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Abstract: Unmanned combat aerial vehicle (UCAV) trajectory planning to avoid radar detection
threats is a complicated optimization problem that has been widely studied. The rapid changes
in Radar Cross Sections (RCSs), the unknown cruise trajectory of airborne radar, and the uncer-
tain distribution of radars exacerbate the complexity of this problem. In this paper, we propose a
novel UCAV trajectory planning method based on deep reinforcement learning (DRL) technology
to overcome the adverse impacts caused by the dynamics and randomness of environments. A
predictive control model is constructed to describe the dynamic characteristics of the UCAV trajectory
planning problem in detail. To improve the UCAV’s predictive ability, we propose a memory-
enhanced twin delayed deep deterministic policy gradient (ME-TD3) algorithm that uses an attention
mechanism to effectively extract environmental patterns from historical information. The simula-
tion results show that the proposed method can successfully train UCAVs to carry out trajectory
planning tasks in dynamic and unknown environments. Furthermore, the ME-TD3 algorithm outper-
forms other classical DRL algorithms in UCAV trajectory planning, exhibiting superior performance
and adaptability.

Keywords: UCAV; trajectory planning; predictive control model; memory-enhanced twin delayed
deep deterministic policy gradient

1. Introduction

In modern warfare, unmanned combat aerial vehicles (UCAVs) have gained increasing
attention due to their advantages of high maneuverability, high stealth, and zero risk to
pilots [1]. They are commonly deployed to execute hazardous missions such as aerial
reconnaissance, penetration of defense systems, and target attacks [2,3]. Trajectory plan-
ning plays a crucial role in UCAV systems, where the UCAV constantly adjusts its flight
state to generate an optimal route from the initial point towards the target area while
avoiding threats from hostile aircraft, radars, and missiles [4]. UCAV trajectory planning is
essentially a complicated nonlinear control problem with multiple constraints. Therefore, it
is necessary to consider the balance between UCAV dynamic limitations, fuel consumption,
and environmental threats to determine the best course of action.

In contrast to unmanned combat vehicle (UAV) trajectory planning for obstacle avoid-
ance [5], UCAV trajectory planning for radar-detected threat avoidance entails several im-
portant features: (1) Penetrability of the radar detection area. Radar detection areas that the
UCAV should avoid cannot be simply treated as impenetrable obstacles. In certain emergency
situations, it may be justified for the UCAV to enter radar detection areas temporarily. This is
because radar typically requires a certain amount of time to establish a tracking trajectory or
guide a missile launch once a target is detected. (2) Potential distribution of radar detection
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threats. Similar to the characteristics of the potential field, the probability of radar detection
increases as the UCAV approaches radars [6]. Furthermore, if multiple radars overlap, a
distinct calculation method is utilized based on the multi-radar fusion criteria [7]. (3) Spatial
configuration effect of the Radar Cross Section (RCS). When the UCAV and radar maintain
a fixed distance and the radar operates with constant parameters, such as carrier frequency,
transmit power, and pulse width, the probability of radar detection is determined solely by the
RCS. This is influenced by the engagement geometry between the UCAV and the radar [8,9].
These characteristics exacerbate the complexity of UCAV control.

A considerable amount of research has been devoted to solving the UCAV trajectory
planning problem. One of the most classical studies was carried out by Kabamba et al. [10].
Considering the coupling between the RCS and aircraft dynamics and the probabilistic
nature of radar tracking, an optimal control model was established to describe UCAV
trajectory planning. An efficient numerical optimization method was used to generate
the optimal trajectory in the presence of radar and missile threats. The research method
only provides discrete trajectories with a low accuracy. In [11], an improved intelligent
water drop optimization algorithm was introduced to smooth the UCAV trajectory. These
traditional numerical optimization algorithms have a low solving efficiency and cannot
meet the requirements of real-time performance. To improve the accuracy of UCAV tra-
jectory planning in a short period, more constructive and meaningful research has been
conducted. Tang et al. proposed an online case-based trajectory planning strategy to
achieve rapid solutions of control variables of a UCAV flight trajectory [12]. Furthermore,
Wei et al. presented a novel approach to solve the formation of online collaborative trajec-
tory planning for UCAVs using the HP adaptive pseudospectral method [13]. In [14], the
complex UCAV trajectory planning problem was decomposed into a roadmap planning
layer and an optimal control layer. In addition, a novel algorithm based on an updatable
probabilistic roadmap (PRM) and a collision-free state-to-state trajectory planner based on
the Gaussian pseudospectral method were proposed to solve these sub-layer problems,
respectively. However, the above technologies have limited adaptability and are unable
to meet higher real-time requirements in complex, uncertain, and dynamic battlefield
environments. Fortunately, as an emerging type of machine learning, deep reinforcement
learning (DRL) provides a viable solution to the UCAV trajectory planning problem.

