant feature transform (SIFT) is stable and accurate and is very suitable
for high-precision image processing tasks. In this paper, the SIFT was used for feature
extraction. After the SIFT feature points were detected, the SIFT feature points of the
two images were matched, and the good matching points were screened out by the random
sample consensus (RANSAC) method and the ratio method. After feature matching, the
transformation matrix was estimated by the least-squares method for image registration so
that the images of different phases were unified into the same coordinate system, and then
the difference operation was performed on the images to obtain the mask map of the dam
change result. The specific process is shown in Figure 3.
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4. Experiments
4.1. Dataset

The drone used was the DJI Phantom 4 Pro and the camera model was FC6310S.
The parameters of the visible-light camera carried on the UAV in this experiment were as
follows: COMS 1 inch, 12.8 mm × 9.6 mm and a focal length of 8.8 mm. The resolution of
the collected images was 4864 × 3648, and the relative heights were 50 m, 100 m and 200 m,
respectively. The overlap rate in the heading direction was 60%, and the overlap rate in the
sideways direction is 70%.

4.1.1. Data of Dalingtou Reservoir Dam

Dalingtou Reservoir is a medium-sized reservoir with an area of 30 square kilometers.
It is mainly used for irrigation, combined with water supply and fish feeding. The main area
is located at latitude 25.383696◦N~25.391237◦N and longitude 110.489544◦E~110.498664◦E.
The satellite location of Dalingtou Reservoir is shown in Figure 4. The data of time phase I
of the Dalingtou Reservoir were taken in November 2022, and the data of time phase II
were taken in April 2023.
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4.1.2. Data of Qingshitan Reservoir

Qingshitan Reservoir is the largest reservoir in the north of Guilin, covering an area
of 141.7 square kilometers. It is mainly used for irrigation combined with water supply,
power generation, flood control, shipping, fish feeding, tourism, etc. The main area
of Qingshitan Reservoir is located at latitude 25.525228◦N–25.530553◦N and longitude
110.223555◦E–110.232127◦E. The satellite location of Qingshitan Reservoir is shown in
Figure 5. The data of time phase I of Qingshitan Reservoir were taken in November 2022,
and the data of time phase II were taken in April 2023.
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Figure 5. The satellite location of Qingshitan Reservoir. The big red frame represents our field survey
area, and the small box represents the actual flight area of the UAV.

4.2. Implementation Details

This experimentation and software development was carried out in a computer hard-
ware environment with a windows 10 operating system, an AMD5800x@4.2GHz CPU and
32 GB of RAM. The development platform was visual studio C++ 2017.
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4.2.1. Comparison of Superpixel Segmentation Effects

The experimental results of the superpixel segmentation are shown in Figure 6. Figure 6a
is the original image of the Qingshitan Reservoir dam used in this superpixel segmentation
experiment. Figure 6b–d are the segmentation results when the superpixel segmentation
algorithm SLIC, simple linear iterative cluster zero (SLICO) and LSC were applied, separately,
whose superpixel size was set to 10. Figure 6e–g are the segmentation results when the
superpixel size was set to 30. Figure 6h is the segmentation result when the superpixel
algorithm SEEDS was adopted, whose number of superpixels was set to 1500.
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Figure 6. Comparison of superpixel segmentation effects: (a) original image of Qingshitan Reservoir;
(b) SLIC superpixel segmentation with a superpixel size set to 10; (c) SLICO superpixel segmentation
with a superpixel size set to 10; (d) LSC superpixel segmentation with a superpixel size set to 10;
(e) SLIC superpixel segmentation with a superpixel size set to 30; (f) SLICO superpixel segmentation
with a superpixel size set to 30; (g) LSC superpixel segmentation with a superpixel size set to 30;
(h) SEEDS superpixel segmentation with a total of 1500 superpixels.

