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Abstract: Synthetic aperture radar (SAR) and optical images often present different geometric struc-
tures and texture features for the same ground object. Through the fusion of SAR and optical images,
it can effectively integrate their complementary information, thus better meeting the requirements
of remote sensing applications, such as target recognition, classification, and change detection, so
as to realize the collaborative utilization of multi-modal images. In order to select appropriate
methods to achieve high-quality fusion of SAR and optical images, this paper conducts a systematic
review of current pixel-level fusion algorithms for SAR and optical image fusion. Subsequently,
eleven representative fusion methods, including component substitution methods (CS), multiscale
decomposition methods (MSD), and model-based methods, are chosen for a comparative analysis.
In the experiment, we produce a high-resolution SAR and optical image fusion dataset (named
YYX-OPT-SAR) covering three different types of scenes, including urban, suburban, and mountain.
This dataset and a publicly available medium-resolution dataset are used to evaluate these fusion
methods based on three different kinds of evaluation criteria: visual evaluation, objective image
quality metrics, and classification accuracy. In terms of the evaluation using image quality metrics,
the experimental results show that MSD methods can effectively avoid the negative effects of SAR
image shadows on the corresponding area of the fusion result compared with CS methods, while
model-based methods exhibit relatively poor performance. Among all of the fusion methods involved
in the comparison, the non-subsampled contourlet transform method (NSCT) presents the best fusion
results. In the evaluation using image classification, most experimental results show that the overall
classification accuracy after fusion is better than that before fusion. This indicates that optical-SAR
fusion can improve land classification, with the gradient transfer fusion method (GTF) yielding the
best classification results among all of these fusion methods.

Keywords: synthetic aperture radar (SAR); optical image; image fusion; image classification

1. Introduction

With the rapid development of different types of sensors that obtain information from
the Earth, various remote sensing images have become available for users. Among them,
optical images and synthetic aperture radar (SAR) images are two of the most commonly
used data in remote sensing applications. SAR images have unique characteristic structure
and texture information, making them adaptable for collection at any time without being
affected by weather conditions. However, due to the special measurement method of SAR
systems (i.e., side-looking imaging), the gray values of SAR images are different from the
spectral reflectance of the Earth’s surface, which brings difficulties for the interpretation of
SAR images in certain scenarios. As is shown in Figure 1, considering that optical images

Remote Sens. 2023, 15, 5514. https://doi.org/10.3390/rs15235514 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15235514
https://doi.org/10.3390/rs15235514
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-6843-6722
https://doi.org/10.3390/rs15235514
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15235514?type=check_update&version=1


Remote Sens. 2023, 15, 5514 2 of 30

contain rich spectral information, they can directly reflect the colors and textural details
of ground objects. Therefore, optical and SAR images are fused to obtain fusion results
containing complementary information, thus enhancing the performance of subsequent
remote sensing applications [1].
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According to the stage of data integration, the fusion technology can be divided into
three categories: pixel-level, feature-level, and decision-level [2]. Compared with feature-
level and decision-level methods, pixel-level fusion methods involve higher computational
complexity. Pixel-level fusion methods, despite their higher computational complexity
compared to feature-level and decision-level approaches, are widely employed in remote
sensing image fusion due to their superior accuracy. These methods have the properties of
effective retention of original data, limited information loss, and abundant and accurate
image information [3]. As more and more algorithms and their improved versions have
been used to fuse optical and SAR images, researchers have compared the performance
of these methods for improving ground object interpretation. For instance, Battsengel
et al. compared the performance of intensity–hue–saturation (IHS) transform, Brovey
transformation, and principal components analysis (PCA) in urban feature enhancement [4].
The analysis revealed that the images transformed through IHS have better characteristics
in spectral and spatial separation of different urban levels. However, in a comparative
experiment conducted by Sanli et al., IHS showed the worst results [5].

As mentioned above, the performance of the same fusion method can exhibit signif-
icant variations across different scenes owing to the special imaging mechanism of SAR
and its distinct image content. The fusion quality is affected not only by the quality of the
input image, but also by the performance of the fusion method. Accordingly, it is worth
considering the selection of a suitable method among many fusion methods and the choice
of appropriate metrics for evaluation. In order to compare the performance of various
fusion methods objectively, some researchers quantitatively evaluate the effect of fusion
methods through objective fusion quality evaluation metrics [6–9], but there are few fusion
methods and evaluation metrics involved in experiments, which fail to cover all of the
categories of pixel-level fusion methods.

In addition to evaluating fusion quality based on traditional image quality evaluation
metrics, it is worth exploring how to use classification accuracy to evaluate fusion quality,
particularly in the context of improving image interpretation and land classification. The
quality of the input images will affect the accuracy of the classification results [10–13].
Radar can penetrate clouds, rain, snow, haze, and other weather conditions, thus obtaining
the reflection information from the target surface. As a result, SAR data can be collected
at nearly any time and under any environmental conditions. However, these data are
susceptible to speckle noise, thus resulting in poor interpretability, and they lack spectral
information. In contrast, optical images contain rich spectral information. In the application
of land cover classification, the fusion of optical and SAR data is beneficial to distinguish
ground object types that might be indistinguishable due to their similar spectral charac-
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teristics. Thus, in order to improve the image classification results, numerous researchers
have used SAR and optical image fusion for land cover classification [14–18].

Gaetano et al. deal with the fusion of optical and SAR data for land cover monitoring.
Experiments show that the fusion of optical and SAR data can greatly improve the classi-
fication accuracy compared with raw data or even multitemporal filtering data [15]. Hu
et al. propose a fusion approach for the joint use of SAR and hyperspectral data, which is
used for land use classification. The classification results show that the fusion method can
improve the classification performance of hyperspectral and SAR data, and it can collect
the complementary information of the two datasets well [17]. Kulkarni et al. present a
hybrid fusion approach to integrate information from SAR and MS imagery to improve
land cover classification [18]. Dabbiru et al. investigate the impact of an oil spill in an
ocean area. The main purpose of that study was to apply fusion technology to SAR and
optical images and explore the application value of fusion technology in the classification
of oil-covered vegetation in coastal zones [19]. However, few researchers take classification
accuracy as an evaluation metric to evaluate the performance of different fusion methods.

Optical and SAR image fusion has garnered significant attention owing to the special
complementary advantages. However, many existing methods borrow migrations of fusion
models from other fields (e.g., optical and infrared images, multi-focused images), with a
lack of algorithmic exploration for the study of optical and SAR specificity. In recent years,
deep learning has greatly driven the applied research on image fusion, but the studies are
mostly focused on specific application scenarios, such as target extraction, cloud removal,
land classification, etc. [20–22], in which the algorithms mainly deal with local feature
information rather than global pixel information. In most of the latest research articles
on pixel-level fusion of optical and SAR images based on deep learning, no specific code
files have been published to objectively verify the advantages and disadvantages of the
algorithms. Therefore, in this paper, in order to better experimentally verify the algorithms
within the field of pixel-level image fusion, several types of traditional algorithms that are
well-established and publicly available are selected for comparative analysis.