DRL has been widely used to enhance the sensing and decision-making capabilities of
unmanned systems because of its advantages in solving complex and high-dimensional
problems. In the DRL framework, neural networks are employed as decision makers
for agents, allowing them to take actions based on the current state and receive subse-
quent states and rewards from the environment. By continuously interacting with the
environment, the agent updates the neural networks to learn the optimal policies [15]. In
recent years, the widespread adoption of DRL technologies in engineering has propelled
UCAVs towards acquiring autonomous capabilities in exploration, perception, and decision
making, eliminating the need for human intervention [16]. Therefore, it is challenging to
develop an intelligent and adaptive UCAV capable of dealing with complex, dynamic, and
unknown battlefield environments.

In this paper, a DRL framework of UCAV trajectory planning for avoiding radar
detection threats was constructed. We proposed a memory-enhanced twin delayed deep
deterministic policy gradient (ME-TD3) algorithm to improve the UCAV’s performance
in dynamic and unknown environments. The main contributions and innovations of this
paper are summarized as follows:

(1) UCAV trajectory planning for avoiding radar detection threats is modeled as a pre-
dictive control model. The model is described as a Partially Observable Markov
Decision Process (POMDP) by constructing the state space, the observation space, the
action space, and the reward function. The state space, the observation space, and the
action space are designed to describe the UCAV’s complete observations and partial
observations of the environment and the UCAV’s control vectors, respectively.
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(2) We construct a sophisticated reward function to describe the impact of mission success,
path loss, and radar detection threats. First, we normalize the reward to avoid
gradient explosion of the neural network. Second, the path loss reward is designed in
combination with the artificial potential field method to alleviate the sparse reward
problem. Finally, to improve the learning efficiency of the agent in the early stage, the
negative reward for crossing the flight boundary is removed.

(3) A memory-enhanced TD3 algorithm based on the attention mechanism is proposed to
improve the performance of UCAV trajectory planning in the POMDP. In an unknown
and dynamic environment, the information obtained by the UCAV is limited, which
has a negative impact on the UCAV’s decisions. By taking multi-step observations as
input to the attention network, the UCAV can learn the dynamics of the environment
in conjunction with historical information, which helps it to make better decisions.

The remainder of this paper is organized as follows: In Section 3, the system model
is presented. In Section 4, we establish the predictive control model for UCAV trajectory
planning. In Section 5, we introduce the memory-enhanced TD3 algorithm for UCAV
dynamic trajectory planning. The simulation results are presented in Section 6. Further
discussions are given in Section 7. The conclusions are given in Section 8.

2. Related Works

The application of DRL in UCAV dynamics, optimal control, and maneuver decisions
is beginning to emerge. In recent studies, maneuver decision methods based on DRL
algorithms were proposed to develop intelligent UCAVs for air combat [17,18]. A UCAV
trained using DRL algorithms learned a series of basic maneuvers, such as diving, climbing,
and circling, ultimately achieving a high winning rate against opponents. Focusing on the
problem of the insufficient exploration ability of the DRL algorithm, Wang et al. proposed
a UCAV air combat maneuver decision method based on a heuristic deep deterministic
policy gradient (DDPG) algorithm [19]. In [20], Cao et al. studied autonomous maneuver
decisions for UCAV air combat based on the double deep Q network algorithm (DDQN)
and stochastic game theory, which further boosted the performance of the UCAV in different
combat cases. To compensate for the low training efficiency caused by simple sampling
mechanisms, Wang et al. proposed a task completion division soft actor–critic (TCD-SAC)
algorithm for UAV penetration [21]. However, these studies did not take into account the
uncertainty of environmental information obtained by agents in the real world, which leads
to the degradation of DRL algorithm performance. To overcome the adverse impact of
environmental fluctuations on decision making, Wan et al. proposed a Robust-DDPG to
develop a robust UAV motion controller in dynamic, uncertain environments [22]. Li et al.
proposed a meta twin delayed deep deterministic policy gradient (Meta-TD3) to realize the
control of UAV maneuvering for target tracking and enable a UAV to quickly adapt to an
uncertain environment [23]. Furthermore, in order to improve the cooperative capabilities
of the UCAV swarm, multi-agent deep reinforcement learning (MADRL) algorithms were
applied to large-scale air combat [24,25]. Based on centralized training with decentralized
execution, MADRL provides a UCAV swarm with a high level of robustness.