SLIC worked better in similar-texture regions, where the generated superpixels were
more regular, while in complex-texture regions, regardless of the size of the superpixels,
the generated blocks of superpixels were more scattered and had a poor edge retention.
The superpixels of SLICO in the whole image were relatively regular, the superpixel blocks
generated by the small-sized superpixels were better, and the edge preservation was also
good. However, when the superpixels were large in size, the generated superpixel blocks
were poorly preserved at the edge; SEEDS could not directly specify the superpixel size,
but the number could be set, and the edge retention was better in areas where the color
difference was large. However, the edges in regions with similar color and texture remained
unstable, and the generated superpixels were very uneven and irregular. Regardless of the
superpixel size, LSC generated relatively regular superpixel blocks. At the same time, it
also presented an excellent edge fit in complex texture areas, which were more pronounced
at larger superpixel sizes. SLC had the best overall results.

4.2.2. Results of LSC Fused with Enhanced GrabCut Segmentation

This experiment was based on the orthophoto from the UAV remote sensing image of
the Dalingtou dam area. The superpixel size was set to 10. The extraction experiment was
realized by using the LSC fused with the enhanced GrabCut, as shown in Figure 7. The
processing sequence is shown in Figure 7a–f.

Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 22 
 

 

  

(h) 

Figure 6. Comparison of superpixel segmentation effects: (a) original image of Qingshitan Reservoir; 

(b) SLIC superpixel segmentation with a superpixel size set to 10; (c) SLICO superpixel 

segmentation with a superpixel size set to 10; (d) LSC superpixel segmentation with a superpixel 

size set to 10; (e) SLIC superpixel segmentation with a superpixel size set to 30; (f) SLICO superpixel 

segmentation with a superpixel size set to 30; (g) LSC superpixel segmentation with a superpixel 

size set to 30; (h) SEEDS superpixel segmentation with a total of 1500 superpixels. 

SLIC worked better in similar-texture regions, where the generated superpixels were 

more regular, while in complex-texture regions, regardless of the size of the superpixels, 

the generated blocks of superpixels were more scattered and had a poor edge retention. 

The superpixels of SLICO in the whole image were relatively regular, the superpixel 

blocks generated by the small-sized superpixels were better, and the edge preservation 

was also good. However, when the superpixels were large in size, the generated 

superpixel blocks were poorly preserved at the edge; SEEDS could not directly specify the 

superpixel size, but the number could be set, and the edge retention was better in areas 

where the color difference was large. However, the edges in regions with similar color 

and texture remained unstable, and the generated superpixels were very uneven and 

irregular. Regardless of the superpixel size, LSC generated relatively regular superpixel 

blocks. At the same time, it also presented an excellent edge fit in complex texture areas, 

which were more pronounced at larger superpixel sizes. SLC had the best overall results. 

4.2.2. Results of LSC Fused with Enhanced GrabCut Segmentation 

This experiment was based on the orthophoto from the UAV remote sensing image 

of the Dalingtou dam area. The superpixel size was set to 10. The extraction experiment 

was realized by using the LSC fused with the enhanced GrabCut, as shown in Figure 7. 

The processing sequence is shown in Figure 7a–f. 

  

(a) (b) 

Figure 7. Cont.



Remote Sens. 2023, 15, 5526 12 of 22Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 22 
 

 

  

(c) (d) 

  

(e) (f) 

Figure 7. The segmentation results of the LSC fused with the enhanced GrabCut: (a) the orthophoto 

of Dalingtou Reservoir (11,844 × 7896); (b) the result of LSC superpixel segmentation; (c) 

superpixel’s new mapping matrix (1184 × 789); (d) interactive segmentation of enhanced GrabCut; 

(e) the result of the GrabCut segmentation; (f) the result after resolution restoration. 

The orthophoto of the Dalingtou dam is shown in Figure 7a; the result of the LSC 

superpixel segmentation is shown in Figure 7b; the new superpixel mapping image is 

shown in Figure 7c. The operation of the newly mapped image was as follows: firstly, we 

randomly selected 70% pixels from each superpixel block obtained by LSC, then we took 

the weighted mean value of each color channel of the selected pixels and remapped them 

into points, and finally, we rearranged them into a three-channel mapping matrix. 