This paper makes the following three contributions:

1. We systematically review the current pixel-level fusion algorithms for optical and SAR
image fusion, and then we select eleven representative fusion methods, including CS
methods, MSD methods, and model-based methods for comparison analysis.

2. Based on the evaluation indicators of low-level visual tasks, we combine these with the
evaluation indicators of subsequent high-level visual tasks to analyze the advantages
and disadvantages of existing pixel-level fusion algorithms.

3. We produce a high-resolution SAR and optical image fusion dataset, including
150 pairs of images of urban, suburban, and mountain settings, which can pro-
vide data support for relevant research. The download link for the dataset is https:
//github.com/yeyuanxin110/YYX-OPT-SAR (accessed on 21 January 2023).

This paper extends our early work [23] by adding two datasets, including a self-
built high-resolution dataset named YYX-OPT-SAR and a publicly medium-resolution
dataset named WHU-OPT-SAR, to evaluate the fusion methods. In order to evaluate the
performance of different fusion methods in subsequent classification applications, we also
employ classification accuracy as an evaluation criterion to assess the quality of different
fusion methods.

2. Pixel-Level Methods of Optical–SAR Fusion

As an important branch of information fusion technology, the pixel-level fusion of
images can be traced back to the 1980s. With the increasing maturity of SAR technology,
researchers have explored the fusion of optical and SAR images to enhance the performance
of remote sensing data across various applications. In the multi-source remote sensing
data fusion competition held by the IEEE Geoscience and Remote Sensing Society (IEEE
GRSS) in 2020 and 2021, the theme of SAR and multispectral image fusion has been
consistently included, which underscores the growing significance of optical and SAR
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image fusion in recent years. At present, research on pixel-level fusion algorithms of
optical and SAR images based on deep learning remains relatively limited in depth, so
the pixel-level fusion algorithms selected in this paper are relatively mature, traditional
algorithms. Generally speaking, traditional pixel-level fusion methods can be divided into
CS methods, MSD methods, and model-based methods [2]. Because of their different data
processing strategies, these three methods have their own advantages and disadvantages
in optical and SAR image fusion.

2.1. CS Methods

The fusion process of CS methods is shown in Figure 2. CS methods aim to obtain the
final image fusion result by replacing a certain component of the positive transformation
of the optical image with the SAR image and then applying the corresponding inverse
transformation. In this way, the obtained image fusion result incorporates the spectral
information from the optical image and the texture information from the SAR image. For
instance, Chen et al. utilize the IHS transform to fuse hyperspectral and SAR images. The
fusion results not only have a high spectral resolution but also contain the surface texture
features of SAR images, which enhances the interpretation of urban surface features [24].
The conventional PCA method is improved by Yin and Jiang, and the fusion result demon-
strates better performance in preserving both spatial and spectral contents [25]. Yang et al.
use the Gram–Schmidt algorithm to fuse GF-1 images with SAR images and successfully
improve the classification accuracy of coastal wetlands by injecting SAR image information
into the fusion results [26].
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With the characteristics of simplicity and low computational complexity, CS methods
can obtain fusion results with abundant spatial information in pan-sharpening and other
fusion tasks. However, in multi-sensor and multi-modal image fusion, such as SAR–optical
image fusion, serious spectral distortions occur frequently in partial areas because of low
correlation. Recently, the research on pixel-level fusion algorithms of optical and SAR
images has developed toward the multi-scale decomposition method.

2.2. MSD Methods

MSD methods divide the original image into the main image and the multilayer de-
tail image according to the decomposition strategy, and each image encapsulates distinct
potential information from the original image [27]. While the number of subbands de-
composed by different methods varies, these methods share a similar process framework,
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which is shown in Figure 3. According to the decomposition strategies, MSD methods can
be divided into three categories: wavelet-based methods, pyramid-based methods, and
multi-scale geometric analysis (MGA)-based methods [27].
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Kulkarni and Rege use the wavelet transform to fuse SAR and multispectral images,
and they apply the activity level measurement method based on local energy to merge
detail subbands, which not only enhances spatial information but also avoids spectral
distortions [1]. Eltaweel and Helmy apply the Non-subsampled shearlet transform (NSST)
for multispectral and SAR image fusion. The fusion rules based on local energy and the
dispersion index are used to integrate the low-frequency coefficients decomposed through
NSST, and the multi-channel pulse coupled neural network (m-PCNN) is utilized to guide
the fusion process of bandpass subbands. The fusion results show good object contour
definition and structural details [28].

The primary goal of MSD methods is to extract multiplex features of the input image
into different scales of subbands, and thus to realize the optimal selection and integration
of diverse pieces of salient information through specifically designed fusion rules. Activity-
level measurement and coefficient combination are essential steps in MSD methods. As
a critical factor affecting the quality of the fused image, activity-level measurement is
used to express the salience of each coefficient and then provide the evaluation criterion
and calculation basis for the weight assignment in the coefficient combination process.
And the activity-level measurement methods can be divided into three categories: the
coefficient-based, window-based, and region-based measures. Equally important are
coefficient combination rules, which involve various operations, such as weighted average,
maximum value, and consistency verification, that help to control the contribution of
different frequency bands to the merging results with predefined or adaptive rules [29].

2.3. Model-Based Methods

Model-based fusion methods relate to the fusion of optical and SAR images as an
image generation problem. The final fusion result is derived by establishing a mathematical
model that describes the mapping relationship from the source image to the fusion result,
or by establishing a constraint relationship between the fusion result and the source image.
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In addition, in order to enhance the fusion effect, a probability model and a priori constraint
can be introduced into the model, albeit at the expense of increased solution complexity.
Representative methods within this category include variational model methods and sparse
representation (SR) methods. Variational model methods establish an energy functional
consisting of different terms based on prior constraint information. The fusion result is
obtained by minimizing the energy functional under the premise that the existence of a
minimum for the energy functional is proved. On the other hand, the methods based on
SR select different linear combinations from overcomplete dictionaries to describe image
signals. Yang and Li are pioneers in employing SR for the image fusion task, and they
propose an SR-based image fusion method using the sliding window technique [30]. The
schematic diagram of the method is shown in Figure 4.
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Wei Zhang and Le Yu introduce the variational model for pan-sharpening into the
fusion process of SAR and multispectral images, which obtains the final fusion result
by minimizing the energy functional composed of linear combination constraints, color
constraints, and geometric constraints. The experiment demonstrates that a variational
model-based fusion method is acceptable for SAR and multispectral image fusion in terms
of spectral preservation [31]. Additionally, Huang proposes a cloud removal method for
optical images based on sparse representation fusion, which uses SAR and low-resolution
optical images to provide high-frequency and low-frequency information for reconstructing
the cloud occlusion area and achieves good visual effect and radiation consistency [20].