Although DRL is widely used to address UAV trajectory planning problems, it presents
novel challenges in complex combat environments, particularly those encompassing radar
detection threats. Some researchers have paid attention to this problem and made pre-
liminary attempts to solve it. In [26], a framework combining a DQN with prioritized
experience replay (DQN-PER) and transfer learning was proposed to improve the perfor-
mance of UAV path optimization under radar threats. In [27], to prove the importance of
DRL in UAV trajectory planning, several classical DRL algorithms were implemented for
a comparative analysis. In [28], the dual double deep Q-network (D3QN) algorithm was
used for real-time UAV path planning. In a simulation environment based on the STAGE
scenario software, the UAV showed excellent performance in both static and dynamic
task settings.
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These previous studies have achieved excellent results in UAV trajectory planning
under the threat of radar detection, but they still have some drawbacks. Firstly, the impact
of the UCAV’s predictive ability on trajectory planning has not been thoroughly considered,
which makes it difficult for a UCAV to make decisions further into the future when dealing
with environmental dynamics and randomness. Secondly, the methods proposed in these
studies simply make decisions based on the current state. Historical information has not
been well utilized, resulting in poor performance and adaptability of trajectory planning.
Thirdly, these studies have focused solely on the development of intelligent aircraft systems
within known or single-scenario settings. The inherent potential of DRL for adaptability in
dynamic and uncertain environments has not been well exploited. For the shortcomings
above, we developed a predictive control model to describe the characteristics of UCAV
trajectory planning for avoiding radar detection threats. A ME-TD3 algorithm is proposed
to process the historical features of environmental information, effectively improving the
UCAV’s predictive ability. Then, we trained a UCAV in different mission scenarios, enabling
it to adapt to dynamic and unknown battlefield environments.

3. System Model

In this section, we consider UCAV trajectory planning for avoiding radar detection
threats in a penetration combat scenario shown in Figure 1. Specifically, the goal of the
UCAV is to reach a designated target area for an attack mission. During this period, it must
navigate through a hostile surveillance area that is actively monitored by ground-based
radars (GBRs) and airborne radars (ARs). The probability of radar detection is correlated
with the UCAV’s attitude and position in relation to the radar. Therefore, it is imperative
for the UCAV to continually adjust its flight attitude to safely traverse the surveillance
area while evading radar detection threats. We assume that the UCAV can obtain real-time
positions and parameters of the radars using its dedicated reconnaissance system. In the
following subsections, we present the UCAV and radar motion model, the RCS model, and
the radar detection threat model, which are used as the basic principle for the problem
formulation in Section 4 and for DRL for UCAV trajectory planning in Section 5.

GBRGBRGBR

GBRGBRGBR

GBRGBRGBRUCAVUCAV

Hostile Surveillance Area

Target Area

ARARARAR

ARARARAR

Figure 1. UCAV trajectory planning for avoiding radar detection threats in a penetration combat
scenario.

3.1. UCAV and Radar Motion Model

The motion model of the UCAV exhibits a high degree of complexity. In this subsection,
we consider a fixed-wing aircraft motion model, which eliminates the complex aerodynamic
forces acting on the airframe [29]. We assume that the UCAV flies in a windless environment
at a constant altitude. A stable correlation is established between the UCAV’s coordinated
turn and navigation direction, ensuring that the yaw angle and heading angle consistently
maintain identical values.