It can be concluded that the orthophoto of the Dalingtou dam with an original 

resolution of 11,844 × 7896 was only 1184 × 789 after mapping, and then the mapped image 

was passed into the enhanced GrabCut for interactive segmentation, as shown in Figure 

7d. In order to improve the segmentation effect, some target pixels were selected as seed 

points with red marks during segmentation, and the result after segmentation by GrabCut 

is shown in Figure 7e. Finally, the segmentation result was restored to the original 

resolution, as shown in Figure 7f. The final segmentation worked well, with precise 

segmentation edges. 

4.2.3. Detection Results of Dam Changes 

The results of the change detection of the two reservoir dams when the superpixel 

size was set to 10 are shown in Figures 8 and 9, respectively. 

Figure 7. The segmentation results of the LSC fused with the enhanced GrabCut: (a) the orthophoto
of Dalingtou Reservoir (11,844× 7896); (b) the result of LSC superpixel segmentation; (c) superpixel’s
new mapping matrix (1184 × 789); (d) interactive segmentation of enhanced GrabCut; (e) the result
of the GrabCut segmentation; (f) the result after resolution restoration.

The orthophoto of the Dalingtou dam is shown in Figure 7a; the result of the LSC
superpixel segmentation is shown in Figure 7b; the new superpixel mapping image is
shown in Figure 7c. The operation of the newly mapped image was as follows: firstly, we
randomly selected 70% pixels from each superpixel block obtained by LSC, then we took
the weighted mean value of each color channel of the selected pixels and remapped them
into points, and finally, we rearranged them into a three-channel mapping matrix.

It can be concluded that the orthophoto of the Dalingtou dam with an original resolution
of 11,844× 7896 was only 1184× 789 after mapping, and then the mapped image was passed
into the enhanced GrabCut for interactive segmentation, as shown in Figure 7d. In order
to improve the segmentation effect, some target pixels were selected as seed points with
red marks during segmentation, and the result after segmentation by GrabCut is shown in
Figure 7e. Finally, the segmentation result was restored to the original resolution, as shown in
Figure 7f. The final segmentation worked well, with precise segmentation edges.

4.2.3. Detection Results of Dam Changes

The results of the change detection of the two reservoir dams when the superpixel size
was set to 10 are shown in Figures 8 and 9, respectively.
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Figure 8. Flowchart of change detection results of the Dalingtou Reservoir dam from images of two 
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Figure 8. Flowchart of change detection results of the Dalingtou Reservoir dam from images of
two time phases. (a) the data of time phase I; (b) the data of time phase II; (c) the extraction results of
time phase I; (d) the extraction results of time phase II; (e) the registration results of time phase II;
(f) the registered mask of time phase II; (g) the result of the difference calculation of the two time
phases; (h) the detected change.
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Figure 8 shows the experimental results of the Dalingtou Reservoir dam. Figure 8a is 
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II. Figure 8f is the extraction result of the reservoir dam by the mask operation. Figure 8g 
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Figure 9. Flowchart of change detection results of the Qingshitan Reservoir dam from images of
two time phases. (a) The data of time phase I; (b) the data of time phase II; (c) the extraction results of
time phase I; (d) the extraction results of time phase II; (e) the registration results of time phase II;
(f) the registered mask of time phase II; (g) the result of the difference calculation of the two time
phases; (h) the detected change.
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Figure 8 shows the experimental results of the Dalingtou Reservoir dam. Figure 8a is
the data of time phase I. Figure 8b is the data of time phase II. Figure 8c,d are the extraction
results of the dam. Figure 8e is the registration result for the reservoir dam of time phase II.
Figure 8f is the extraction result of the reservoir dam by the mask operation. Figure 8g is
the difference calculation result by the reservoir dam’s masks of two different time phases.
Figure 8h is the final detected change result of the Dalingtou Reservoir dam. Similarly,
Figure 9 shows the experimental results of the Qingshitan Reservoir dam.

It can be seen from the experimental results that the two reservoir dams went through
relatively obvious changes over a period of a half year. For the Dalingtou dam, part of the
image below the dam was lost, while a part was added to the right. For the Qingshitan
dam, a part was added below the dam in the image. After analysis, it was determined
that: (1) the subtle changes around the reservoir dam were caused by the fact that, as the
change in seasons, vegetation grew on the border of the dam body, so the edge of the dam
body was covered; (2) when the rainy season occurred from March to May, the continuous
rainfall made part of the dam body wash away due to the sand and stones.