2.4. Method Selection

Generally speaking, the traditional pixel-level fusion methods can be divided into
CS methods, MSD methods, and model-based methods. According to the decomposition
strategy, MSD methods can be divided into three categories: wavelet-based methods,
pyramid-based methods, and multi-scale geometric analysis (MGA) methods. In order to
compare the differences between fusion methods in different categories, we choose some
classical methods for the following two points in each category. First, there are publicly
available algorithms with dependable performance to conduct comparative experiments.
Second, they have been used in optical and SAR image fusion fields. Table 1 shows a list of
investigated methods.

For MSD methods, the “averaging” rule is selected to merge low-pass bands, while the
“max-absolute” rule is employed to merge high-pass MSD bands. Two instances of the “max-
absolute” rule are applied, one being the conventional rule and the other incorporating
a local window-based consistency verification scheme [32]. These are denoted by the
numbers “1” and “2” appended to the corresponding abbreviation, as shown in Table 2, to
explore their respective impacts on the final fusion results. The decomposition levels and



Remote Sens. 2023, 15, 5514 7 of 30

decomposition filters presented in Table 3 are chosen according to the research conclusion
of the literature [33]. In the sparse representation based on the sliding window, the step size
and the window size are fixed to one and eight, respectively [30], the K-means generalized
singular value decomposition (K-SVD) algorithm [34] is used to build an overcomplete
dictionary, and the orthogonal matching pursuit (OMP) algorithm [35] is utilized for sparse
coding. The parameter selection of other methods adopts the recommended values from
the corresponding literature.

Table 1. Pixel-level fusion methods participating in comparison.

Category Method

CS
Intensity–Hue–Saturation (IHS) transform [36]

Principal Component Analysis (PCA) [37]
Gram–Schmidt (GS) transform [38]

MSD

Pyramid-based Laplacian pyramid (LP) [39]
Gradient pyramid (GP) [40]

Wavelet-based Discrete wavelet transform (DWT) [41]
Dual tree complex wavelet transform (DTCWT) [42]

MGA Curvelet transform (CVT) [43]
Non-subsampled contourlet transform (NSCT) [44]

Model-based SR [30]
Gradient Transfer Fusion (GTF) [45]

Table 2. The fusion rule of the high-frequency component, represented by different serial numbers.

Method Rule

XX_1 max-absolute

XX_2 “max-absolute” rule with a local window-based consistency
verification scheme

(XX denotes a fusion method).

Table 3. Filters and number of decomposition layers in MSD methods.

Category Method Filters Levels

Pyramid-based
LP / 4

RP / 4

Wavelet-based

DWT Daubechies (db1) 4

DTCWT First: LeGall 5-3
Other: Q-shift_06 4

MGA

CVT / 4

NSCT Pyramid: pyrexc
Orientation: 7–9 {4, 8, 8, 16}

3. Evaluation Criteria for Image Fusion Methods
3.1. Visual Evaluation

The visual evaluation is conducted to assess the quality of the fused image based
on human observation. Observers judge the spectral fidelity, the visual clarity, and the
amount of information in the image according to their subjective feelings. Although visual
evaluation has no technical obstacles in implementation and directly reflects the visual
quality of images, its reliability is influenced by various factors, such as the observer’s
self-experience, display variations in hardware, and ambient lighting conditions, leading to
lower reproducibility and stability. Generally, the visual evaluation serves as a supplement
in combination with statistical evaluation methods.
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3.2. Statistical Evaluation

The statistical evaluation of image quality is a fundamental aspect of digital image
processing encompassing various fields, such as image enhancement, restoration, and
compression. Numerous conventional image quality evaluation metrics, like standard
deviation, information entropy, mutual information, and structural similarity, have been
widely applied. These metrics can objectively evaluate the quality of fusion results and
provide quantitative numerical references for the comparative analysis of fusion methods.
In addition to these conventional metrics, researchers have proposed some quality metrics
specially designed for image fusion, such as the weighted fusion quality index QW and the
edge-dependent fusion quality index QE [46], as well as the objective quality metric based
on structural similarity QY [47].

The objective quality evaluation of image fusion can be carried out in two ways [48].
The first way is to compare the fusion results with a reference image, which is commonly
used in pan-sharpening and multi-focus image fusion. However, in multimodal image
fusion tasks, such as SAR–optical image fusion, obtaining an ideal reference image is
challenging. Therefore, this paper uses the non-reference metrics to objectively evaluate the
quality of the fusion image. The fusion results are comprehensively compared from different
aspects through nine representative fusion evaluation metrics: information entropy (EN),
peak signal-to-noise ratio (PSNR), mutual information (MI), standard deviation (SD), the
metric QAB/F based on edge information preservation [49], the universal image quality
index Qo [50], the weighted fusion quality index QW , the edge-dependent fusion quality
index QE, the similarity-based image fusion quality index QY, and the human visual
system (HVS)-model-based quality index QCB [51]. Based on the different emphases of
these evaluation indexes, they can be divided into four categories [52,53]. Table 4 presents
the definitions and characteristics of the selected nine quality metrics.

3.3. Fusion Evaluation According to Classification

Most of the subsequent applications of remote sensing images focus on image classifi-
cation and object detection. At present, there have been researches on object detection of
remote sensing images [54], but there are few traditional methods. Therefore, this paper
chooses image classification as an index to evaluate the performance of image fusion in
subsequent applications. In the evaluation of image classification, three classic methods,
including Support Vector Machine (SVM) [55], Random Forests (RF) [56], and Convolu-
tional Neural Network (CNN) [57], are used to perform image classification. It is crucial
to evaluate the accuracy of classification results. According to the results of the accuracy
evaluation, we can judge whether the classification method is accurate and whether the
classification degree meets the needs of the subsequent analysis. This information enables
us to identify which fusion method yields the best classification result. The commonly used
method to evaluate the accuracy of classification results is the confusion matrix, also known
as the error matrix. It reflects the correct and incorrect classification of the corresponding
classification results of each category in the validation data. The confusion matrix is a
square matrix with a side length of c, where c is the total number of categories and the
values on the diagonal are the number of correctly classified pixels in each category.

Overall accuracy (OA) refers to the ratio of the total number of pixels correctly classi-
fied to the total number of pixels in the verified sample. It provides the overall evaluation
of the quality of the classification results. User accuracy (UA) represents the degree to
which a class is correctly classified in the classification results. It is calculated as the ratio of
the number of correctly classified pixels in each class to the total number of pixels sorted
into that class by the classifier (the sum of row elements corresponding to that class).
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Table 4. Definition and significance of nine quality indices.