The UCAV’s position in the north–east–down (NED) coordinate frame pn
u and attitude

Θu can be defined as
pn

u = [pun pue pud]
> (1)
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Θu = [φu θu ψu]
> (2)

where Θu is the vector of Euler angles for the roll, pitch, and yaw of the UCAV.
In the motion model, the pitch angle θu is constant. The motion equations of the UCAV

are given by
ṗun = vu cos ψu (3)

ṗue = vu sin ψu (4)

ψ̇u =
g

vu
tan φu (5)

where g is the acceleration due to gravity and vu is the speed of the UCAV.
In the scenario of this paper, in order to cooperate with ground-based radars to

monitor the protected airspace, airborne radars cruise along a certain path. Since the
motion characteristics of the radars are not the focus of this study, we use a simple motion
model to represent them. The position of the radar in the NED frame is given by

pn
r = [prn pre prd]

> (6)

The motion equation of the radar is given by

ṗn
r = vr (7)

where vr = [vrn vre vrd]
> is the vector of radar speeds. When vr = 0, the type of radar is

ground-based radar.

3.2. Radar Cross Section Model

The RCS is a non-linear function of the engagement geometry between the radar and
the aircraft [30]. In this subsection, we consider a 3D ellipsoid RCS model [31], which gives
an expression for the RCS as a function of the azimuth and elevation angles in the UCAV’s
body frame. The body frame’s x, y, and z axes extend forward, sideways, and downward
from the center of the UCAV, respectively. We define the position of the radar in the body
frame as

pb
r =

[
prx pry prz

]>. (8)

The vector pb
r is calculated using orientation according to the attitude of the UCAV by

pb
r = Cb

n(pn
r − pn

u) (9)

where Cb
n is the orthonormal rotation matrix from the NED frame to the body frame given by

Cb
n =

CψuCθu −CφuSψu + CψuSφuSθu SφuSψu + CθuCψuSθu
CθuSψu CφuCψu + SφuSψuSθu CψuSφu + CφuSψuSθu
−Sθu CθuSφu CφuCθu

 (10)

where S· and C· represent the sin(·) and cos(·) functions, respectively.
The RCS azimuth angle λr is defined as the angle between the body frame’s x axis

and the direction of the radar transmit wave in the x–y plane of the body frame. The RCS
elevation angle φr is the angle between the x–y plane in the body frame and the direction
of the radar transmit wave. The RCS azimuth angle λr and elevation angle φr are given by

λr = arctan
(

pry

prx

)
(11)
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φr = arctan

 prz√
(prx)

2 −
(

pry
)2

. (12)

The equation of a 3D ellipsoid RCS is given by

σr =
abc√

(aSλrSφr)
2 + (bCλrSφr)

2 + (cCφr)
2

(13)

where σr is the RCS, and a, b, c are the radii of the ellipsoid along the x, y, z axes, respectively.
Polar plots of the 3D ellipsoid RCS with respect to λr and φr are shown in Figure 2.

(a) (b)

Figure 2. An example of a 3D ellipsoid RCS model. (a) RCS as function of azimuth angle λr. (b) RCS
as function of pitch angle φr.

3.3. Radar Detection Threat Model

The generation of radar detection threats comes from the ability to guide fighter
aircraft and missiles against targets. Once the UCAV enters the radar detection range, it
becomes vulnerable to detection and potential attacks by hostile air defense systems [32].
In this subsection, we establish a radar detection threat model based on the probability of
radar detection. We assume that the UCAV has knowledge of the radar’s transmit power,
carrier frequency, antenna gain, etc.

For a single-pulse radar, the probability of radar detection Pd is a function of the
signal-to-noise ratio (SNR) and the probability of false alarms Pf a [33]. Based on Marcum’s
Q-function, an approximate expression for Pd is given by

Pd ≈ 0.5× erfc
(√
− ln Pf a −

√
SNR + 0.5

)
(14)

where erfc(·) is the complementary error function given by

erfc(z) = 1− 2√
π

∫ z

0
e−ξ2

dξ. (15)

An example curve of Pd with respect to the SNR is shown in Figure 3. The SNR is given by

SNR =
Pr

Pn
(16)

where Pr is the radar receiver power and Pn is the radar noise power.
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Figure 3. Pd with respect to the SNR for a constant Pf a = 10−6.