5. Discussion

Superpixel segmentation is a key factor affecting the boundary extraction of reservoir
dams. Based on the above experimental results, this section discusses and analyzes the influence
of different superpixel segmentation methods on the accuracy of reservoir dam boundary
extraction and the influence of the superpixel size on the detection accuracy of the reservoir
dam’s changes. In addition, comparisons with other mainstream methods are presented.

5.1. Comparison and Analysis of Different Superpixel Segmentation Methods

From the three indicators in Figures 10–12, it can be seen that the LSC superpixel seg-
mentation has the highest boundary recall (BR) value and the lowest under-segmentation
error (UE) value. It shows that the segmentation result of LSC has the most accurate edges
and fits the best boundary. However, there are cases where the CO value is relatively low,
indicating that the superpixel blocks generated by LSC are not very regular, although it
does not affect the accurate extraction of edge features.
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This application research requires completeness and precise boundaries of the reservoir
dam body when superpixel presegmentation is applied, and due to the unique color
attributes of the reservoir dam body, the segmentation boundary is significantly different
from the color texture of other objects, so LSC is more suitable than other superpixel
segmentation methods.

5.2. Analysis of the Influence of Superpixel Size Setting on the Detection Accuracy of
Dam Changes

When the superpixel size was set to 10, the detection results of the dam changes in
Qingshitan and Dalingtou Reservoirs are shown in Figure 13.

The masks in Figure 13a,c are the true labels and the masks in Figure 13b,d are the
experimental extraction results. The red color is the missing label of the reservoir dam by
the proposed extraction algorithm. It can be seen from the comparison of the above figures
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that the change detection results of the two reservoir dams are accurate. However, both
reservoirs are with partial occlusion (as shown with red color), resulting in the failure to
extract the dam body of the obscured part in every group of two-time-phase data. In actual
situations, the relative height of the flight is relative to the take-off point, while the plane of
the reservoir is often lower than the actual take-off point, and due to the two-dimensional
image projection, only the projected area of change of the reservoir dam can be calculated.
The three-dimensional change calculation requires combining more information.
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Dalingtou 
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Figure 13. Detection results of dam changes in Qingshitan and Dalingtou reservoirs. (a) Ground
truth of changes for the Dalingtou Reservoir dam; (b) the test results of changes for the Dalingtou
Reservoir dam; (c) ground truth of changes for the Qingshitan Reservoir dam; (d) test results of
changes for the Qingshitan Reservoir dam.

The pixel size of the image sensor was (12.8 × 103/4864) ≈ 2.6315 µm. When the
relative height of the UAV above Dalingtou Reservoir is 100 m, the ground spatial resolution
can be calculated as 2.99 cm/pixel through the camera parameters and flight height of
the UAV: 2.6315 × 10−4 × 104/(8.8 × 10−1) ≈ 2.99 (cm/pixel). Moreover, the number of
pixels in the changed area is 965,524. It can be calculated that the plane area of the dam
change of Dalingtou Reservoir is 965,524 × 2.992 × 105 ≈ 863.19 m2. When the relative
height of the UAV above Qingshitan Reservoir is 55 m, the ground spatial resolution is
2.6315 × 10−4 × 104/(8.8 × 10−1) ≈ 1.64 (cm/pixel). The number of pixels in the changed
area is 1,950,977 according to the statistics. It can be calculated that the planar area of
Qingshitan Reservoir dam change is about 1,950,977 × 1.642 × 10−5 ≈ 524.73 m2.

The calculated results of the above parameters are shown in Table 1.

Table 1. The calculated parameters of the UAV experiment.

Parameter Flight
Height\m

Ground Spatial
Resolution\(m/pixel)

Number of
Changed Pixels

Change
Area\m2

Dalingtou
Reservoir 100 0.0299 965,524 863.192

Qingshitan
Reservoir 55 0.0164 1,950,977 524.73
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From the segmentation indicators in Figures 14 and 15, it can be seen that when
detecting reservoir changes from UAV remote sensing images, the smaller the superpixel
size, the more accurate the results of the dam change detection.
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Figure 15. The evaluation metrics for the dam change detection in Qingshitan Reservoir using
different superpixel sizes.