Category Definition Range Characteristic

Information-theory-
based

EN = −∑L−1
l=0 pl log2 pl ,

L is the number of the gray level and pl is the normalized histogram of an
image

[0, log2 L]
Reflects the amount of

information contained in
the image

PSNR = 10log10
L2

MSE
where MSE = MSEAF+MSEBF

2 ,
MSEXF = 1

MN ∑M−1
i=0 ∑N−1

j=0

(
X(i, j)− F(i, j))2

[0,+∞] Reflects the distortion

Image-
feature-based

SD =
√

∑M
i=1 ∑N

i=1(F(i, j)− µ)2 [0,+∞]
Reflects the distribution

and contrast of the image

QAB/F =
∑N

i=1 ∑M
j=1 (QAF(i,j)wA(i,j)+QBF(i,j)wB(i,j))
∑N

i=1 ∑M
j=1 (wA(i,j)+wB(i,j))

QXF(i, j) = QXF
g (i, j)QXF

α (i, j), QXF
g (i, j) and QXF

α (i, j) denote the edge
strength and orientation preservation values at pixel (i, j); w is the

weighting factor

[0, 1]
Evaluates the edge

information preserved in
the fused image

Structural-similarity-
based

QY ={
λ(w)SSIM(A, B|w) + (1− λ(w))SSIM(B, F | w), SSIM(A, B|w) > 0.75

max{SSIM(A, B|w), SSIM(A, B|w)}, SSIM(A, B|w) < 0.75
SSIM(X, Y|w) is local structural similarity, λ(w) is the weighting factor

[0, 1]
Reflects the structural

similarity between two
images

Q0 = (Q0(A, F) + Q0(B, F))/2,
where Q0(X, Y) = 2σXY

σ2
X+σ2

Y
· 2µXµY
µ2

X+µ2
Y

[−1, 1]

Reflects the loss of
correlation, luminance
distortion, and contrast
distortion of the fused

image

QW = ∑
w∈W

c(w)(λ(w)Q0(A, F | w) + (1− λ(w)Q0(B, F | w))

c(w) is normalized salience, λ(w) is saliency weight, and
Q0(X, Y | w) is Wang–Bovik image quality index

[−1, 1]

Indicates the amount of
salient information

transferred into the fused
image

QE = QW(A, B, F) ·QW

(
Á, B́, F́

)α

Á, B́, F́ are edge images of A, B, and F; α is the adjustable parameter
[−1, 1]

Evaluates the edge
information preserved in

the fused image

Human-perception-
inspired

QCB = λA(x, y)QAF(x, y) + λB(x, y)QBF(x, y), λA, λB is the saliency map,
QAF , QBF is the information preservation value

[0, 1] Assesses the image
quality of the fused image

(M, N are the width and height of the image; X and Y represent any image; A and B represent the source image; F
represents the fusion result).

4. Datasets

To promote the development of optical–SAR data fusion methods, access to a sub-
stantial volume of high-quality optical and SAR image data is essential. SAR and optical
images with a sub-meter resolution provide abundant shape structure and texture infor-
mation of landscape objects. Accordingly, their fusion results are beneficial for accurate
image interpretation, and they reflect the specific performance of the used algorithm, thus
enabling a persuasive assessment of the fusion methods.

To facilitate research in optical and SAR image fusion technology, we constructed a
dataset named YYX-OPT-SAR. This dataset comprises 150 pairs of optical and SAR images
covering urban, suburban, and mountain settings, and it is characterized by scene diversity
with sub-meter resolution. This dataset can also provide data support for the study of
optical and SAR image fusion technology.

The SAR images were collected around Weinan City, Shaanxi Province, China. In order
to form high-resolution SAR and optical image pairs, we downloaded optical images of the
corresponding areas from Google Earth. The exact location of data collection is shown in
Figure 5.
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Figure 5. YYX-OPT-SAR dataset: Geographic location of the dataset in Shaanxi Province, China.

After the acquisition of heterogeneous image data, image registration is required to
carry out the subsequent phase of fusion. At present, there are many excellent heterologous
image registration methods [58,59]. In this paper, an efficient matching algorithm named
channel features of orientated gradients (CFOG) [60] is utilized to achieve high accuracy
registration with a match error of less than one pixel. In order to maximize the use of
available scenes and ensure that each pair of cropped images can fully express the features
of optical and SAR images, so as to facilitate the visual evaluation and the subsequent fusion
result analysis, we crop the registered optical and SAR image pairs into non-overlapping
image blocks with a size of 512 × 512 pixels. Then, according to different image coverage
scenes, we categorize the obtained image pairs into three types: urban, suburban, and
mountain. Each type comprises 50 pairs of images, resulting in a total of 150 pairs of images.
Some samples are shown in Figure 6.

Another large ground object fusion dataset used in this paper named WHU-OPT-
SAR [61] contains medium-resolution optical and SAR images. This dataset, with a reso-
lution of 5 m, covers 51,448.56 square kilometers in Hubei Province, including 100 pairs
of 5556 × 3704 (pixel) images. The exact location and coverage of these images on the
map are shown in Figure 7. The optical images in the dataset were obtained from the GF-1
satellite (2 m resolution), while the SAR images were obtained from the GF-3 satellite (5 m
resolution), and a unified resolution of 5 m was achieved through bilinear interpolation.
Some samples of this dataset are shown in Figure 8.

In the experiment, we produce a high-resolution SAR and optical image dataset
covering three different types of scenes: urban, suburban, and mountain. Such a dataset
and a publicly available medium-resolution dataset named WHU-OPT-SAR are used
collectively to evaluate these fusion methods using three different kinds of evaluation
criteria. Detailed specifications of the two datasets are given in Table 5.
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Figure 6. Three types of images for the experiment: (a) Optical images covering the urban setting.
(b) SAR images covering the urban setting. (c) Optical images covering the suburban setting. (d) SAR
images covering the suburban setting. (e) Optical images covering the mountains. (f) SAR images
covering the mountains.
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Table 5. Specifications of the datasets.

YYX-OPT-SAR WHU-OPT-SAR

Number of images (pairs) 150 100
Image pixel size 512 × 512 5556 × 3704

Ground resolution (m) 0.5 5

The surrounding areas Weinan City, Shaanxi Province
in China

Wuhan City, Hubei Province
in China

5. Experimental Analysis
5.1. Visual Evaluation
5.1.1. Visual Evaluation of High-Resolution Images

The datasets proposed in the previous section are fused using the 11 fusion methods
given in the second section (Table 1) to generate the corresponding fusion results. CS
methods select a specific component from the forward transform and replace it with the
SAR image for inverse transformation, which makes full use of SAR image information.
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Compared with other types of fusion methods, this strategy makes the fusion results
include the texture feature of SAR images and introduce shadows in SAR images. Figure 9
illustrates the fusion results of CS methods (including IHS and PCA) and MSD methods
(including GP and NSCT). It can be clearly seen that the fusion results of CS methods
introduce shadows in the SAR images, which makes image interpretation challenging and
fails to achieve the purpose of fusing complementary information. Compared with the
results of MSD methods, those of CS methods present worse global spectral quality, often
manifesting as color distortion in the areas of roads and vegetation.
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Figure 9. Fusion results of component substitution methods and partial multiscale decomposition
methods. (a) SAR. (b) Optical image. (c) IHS. (d) PCA. (e) GP_1. (f) NSCT_1. A larger version of the
red square is shown in the upper left corner.