According to the radar equation, the radar receiver power Pr is given by

Pr =
PtG2

t λ2
c σr

(4π)3d4
(17)

where Pt is the radar transmit power, Gt is the radar antenna gain, λc is the wavelength of
the radar signal, and d is the distance between the UCAV and the radar given by

d = ‖pn
u − pn

r ‖2 (18)

The radar noise power Pn is given by

Pn = kT0BnFn (19)

where k is the Boltzmann constant
(
1.38× 10−23J/K

)
, T0 is the noise temperature of the

radar system, Bn is the bandwidth of the radar receiver, and Fn is the noise factor of the
radar receiver. Expressing Equation (16) in terms of (17) and (19), we obtain

SNR =
PtG2

t λ2
c σr

(4π)3d4kT0BnFn
= cr

σr

kd4 . (20)

where cr is a constant determined by the radar parameters.
As the distance between the UCAV and the radar increases, the SNR decreases. When

the SNR falls below a certain threshold, the radar is no longer able to effectively detect the
UCAV. The maximum radar detection range is a term used to define the boundary of radar
detection performance given by

dmax =

[
PtG2

t λ2
c σr

(4π)3Simin

] 1
4

(21)

where Simin is the sensitivity of the radar receiver.
When the UCAV enters an area simultaneously covered by multiple radars, it is

essential to consider the threat posed by collective radar detections. Using network radar
plot fusion technology, the detection probability of the radar network is given by [34]

PD = 1−
Nr

∏
i=1

(
1− Pi

d

)
(22)

where Pi
d is the probability of ith radar detection and Nr is the number of radars in the

radar network. The equation of PD is a normal form expression. When Nr = 1, it is equal
to the probability of single radar detection Pd.

It is evident that as the UCAV remains in the radar detection range and comes closer
to the radar, the radar detection threat escalates. Therefore, the UCAV should try to avoid
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entering the radar detection range as much as possible. The definition of the radar detection
threat function is given by:

J =
∫ tb+τ

tb

PD(t) dt (23)

where tb is the time at which the UCAV enters the radar detection range and τ is the period
of time that the UCAV is present in the radar detection range. Once the radar detection
threat exceeds a critical threshold (i.e., J > Jc), the UCAV is vulnerable to destruction by
enemy air defense systems.

4. Problem Formulation

UCAV trajectory planning for avoiding radar detection threats in dynamic environments
can be viewed as an optimal control problem (OCP). In this section, considering the intertwined
influence of the UCAV’s attitude on both the trajectory planning and the probability of radar
detection and the variability of airborne radar positions, we present a predictive control model
to accurately describe this OCP. Then, we characterize this OCP as a POMDP and design an
appropriate state space, observation space, action space, and reward function.

4.1. Predictive Control Modeling for UCAV Trajectory Planning
4.1.1. Optimal Control Modeling

In the UCAV trajectory planning problem, the system state x consists of UCAV state
xu and a radar state xr , defined as

x = [xu xr ]
>, x(t0) = x0 (24)

where xu = [pn
u Θu]> is the vector of the UCAV’s position and attitude, and xr = [pn

r vr cr]>

is the vector of the radar’s position, speed, and parameters. x0 is the initial value of
the system state. The input control u is defined as the roll angular velocity φ̇u. The
system dynamics are defined by the UCAV motion model and radar motion model in the
previous section.

The control constraint is defined as

|φ̇u| ≤ φ̇umax (25)

where φ̇umax is the maximum roll angular velocity.
The path constraint is defined by the boundary limits of the area and the UCAV’s

attitude, given by
xmin ≤ x ≤ xmax (26)

where xmin, xmax are the boundary of the system state.
The terminal constraint is defined by the boundary limit of the terminal region, given by∥∥∥pn

u(t f )− pn
f

∥∥∥
2
≤ R f (27)

where pn
u(t f ) is the UCAV’s position at the final time t f , and pn

f is the central position of the
target area. The terminal constraint requires the UCAV to reach the target area of a circle
with radius R f .

The terminal cost is a negative constant for terminal reward −R f (x(t f ), t f ). The run-
ning cost is a function defined by the path loss and radar detection threats as the following:

`(x(t), u(t), t) = c1

∥∥∥pn
u(t)− pn

f

∥∥∥
2
+ c2PD(x(t), t) (28)

where c1 and c2 are the weight coefficients of the running cost.
The optimal control problem for UCAV trajectory planning can be formulated as:
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Problem P1:

min
φ̇u(t)

∫ t f

t0

c1

∥∥∥pn
u(t)− pn

f

∥∥∥
2
+ c2PD(x(t), t) dt− R f (x(t f ), t f )

s.t.