The evaluation indices of the change results when the superpixel size of the two reser-
voir dams was set to 10 are shown in Table 2. From the above four evaluation indicators, it
can be concluded that the evaluation indicators of the final change results of the two reser-
voir dams were both better than 95%.

Table 2. The evaluation metrics for the dam change results in Dalingtou and Qingshitan Reservoirs.

Method ACC Recall

Dalingtou reservoir 0.9674 0.9623
Qingshitan reservoir 0.9812 0.9723
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The detection results of the dam changes in Dalingtou Reservoir and Qingshitan Reser-
voir were as follows: the F1-score indices were 0.9648 and 0.9767 compared with the label
value, and the Kappa indices were 0.9625 and 0.9674, respectively. At the same time, it was
also verified that as the relative flight height of the Qingshitan test (55 m) was lower than
the relative flight height of the Dalingtou test (100 m), the pixel representation in the image
of the Qingshitan dam was finer, so that the accuracy of the change detection results of the
Qingshitan dam was better than that of Dalingtou dam.

5.3. Comparison with Other Mainstream Methods

In this section, we describe in detail the specific models and experimental results of
several comparative methods and make a comparative analysis with the LSC fused with
enhance GrabCut proposed in this paper. Through these comparative experiments, we
comprehensively assess the performance of various methods for remote sensing change
detection in reservoirs. It is worth noting that the change detection images used in the
comparison test were fully consistent with the UAV remote sensor images in previous
studies to ensure the comparability and accuracy of the experimental results.

In our study methodology, outlined in Table 3, we evaluated the performance metrics
for identifying changes in two reservoir dams by using a superpixel size of 10. For the above
four evaluation metrics, it was clear that the final performance of the change detection
for both reservoirs exceeded 95%. Notably, it yielded F1-score metrics of 0.9648 and
0.9767 for the Dalingtou and Qingshitan Reservoir dams’ change detections, respectively.
Additionally, their Kappa metrics were 0.9625 and 0.9674, respectively, demonstrating a
reliable correspondence with ground truth labels. The test results demonstrated that this
model exhibited a strong change detection capability and accuracy, effectively capturing
the changing information in the reservoir images. The enhanced model fused with the
superpixel segmentation proposed in this study demonstrated outstanding performance in
reservoir remote sensing change detection tasks.

(1) Change detection method based on PCA and K-means [20,21]: The proposed method
involves the division of difference images into nonoverlapping blocks. It utilizes PCA
to extract orthogonal feature vectors and create a vector space from these features. Each
pixel is projected onto this space utilizing S-dimensional feature vectors. Subsequently,
the application of K-means clustering aims to partition the feature vector space into
two clusters. Based on the minimum Euclidean distance, pixels are then assigned to
one of these clusters. This process achieves unsupervised detection of both changed
and unchanged regions. On the Dalingtou Reservoir image, this method yielded
results similar to our research approach. However, its recall was still lower than
our method, resulting in more false positives and false negatives. In the case of
the Qingshitan Reservoir image, there were a significant number of false negatives,
indicating limited model performance.

(2) DLMRL [22,23]: The deep learning model based on reconstruction loss is trained using
unlabeled, single-time, single-image data and attempts to perform change detection
during inference by reconstructing one of the input images. The reconstruction-loss-
based deep learning model achieved a lower accuracy on the Dalingtou Reservoir
image, but the recall, F1-score and Kappa coefficient were higher. However, the
recall, F1-score and Kappa coefficient were worse, and the accuracy was higher on
the Qingshitan Reservoir image. The results of different images were more biased, as
there were more missed areas. The robustness of their models was not strong, and the
results were all poorer compared to the methods in this study.