MSD methods exhibit lower overall color distortion compared to CS methods. Vi-
sual observation of the results obtained by applying the two different high-frequency
component fusion rules is basically consistent, as shown in Figure 10. Therefore, in the
rest of the qualitative evaluation, we only select the fusion results obtained based on one
high-frequency fusion rule in each MSD method. As a result, we select the “max-absolute”
rule for experimental analysis. On the one hand, by merging the separated low-frequency
components, MSD methods effectively retain the spectral information of optical images;
on the other hand, by using specific fusion rules for the integration of high-frequency
components, the bright textures and edge features of the SAR images are combined into
the fusion results to effectively filter out the shadows (as seen in the last two columns of
Figure 9). Figure 11 shows the fusion results of different MSD methods. It is apparent that
the fusion results of LP and DWT combine more SAR image information, thus introducing
the brighter edge features and noise information from SAR images. However, these two
methods have color distortion in some areas, such as the edges of houses (the first row of
Figure 11) and trees (the second row of Figure 11).

The model-based fusion methods, including SR and GTF, showcase their advantages
and disadvantages due to their different fusion strategies. SR tends to make an either–or
choice between optical and SAR images, which is consistent with the sparse coefficient
selection rule (specifically, the “choose-max” fusion rule with the L1-norm activity level
measure). Consequently, the fusion result of SR resembles that of the SAR image in the
non-shaded part and that of the optical image in the shaded part, with a rough transition
between the two regions. In comparison, GTF integrates the optical image information
effectively, but the texture details of SAR are not well introduced, resulting in fuzzy object
edges. Figure 12 shows the selected fusion results of these two model-based methods.
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The fusion results of all fusion methods under the same image are shown in Figure 13,
and the enlarged image of the selected area is displayed in the upper left corner. From
the perspective of visual effect, the fusion results of different types of fusion methods are
obviously different. CS methods take the SAR image as a component to participate in
inverse transformation and effectively use the pixel intensity information of the SAR image.
Compared with other fusion methods, CS methods combine more SAR image information,
thus introducing more SAR image texture features and shadows. From the box selection
area, it can also be seen that the image texture features and shadows are more similar to
the SAR image. MSD methods have advantages in preserving the spectral information of
optical images by combining the separated low-frequency components. At the same time,
the high-frequency component is selected through specific fusion rules, and the bright
and edge features of the SAR image are fused into the fusion result effectively, while the
shadows are filtered. Among them, LP, DWT, and DTCWT combine more SAR image
information and introduce brighter edge features and noise information in the SAR image,
while the color transition is not natural, such as the roads in the figure. GTF can retain
spectral information better, but the boundary of ground objects is fuzzy.
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5.1.2. Visual Evaluation of Medium-Resolution Images

From the perspective of visual effect, the fusion results of medium-resolution images
exhibit obvious differences among different types of fusion methods. As is shown in
Figure 14, CS methods take the SAR image as a component and participate in the inverse
transformation, utilizing the pixel intensity information of the SAR image effectively.
Compared with other fusion methods, CS methods combine more SAR image information,
which introduces more texture features and shadows from SAR images.

By combining the separated low-frequency components, MSD methods excel in pre-
serving the spectral information of optical images. At the same time, by using specific
fusion rules to select high-frequency components, they effectively incorporate the bright
point features and edge features of SAR images into the fusion results while filtering out
shadows.

GTF can retain the spectral information better. The same kind of ground objects share
the same color in the optical images, but the boundaries of ground objects appear blurred.
The fusion results of GTF contain less texture information from SAR images, and they only
contain the brighter edge information.
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5.2. Statistical Evaluation
5.2.1. Statistical Evaluation of High-Resolution Images

The nine quality assessment metrics shown in Table 4 are used for quantitative analysis
of the fusion methods. Because each fused image has three bands, we calculate the average
value of the metrics of these three bands and use it as the final assessment metric. In
addition, we analyze the fusion results of different scenes, including urban, suburban,
and mountain scenes, separately. Considering that each scene contains 50 fused images,
the average value of their metrics is taken as the result of each method in such a scene.
Figure 15 depicts the assessment metric values of the fusion results of each compared
method. The higher the metric value, the better the fusion quality.

The EN index reflects the amount of image information, and the PSNR index can mea-
sure the ratio of signal to noise and then reflect the degree of image distortion. Figure 15a
shows that the fusion result of the mountain scene contains more information than the other
two types of ground objects, indicating that more SAR image information is combined.
However, when SAR image information is introduced, the noise information of the SAR
image is also introduced. Therefore, as shown in Figure 15c, the PSNR value corresponding
to the mountain scene is lower than that of the other two types of ground objects.

From the perspective of different types of fusion methods, the fusion quality of CS
methods (such as IHS, PCA, and GS) is generally at the same level. For the images in
suburban and mountain areas, his achieves the maximum values on most metrics (such
as EN, SD, QAB/F, and Qy). In the images covering the urban scene, most metrics of the
fusion results obtained through PCA achieve the maximum values (such as PSNR, Qw, Qe,
and Qcb).

In the MSD methods, LP has the highest EN and SD values in all images of the three
different scenes, which proves that the fusion results of LP contain higher contrast and
richer information content than those of other MSD methods. In the three types of images,
NSCT achieves the highest values in most metrics (such as Qw, Qe, and Qo), indicating a
better fusion effect for NSCT.
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In the model-based methods, GTF obtains higher EN, SD, and PSNR for the three
types of images, revealing that the fusion results of GTF contain more information. From
the image quality assessment metrics, the fusion results of SR are worse than those of GTF
and MSD methods on the whole.

Considering that the visual interpretation of SR is poor and the spectral distortion is
serious, the fusion methods that obtain the highest values on each metric except SR are
listed in Table 6. GTF has the highest EN and SD values, indicating that the fusion result
contains more information. MSD methods obtain the highest values in most of the image
quality assessment metrics in the three types of images; in particular, NSCT has the highest
Qw, Qe, and Qo values, which indicates that NSCT presents the best fusion result in all of
these fusion methods.
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Table 6. Fusion methods for obtaining the highest index value for various types of high-resolution
images (excluding SR).