ṗun = Vu cos ψu

ṗue = Vu sin ψu

ψ̇u = g
Vu

tan φu

ṗn
r = vr

|φ̇u| ≤ φ̇umax

xmin ≤ x ≤ xmax∥∥∥pn
u(t f )− pn

f

∥∥∥
2
≤ R f

(29)

4.1.2. Predictive Control Modeling

Typically, the decision controller in the optimal control model solely focuses on the
current state of the system. However, there are some dynamic factors of environments
that pose challenges to UCAV trajectory planning control as follows: (1) There is a coupled
relationship between the UCAV’s attitude Θu and the probability of radar detection PD.
The UCAV dynamically adjusts its attitude to generate a trajectory toward the target area
while avoiding radar detection threats. However, these adjustments simultaneously alter
the PD due to changes in the RCS according to (14) and (20), necessitating the UCAV to
readjust its attitude to generate a new trajectory accordingly. (2) The position of the airborne
radar dynamically changes within the area that the UCAV must traverse. Under certain
special conditions, the UCAV must take into account the movement of the airborne radar
to devise its trajectory for a better future cost.

As shown in Figure 4a, in the first case, the UCAV developed based on a non-predictive
control model cannot predict the impact of future attitudes on the radar detection range. It
only makes temporary changes to environmental states. The UCAV developed based on a
predictive control model has a global planning capability, allowing it to anticipate changes
in the radar detection range and generate a shorter trajectory. Therefore, it is imperative
to anticipate the impact of current actions on future states to improve the performance of
UCAV trajectory planning.

As shown in Figure 4b, in the second case, we ignore the changes in the radar detection
range. At time t1, the UCAV developed based on a non-predictive control model tends
to fly along a straight line toward the target area because it only focuses on the current
position of the airborne radar. However, as the radar position changes, the UCAV has
to adjust its expected trajectory to avoid the radar detection threat, resulting in a longer
task time. The UCAV developed based on a predictive control model considers the future
position of airborne radar and selects a shorter and smoother trajectory.

Failure to account for these critical factors will result in a degraded trajectory planning
performance. Therefore, it is imperative for a UCAV to accurately predict future states and
costs in order to develop a UCAV trajectory planning method with efficiency and safety. The
basic principle of predictive control models is to use process models to predict the future
state of the system under certain control effects. Based on this, the optimal control quantity
is solved iteratively according to the given constraints and performance requirements. At
each step of the iteration, real-time states are detected to correct predictions of future states.
The expression of the state transition equation of the UCAV control system can be written as

x(t + 1) = f (x(t), φ̇u(t), t) (30)

where f is the state transition function of the UCAV control system. Unlike the previous
optimal control model, the goal of the predictive control model is to minimize the future
total costs by optimizing control inputs over a period of time. The predictive control model
for UCAV trajectory planning is formulated as



Remote Sens. 2023, 15, 5494 10 of 25

Problem P2:

min
φ̇u(t)

N

∑
k=1

F(x(t + k), φ̇u(t + k), t + k)

s.t. ẋ = f (x(t), φ̇u(t), t)

H(x(t), φ̇u(t), t) 6 0

(31)

where F and H are the system cost functions and the system constraint functions given in
Problem P1, respectively.

(a) (b)
Figure 4. Dynamic factors of the UCAV trajectory planning environment. (a) Dynamic variation in
maximum radar detection range dmax with UCAV attitude. (b) Dynamic variation in the position of
airborne radars.

4.2. POMDP Modeling for UCAV Trajectory Planning

In deep reinforcement learning, the agent learns the optimal policy using the experi-
ence gained through interaction with the environment. When the agent lacks knowledge of
the environment and is unable to directly observe the complete state of the environment,
the interaction process can be referred to as a POMDP [35]. A POMDP can be characterized
by the following key elements:

• State space S . Let st ∈ S represent the state at time t;
• Observation space O. Let ot ∈ O represent the observation of the agent at time t;
• Action space A. Let at ∈ A represent the action of the agent at time t;
• State transition probability

p(s′|s, a) = p(st+1 = s′|st = s, at = a) (32)

where s, s′ ∈ S represent the current state and the next state, respectively, and a ∈ A
represents the current action;

• Conditional observation probability

p(o|s, a) = p(ot = o|st = s, at = a) (33)

where o ∈ O represents the current observation;
• Reward function

r(s, a) = r(st = s, at = a) (34)

• Discount factor γ ∈ [0, 1].