(3) OTSU image difference method [24]: This method is based on the OTSU thresholding
technique and performs change detection by computing the global threshold for an
image’s gray levels and then subtracting one time phase of remote sensing images from
another. It is a classic threshold-based image change detection method. Experimental
results indicated that compared to our method in this paper, it performs poorly
in the context of change detection in reservoir images, which is a complex scene.
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The recognition results between the two images showed significant discrepancies,
indicating that the model lacked robustness. It was not sensitive to subtle changes in
the area and tended to have a higher number of missed detection areas.

(4) Robust change vector analysis detection method [25–27]: This method is used to extract
change vectors and perform change detection. The RCVA demonstrated moderate
performance. Compared to our research method, it had a higher query accuracy, but
the other three indicators such as the F1 score were lower. In the context of reservoir
change detection in our study, this method did not provide a comprehensive coverage
of change areas and had a relatively high rate of missed detections. Its effectiveness
was limited in this specific scenario.

(5) Differential principal component analysis [28]: This method first calculates the differ-
ence between multiband images from two different time periods, resulting in difference
images. Subsequently, it performs a principal component analysis on these difference
images to extract the top principal components, which represent the primary differ-
ential information in the images and are considered important features representing
change information. In comparison to our research method, this approach exhibited
higher rates of false positives and false negatives, and its overall evaluation metrics
were lower. It did not perform well in detecting changes in reservoir images.

Table 3. Comparisons with different methods.

Method Research Area ACC Recall F1-Score Kappa

Ours
Dalingtou Reservoir 0.9674 0.9623 0.9648 0.9525
Qingshitan Reservoir 0.9812 0.9723 0.9767 0.9674

PCA + K-means
Dalingtou Reservoir 0.9922 0.8402 0.3226 0.3202
Qingshitan Reservoir 0.9454 0.4227 0.5122 0.4846

DLMRL
Dalingtou Reservoir 0.9045 0.1458 0.1738 0.1249
Qingshitan Reservoir 0.9739 0.0748 0.1019 0.0905

OTSU image difference Dalingtou Reservoir 0.9413 0.0619 0.1119 0.1015
Qingshitan Reservoir 0.9277 0.2433 0.2697 0.2321

RCVA
Dalingtou Reservoir 0.9942 0.7121 0.2916 0.2898
Qingshitan Reservoir 0.9491 0.4471 0.5292 0.5033

DPCA
Dalingtou Reservoir 0.9201 0.0711 0.1324 0.1219
Qingshitan Reservoir 0.8018 0.1283 0.2115 0.1497

All in all, when comparing with other models in comparative experiments, some
models showed subpar performance. For example, the supervised transfer learning method
based on U-Net exhibited a poor transferability to reservoir images, lacking generalizability,
and failing to accurately detect changes in reservoirs. The change detection methods based
on PCA + K-means, deep learning models based on reconstruction loss, RCVA, DPCA
and OTSU image difference method all had limitations in reservoir change detection tasks,
including issues with false positives, false negatives and other challenges.

Finally, it should be pointed out that when the lighting difference between two different
phase Images is large, we first need to process the image for color consistency, which is
conducive to the later image alignment; in addition, if the selected weather contains a large
haze, the image will become unclear, which should first be de-fogged, and then processed
for change detection.

6. Conclusions

The method proposed in this paper combined LSC superpixel segmentation with
enhanced GrabCut, fusing Sobel edge operator and GrabCut, and could effectively perform
intelligent segmentation and dam extraction from high-resolution UAV remote sensing
images. The superpixels were mapped to points and rearranged into a mapping matrix,
which was introduced into the segmentation algorithm, and then the Sobel edge operator
was introduced into GrabCut to improve the accuracy and smoothness of the segmentation
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edge. Finally, the image registration method was used to obtain the change information of
reservoir dams. In the change detection experiment on a reservoir dam, the smaller the
superpixel size, the stronger the edge points of the mapping matrix, and the higher the
change detection accuracy.

The innovation and effectiveness of the model proposed in this paper were verified
by the UAV high-resolution remote sensing change detection from two typical reservoir
dams in Guilin with two different time phases. This paper adopted UAV high-resolution
remote sensing for the first time to detect changes in reservoir dams in Guilin and provided
a technical feasibility verification for the subsequent realization of systematic and full-
coverage remote sensing monitoring of 137 reservoir dams in Guilin.
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