EN SD PSNR QAB/F Qo Qw Qe Qy Qcb

Urban GTF GTF GP LP NSCT NSCT NSCT NSCT NSCT

Suburban GTF GTF GP LP NSCT NSCT NSCT LP PCA

Mountain GTF GTF GP LP NSCT NSCT NSCT NSCT NSCT

Based on the above subjective comparison and objective analysis, NSCT performs
best when dealing with the fusion of optical and SAR images, mainly including urban
and mountain scenes. In terms of statistical evaluation metrics, NSCT and LP have their
own advantages in optical and SAR image fusion of suburban areas. However, from the
perspective of visual effect, the fusion images obtained through LP have color distortion.
Therefore, combining visual effect and statistical evaluation metrics, NSCT can obtain the
best fusion effect in the image fusion of these three types of ground objects.

5.2.2. Statistical Evaluation of Medium-Resolution Images

In addition to the quantitative analysis of the fusion results of the high-resolution
images, we also select the dataset of the medium-resolution images for image fusion
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and quantitatively analyze the performance of different fusion methods on this dataset.
Figure 16 shows the assessment metric values of the fusion results of all of the compared
methods.
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From the perspective of different types of fusion methods, the fusion results of the
medium-resolution images present a similar law to those of the high-resolution images.
The fusion quality of CS methods (such as IHS, PCA, and GS) is almost at the same level,
among which IHS achieves the highest PSNR and QW values in mountain scenes.

Most of the quality assessment metrics of MSD methods are higher than those of CS
methods. Among them, LP has the highest SD and QAB/F values among the three types
of images. NSCT obtains the highest QO, Qy, and Qe values for the three types of images,
indicating that NSCT can obtain better fusion results.

The fusion result obtained through GTF for the medium-resolution images is worse
than that for the high-resolution images. This discrepancy is because the quality of the
fusion results of GTF depends on the information richness of the original optical and
SAR images, and the information of the medium-resolution images is less than that of the
high-resolution images.

The fusion methods (excluding SR) that obtain the highest value on each metric are
listed in Table 7. It can be observed that LP has the highest SD and QAB/F and NSCT has
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the highest Qy, Qe, and Qo for the three types of images. Therefore, NSCT demonstrates
the best performance in image fusion across various metrics.

Table 7. Fusion methods for obtaining the highest index value for various types of medium-resolution
images (excluding SR).

EN SD PSNR QAB/F Qo Qw Qe Qy Qcb

Urban GTF LP NSCT LP NSCT NSCT NSCT NSCT NSCT

Suburban DWT LP NSCT LP NSCT NSCT NSCT NSCT GS

Mountain LP LP IHS LP NSCT IHS NSCT NSCT NSCT

Based on the subjective comparison and objective metric analysis of the two groups of
data, the conclusions can be drawn as follows. The fusion results of CS methods combine
more SAR image information, like texture features and shadows. Nevertheless, the visual
effect is worse than that of MSD methods. The surface boundary of GTF is fuzzy, and the
visual effect is not as good as that of MSD methods. In the MSD methods, LP and NSCT
are at the forefront of most metrics, indicating that these two methods obtain better fusion
results. However, considering the color distortion of LP, NSCT performs best among all of
the compared methods.

5.3. Fusion Evaluation According to Classification
5.3.1. Fusion Evaluation of High-Resolution Images According to Classification

The datasets mentioned earlier are fused using the 11 fusion methods outlined in the
second section (Table 1) to generate the corresponding fusion results. CS methods select the
specific component of the forward transform and replace it with the SAR image for inverse
transformation, thus maximizing the utilization of SAR image information, like texture
feature. Figure 9 represents the fusion results of CS methods (including IHS and PCA)
and MSD methods (including GP and NSCT). It is evident that the fusion results of the CS
methods introduce shadows in the SAR images, thus complicating image interpretation and
failing to achieve the purpose of fusing complementary information. In comparison to MSD
methods, CS methods present worse global spectral quality, with noticeable color distortion
in road and vegetation areas. In this section, we evaluate the 11 fusion methods through
image classification for high-resolution images. In the experiment, 50 pairs of fused images,
including some typical ground objects, such as bare ground, low vegetation, trees, houses,
and roads, are classified by SVM, RF, and CNN, respectively. Given that the dataset contains
multiple fused images, the average of their measurements is taken as the result of each
method. Tables 8–10 show the classification accuracy results. For instance, the classification
results of a pair of optical and SAR images are shown in Figure 17. From the classification
accuracy table, it is obvious that CNN achieves higher overall accuracy compared to SVM
and RF. Simultaneously, the bare ground is more prone to be misclassified, while the houses
and roads exhibit lower misclassification rates. This is because the spectral characteristics
of the bare ground are highly uncertain, and the spectral characteristics of the houses and
roads are obviously different from those of other categories. From Figure 17, it can be seen
that CNN produces classification results more similar to the labels, indicating superior
performance compared to SVM and RF, which show more instances of misclassification.

From Figure 17 and the classification accuracy table, it can be concluded that the fused
images obtain better classification accuracy compared with single optical or SAR image,
which demonstrates that image fusion effectively integrates complementary information
of multimodal images and improves classification accuracy. Compared with the single
SAR image, the optical image yields better classification accuracy. The special imaging
mechanism of SAR leads to the inherent multiplicative speckle noise in SAR images,
seriously affecting the interpretation of SAR images. As a result, the classification accuracy
of SAR images is poor. During the data fusion process, these effects are transmitted to the
fusion image, resulting in the same confusion in the image classification. However, the
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classification accuracy of the fused image surpasses that of the single optical and single
SAR images. This shows the feasibility of using optical and SAR image fusion to improve
classification results.

Table 8. SVM classification accuracy table of the high-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

SVM Bare
Ground

Low
Vegetation Trees Houses Roads OA

RGB 49.75% 60.92% 60.37% 62.36% 62.91% 59.69%

SAR 34.08% 27.88% 45.68% 22.14% 42.44% 39.29%

CVT 39.45% 53.32% 50.03% 73.97% 63.96% 59.85%

DTCWT 37.39% 56.28% 46.60% 62.99% 61.40% 56.68%

DWT 33.71% 57.02% 48.33% 48.98% 58.98% 52.37%

GP 40.08% 59.70% 57.16% 73.61% 65.13% 61.98%

GS 50.26% 58.50% 59.19% 68.31% 70.23% 64.08%

GTF 50.96% 60.45% 58.01% 70.96% 72.25% 65.59%

IHS 49.48% 62.39% 61.15% 67.61% 65.35% 63.11%

LP 37.68% 57.15% 50.77% 58.96% 66.57% 57.46%

NSCT 44.38% 55.32% 52.13% 68.98% 65.79% 60.28%

PCA 49.74% 61.59% 60.25% 68.82% 67.78% 63.96%

SR 36.08% 29.89% 45.41% 60.20% 46.13% 42.24%

Table 9. RF classification accuracy table of the high-resolution images. The bolded item is the highest
value of classification accuracy for each feature category.