In a POMDP, the agent receives an observation o correlated with the environment
state s. Based on a stochastic initial policy a ∼ π(·|o), the agent infers the state s
based on the observation o to perform an action a. In response, it transits to the state
s with the state transition probability p(s′|s, a) and the environment feeds back a reward
r(s, a). In particular, the observation sequence no longer satisfies the Markov property
p(ot+1|ot, at, ot−1, at−1, . . . , o0, a0) 6= p(ot+1|ot, at). We construct a POMDP for UCAV
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trajectory planning by detailing the state space, observation space, action space, and
reward function.

4.2.1. State and Observation Space

As described in Section 4, we design the states based on the UCAV and radar motion
model. The state space is defined as:

S = {pn
u, Θu; Pn

r , Vr , Cr} (35)

where Pn
r = [pn

r1, pn
r2, . . . , pn

rN ]
> is the set of all radar position vectors, Vr = [vr1, vr2, . . . , vrN ]

>

is the set of all radar speed vectors, and Cr = [cr1, cr2, . . . , crN ]
> is the set of all radar pa-

rameter vectors.
The UCAV’s position and attitude can be measured using an inertial navigation system,

and real-time measurements of radar position, speed, and parameters can be obtained
using a reconnaissance system. However, the cruise intention of airborne radars is difficult
to predict. The observation space is defined as:

O =
{

pn
u, Θu; Pn

r , Cr

}
(36)

where pn
u, Θu are the measured values of UCAV state, Pn

r is the set of measured values
for all radar position vectors, and Cr is the set of measured values for all radar parameter
vectors. In this paper, we assume that the measurement error values of the UCAV and
radar states can be ignored.

4.2.2. Action Space

According to UCAV dynamics, the UCAV takes actions to control its flight attitude for
trajectory planning. In this paper, the action space is continuous, meaning that it consists of
a range of real-valued or continuous options, rather than being limited to a discrete set of
choices. The action space is defined as:

A = φ̇u, |φ̇u| ≤ φ̇umax (37)

Compared to the control vectors of real aircraft systems, the action space is simplified
to implement control optimization of UCAV dynamic trajectory planning.

4.2.3. Reward Function

The reward function plays a crucial role in deep reinforcement learning (DRL) as it
directly affects the agent’s ability to learn the optimal policy. In this article, we designed a
precise reward function to improve the optimization efficiency by drawing on the human
experience of UCAV trajectory planning. The reward function consists of three sub-rewards:
(1) The primary mission goal of UCAV is to reach the target area. When the UCAV reaches
the target area, it should receive a higher reward. (2) Considering the limited mission time
and fuel consumption, the UCAV should reach the target area as soon as possible. The
more the UCAV deviates from the target area and the longer it flies, the more severe the
punishment it faces. (3) The UCAV should try to avoid entering the radar detection range
as much as possible. If it is already within the radar detection range, it will be subject to a
continuous punishment until it flies out of the threat area. The reward function is designed
as the weighted sum of three sub-reward functions as follows:

r(s, a) = ω1rfinal(s, a) + ω2rpath(s, a) + ω3rthreat(s, a) (38)

where rfinal is the final reward function for reaching the target area, rpath is the negative reward
function for path loss based on the distance between the UCAV and the target area, and rthreat is
the negative reward function for radar detection threats, which will keep increasing as the radar
exposure time increases. ω1, ω2, ω3 are the weights of the sub-reward functions, respectively,
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and satisfy ∑ ωi = 1. The balance between different sub-reward functions is important. If the
weight assigned to the final reward and path loss is higher, the UCAV will ignore the radar
detection threat and take risks to cross the radar detection area to reach the target area faster.
On the contrary, the UCAV will focus too much on flight safety. It will cautiously avoid radar
detection areas that are far away, which will reduce the efficiency of mission execution.