RF Bare
Ground

Low
Vegetation Trees Houses Roads OA

RGB 46.78% 57.77% 60.74% 70.10% 61.67% 57.79%

SAR 32.41% 27.85% 44.89% 22.47% 42.44% 39.20%

CVT 32.58% 48.85% 47.21% 77.40% 62.76% 56.75%

DTCWT 31.59% 51.37% 43.11% 70.37% 60.72% 54.04%

DWT 31.37% 51.00% 45.63% 59.17% 59.72% 52.11%

GP 33.88% 55.27% 53.09% 74.74% 64.45% 58.57%

GS 45.11% 56.05% 59.23% 80.65% 69.97% 64.13%

GTF 45.87% 55.00% 55.78% 78.43% 72.27% 64.45%

IHS 47.33% 57.97% 60.77% 81.14% 64.74% 63.69%

LP 34.29% 52.22% 47.32% 70.71% 66.73% 56.68%

NSCT 37.20% 50.37% 49.08% 73.99% 64.31% 57.96%

PCA 45.95% 58.59% 60.22% 81.26% 68.12% 64.41%

SR 34.49% 29.48% 44.42% 58.35% 48.54% 42.77%

From the perspective of different types of fusion methods, the overall classification
accuracy of the three CS methods (such as IHS, PCA, and GS) is nearly the same. The
overall classification accuracy of PCA and GS is higher than that of others, suggesting that
the two methods have better effect in classification applications though the performance of
image fusion is poorer than that of MSD methods. Among the MSD methods, the overall
classification accuracy of GP and NSCT is higher, indicating their superior classification
effectiveness. Nonetheless, the overall classification accuracy of DTCWT, DWT and LP
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is lower, with the classification accuracy of fused images obtained by the three methods
even lower than that of the optical image. This illustrates that not all optical–SAR fusion
methods can improve land classification.

Table 10. CNN classification accuracy table of the high-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

CNN Bare
Ground

Low
Vegetation Trees Houses Roads OA

RGB 56.39% 71.32% 72.54% 81.01% 73.61% 70.07%

SAR 35.37% 62.39% 70.44% 57.78% 55.14% 57.86%

CVT 50.42% 66.82% 67.55% 82.74% 75.67% 71.41%

DTCWT 47.07% 67.81% 66.73% 78.46% 74.64% 69.79%

DWT 44.96% 65.50% 62.32% 73.21% 73.00% 66.76%

GP 51.06% 70.78% 68.67% 81.67% 76.21% 71.94%

GS 53.85% 72.02% 79.72% 86.69% 78.24% 75.74%

GTF 58.43% 72.05% 74.97% 83.75% 77.87% 75.83%

IHS 52.88% 74.11% 80.35% 85.32% 72.60% 73.89%

LP 48.83% 65.07% 65.67% 74.62% 76.44% 68.87%

NSCT 53.05% 65.89% 65.33% 82.72% 77.40% 71.18%

PCA 53.76% 74.74% 80.20% 85.68% 75.40% 75.12%

SR 36.17% 62.11% 70.18% 71.32% 56.79% 61.01%

Overall, GTF obtains the highest overall classification accuracy among the eleven
fusion methods. Compared with the single optical image and single SAR image, the fused
image has a better classification effect, with up to about 5% improvement.

5.3.2. Fusion Evaluation of Medium-Resolution Images According to Classification

In this section, similarly to the previous section, we evaluate the 11 fusion methods
according to image classification for medium-resolution images. Some typical ground
objects, such farmland, city, village, water, forest, and roads, are classified by SVM, RF, and
CNN, respectively. Tables 11–13 show the classification accuracy of the 11 fusion methods.
The overall classification accuracy for medium-resolution images is observed to be lower
than that of the high-resolution images. Like the high-resolution images, the city and water
have a smaller chance of being misclassified due to their distinct spectral characteristics.
Among the 11 fusion methods, GTF obtains the highest overall classification accuracy. The
results in Figure 18 and the classification accuracy tables indicate that, for most cases, the
overall classification accuracy after fusion is better than before fusion across all of the three
classification methods. This indicates that optical–SAR fusion has the potential to improve
land classification. But, the visual effect is not as good as that of the high-resolution images,
possibly due to the lower image resolution and a larger number of categories. Figure 18
also reveals that the overall classification result of CNN is more similar to the ground truth,
indicating that this method has better classification results, whereas SVM and RF have
more misclassification.

Building on the above groups of classification experiments, we can obtain the following
results: (1) The classification effect of CNN is better than that of RF and SVM. (2) Features
with relatively different spectral characteristics from other features have a lower probability
of misclassification, while features with relatively uncertain spectral characteristics have a
higher probability of misclassification. (3) Fused images obtained using fusion methods
exhibit better a classification effect compared to single SAR or optical images. (4) Among
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the 11 fusion methods selected, GTF consistently achieves the highest overall classification
accuracy for all three classification methods.

Table 11. SVM classification accuracy table of the medium-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

SVM Farmland City Village Water Forest Road Others OA

RGB 39.97% 66.02% 44.46% 58.82% 61.56% 42.61% 43.75% 51.97%

SAR 21.37% 46.66% 20.39% 46.92% 27.26% 24.61% 28.45% 33.65%

CVT 34.48% 54.90% 26.92% 48.13% 45.93% 24.74% 28.60% 43.89%

DTCWT 37.15% 59.48% 23.55% 47.51% 41.30% 25.24% 25.58% 43.54%

DWT 37.41% 50.44% 25.49% 44.33% 42.41% 26.15% 26.27% 44.12%

GP 27.03% 54.97% 28.11% 45.74% 33.75% 20.73% 28.53% 45.19%

GS 39.98% 61.50% 44.53% 66.78% 51.12% 36.39% 40.98% 53.40%

GTF 35.90% 79.87% 40.55% 79.14% 62.20% 45.96% 60.42% 56.95%

IHS 30.10% 61.86% 34.67% 68.20% 47.75% 39.19% 36.38% 52.77%

LP 29.48% 45.80% 26.94% 53.76% 48.20% 30.86% 30.62% 48.53%

NSCT 31.18% 54.98% 27.11% 61.42% 45.80% 33.19% 34.65% 52.01%

PCA 30.13% 69.53% 31.01% 66.86% 49.01% 38.20% 36.23% 52.81%

SR 27.29% 34.26% 25.64% 47.45% 27.95% 29.12% 29.19% 32.61%

Table 12. RF classification accuracy table of the medium-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

RF Farmland City Village Water Forest Road Others OA

RGB 37.41% 66.55% 37.54% 61.87% 58.16% 40.54% 38.30% 48.50%

SAR 20.92% 44.62% 20.14% 46.59% 27.35% 24.69% 28.44% 33.63%

CVT 31.10% 55.19% 24.59% 41.19% 41.96% 22.30% 23.44% 40.16%

DTCWT 32.37% 52.41% 22.82% 42.09% 37.09% 22.68% 22.49% 40.71%

DWT 36.78% 54.63% 25.54% 41.15% 40.63% 24.93% 24.08% 42.96%

GP 26.51% 55.10% 26.83% 45.92% 41.06% 31.84% 27.61% 43.62%

GS 37.61% 60.41% 39.71% 56.83% 56.69% 33.09% 33.79% 49.51%

GTF 34.18% 80.71% 38.39% 72.33% 58.85% 44.69% 56.69% 54.82%

IHS 28.54% 61.01% 30.42% 58.33% 43.75% 35.98% 31.34% 49.46%

LP 27.45% 48.89% 25.83% 49.26% 44.14% 28.16% 27.92% 46.36%

NSCT 29.15% 52.90% 27.16% 54.44% 40.18% 33.56% 29.81% 48.80%

PCA 29.80% 69.39% 37.81% 66.62% 49.57% 35.18% 28.63% 49.37%

SR 25.93% 44.14% 26.21% 49.20% 27.69% 27.81% 28.96% 34.47%

Table 13. CNN classification accuracy table of the medium-resolution images. The bolded item is the
highest value of classification accuracy for each feature category.

CNN Farmland City Village Water Forest Road Others OA

RGB 52.83% 81.49% 61.08% 72.85% 70.89% 70.25% 67.85% 65.23%

SAR 30.49% 53.45% 35.20% 62.07% 31.84% 41.26% 29.70% 39.00%

CVT 44.48% 75.19% 56.32% 69.73% 64.91% 51.44% 57.65% 53.91%
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Table 13. Cont.

CNN Farmland City Village Water Forest Road Others OA

DTCWT 48.35% 79.58% 54.52% 67.41% 61.56% 56.86% 55.43% 53.76%

DWT 47.81% 71.64% 56.71% 65.38% 63.62% 56.61% 57.37% 54.26%

GP 49.33% 74.68% 58.56% 66.84% 63.85% 61.64% 59.56% 55.39%

GS 51.38% 80.91% 66.70% 83.02% 66.07% 69.20% 66.87% 68.11%

GTF 53.14% 85.05% 65.94% 78.39% 73.33% 72.45% 67.97% 69.49%

IHS 40.62% 71.46% 54.82% 68.12% 67.78% 59.29% 56.43% 66.56%

LP 49.91% 76.82% 57.64% 63.98% 69.25% 60.55% 50.76% 60.73%

NSCT 42.73% 75.78% 58.17% 72.56% 67.18% 63.73% 55.69% 66.98%

PCA 50.28% 86.13% 64.26% 80.53% 68.96% 70.11% 66.43% 68.19%

SR 31.25% 61.46% 40.71% 66.54% 34.59% 45.33% 31.29% 42.91%
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For image quality metrics, among all of the fusion methods involved in comparison,
NSCT has a superior visual effect in image fusion, and its quantitative metrics of fusion
results are at the forefront. In the evaluation using image classification, three classic
methods, including SVM, RF, and CNN, are used to perform image classification. Most
experimental results show that the overall classification accuracy after fusion is better than
that before fusion for all three classification methods. This demonstrates that optical–SAR
fusion can improve land classification. In all of these fusion methods, GTF obtains the
best classification results. Therefore, we recommend NSCT for image fusion and GTF for
classification applications.

6. Conclusions

The fusion of optical and SAR images is an important research direction in remote
sensing. This fusion allows for the effective integration of complementary information
from SAR and optical sources, thus better meeting the requirements of remote sensing
applications, such as target recognition, classification, and change detection, so as to realize
the collaborative utilization of multi-modal images.

In order to select appropriate methods to achieve high-quality fusion of SAR and
optical images, this paper systematically reviews the current pixel-level fusion algorithms
for SAR and optical image fusion and then selects eleven representative fusion methods,
including CS methods, MSD methods, and model-based methods for comparison analysis.
In the experiment, we produce a high-resolution SAR and optical image dataset (named
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YYX-OPT-SAR) covering three different types of scenes, including urban, suburban, and
mountain scenes. Additionally, a publicly available medium-resolution dataset named
WHU-OPT-SAR is utilized to evaluate these fusion methods according to three different
kinds of evaluation criteria, including the visual evaluation, the objective image quality
metrics, and the classification accuracy.

The evaluation based on image quality metrics reveals that MSD methods can ef-
fectively avoid the negative effects of SAR image shadows on the corresponding area of
the fusion result compared with the CS methods, while the model-based methods show
comparatively poorer performance. Notably, among all of the evaluated fusion methods,
NSCT presents the most effective fusion result.

It is suggested that image quality metrics should not be the only option for the interpre-
tation of fused images. Therefore, image classification should also be used as an additional
metric to evaluate the quality of fused images, because some fused images with poor image
quality metrics can obtain the highest classification accuracy. The experiment utilizes three
classic classification methods (SVM, RF, and CNN) to perform image classification. Most
experimental results show that the overall classification accuracy after fusion is better than
that before fusion for all three classification methods, indicating that optical–SAR fusion
can improve land classification. Notably, in all of these fusion methods, GTF obtains the
best classification results. Consequently, the suggestion is to employ NSCT for image fusion
and GTF for image classification based on the experimental findings.

The differences between this paper and the previous conference paper are mainly
related to the following four aspects: First, we extend the original self-built dataset from the
original 60 image pairs to 150 image pairs, and we add classification labels to provide data
support for subsequent advanced visual tasks. While previous contributions did not expose
the dataset, this paper exposes the produced dataset. Second, because the self-built dataset
is a high-resolution image, in order to better evaluate the fusion effect of the fusion method
at different resolutions, we added the experiment under the published medium-resolution
images as a comparison, so as to prove that the excellent fusion method can obtain better
results in images with different resolutions. Third, the previous contribution is a short paper,
and there is no detailed introduction to optical and SAR pixel-level image fusion algorithms.
This paper systematically reviews the current pixel-level fusion algorithms of optical and
SAR image fusion. Fourth, we evaluate the fusion quality between different fusion methods
by combining subsequent advanced visual tasks, and we verify the effectiveness of image
fusion in image classification, proving that the fused image can obtain better results than
the original image in image classification.

At present, most pixel-level fusion methods of optical and SAR images rely on tra-
ditional algorithms, which may lack comprehensive analysis and interpretation of these
highly heterogeneous data. Consequently, these methods inevitably encounter performance
bottlenecks. Therefore, this non-negligible limitation further creates a strong demand for
alternative tools with powerful processing capabilities. As a cutting-edge technology, deep
learning has made remarkable breakthroughs in many computer vision tasks due to its
impressive capabilities in data representation and reconstruction. Naturally, it has been
successfully applied to other types of multimodal image fusion, such as optical-infrared
fusion [62,63]. Accordingly, we will also explore the application of deep learning methods
for optical and SAR image fusion in the future.
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