The expression of the sub-reward functions is defined as:

rfinal(s, a) =

1, if
∥∥∥pn

u(t f )− pn
f

∥∥∥
2
≤ R f

0, else

rpath(s, a) = −
(∥∥∥pn

u − pn
f

∥∥∥
2

)
norm

rthreat(s, a) =

{
−(J)norm, if ∀di ≤ dimax

0, else

(39)

where di is the distance between the UCAV and the ith radar, and dimax is the maximum
effective detection range of the ith radar. (·)norm represents normalization as follows:

(x)norm =
x− xmin

xmax − xmin
(40)

where xmin, xmax are the minimum and maximum value of x, respectively. The function
converts the original value to the range [0, 1] linearly.

Remark 1. The three sub-reward functions are constrained to the same magnitude. We set the
value of the reward for reaching the target area as 1 and normalize the rewards for path loss and
radar detection threats, which will avoid gradient explosion of the neural network.

Remark 2. The combination of the reward for path loss and the artificial potential field method is
proposed. In the majority of maze games, in order to support the agent in reaching the target area
as soon as possible, the path loss payoff is usually set to a constant such as −1. The disadvantage is
that when the number of steps from the start to the target area is particularly large, it is difficult for
the agent to explore the target area (i.e., sample a positive reward). The result is that the agent poorly
learns to find the trajectory to the target area. To alleviate the sparse reward problem, we use a negative
distance between the UCAV and the target area to design a reward for path loss, which seeks to provide
effective and persistent proximity and direction feedback for reaching the target area right from the start
of each episode.

Remark 3. The negative reward for crossing the flight boundary is removed. The boundary penalty is a
typical method of limiting the agent’s futile exploration, which encourages the agent to learn the optimal
trajectory in an effective region. However, in the early stages of DRL training, the agent spends so much
time moving away from the flight boundary rather than finding the optimal trajectory. Fortunately, with
the guidance of the path loss reward based on an artificial potential field, the UCAV is able to find the
optimal trajectory to the target area more quickly, even without the boundary constraint.

5. Deep Reinforcement Learning for UCAV Trajectory Planning

Our problem is that the UCAV adjusts its attitude to reach the target area as quickly
as possible while avoiding radar detection threats. However, it is not easy to address this
problem due to the uncertainty and variability of dynamic environments. Fortunately, deep
reinforcement learning (DRL) provides an effective solution for the sequential decision-
making problem with an unknown and partially observable environmental model. In
this section, a memory-enhanced twin delay deep deterministic policy gradient (ME-TD3)
algorithm is proposed to generate UCAV motion control policies with predictive and
generalization abilities.
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5.1. Overview of Deep Reinforcement Learning and the Actor–Critic Framework
5.1.1. Deep Reinforcement Learning

Deep reinforcement learning is a recognized solution for the POMDP problem. The
goal of DRL is to find an optimal policy that maximizes the cumulative return so as to
maximize the long-term benefits in the decision-making process. The return is described
by the discounted return at time t, given by

Rt =
∞

∑
k=0

γkrt+k (41)

The expectation of the discounted return is employed to estimate the policy value. The
action–value function is defined as the expected return of taking action a according to the
policy π in a specific state s [36], as follows:

Qπ(s, a) = Eπ [Rt|st = s, at = a] (42)

The Bellman equation of the action–value function is defined as:

Qπ(s, a) = r + γEπ [Qπ(s′, a′)] (43)

The agent earns the highest expected return by exploring actions and updating policies.
Among all possible policies, the optimal policy π∗ is the one that maximizes the action–
value function. It is expressed as follows:

π∗ = arg max
π

Qπ(s, a) (44)

The optimal action–value function is defined as:

Q∗(s, a) = r + γEπ [max
a′∈A

Q∗(s′, a′)] (45)

5.1.2. Actor–Critic Frameworks

Actor–critic is a classical reinforcement learning framework that combines a policy
gradient (actor) and a value function (critic) to optimize decision making in continuous
action spaces [37]. The actor learns the optimal policy, while the critic evaluates its perfor-
mance and provides guidance for improvement. In the actor–critic framework, the policy
network πφ can be updated through the deterministic policy gradient algorithm:

∇φ J(φ) = Es∼pπ

[
∇aQπ(s, a)|a=π(s)∇φπφ(s)

]
(46)

The action value is estimated by a value network approximator Qθ(s, a), with parame-
ters θ. In deep deterministic policy gradient (DDPG) [38], the value network is updated
using temporal difference learning with a target network Qθ′(s, a) to minimize the loss:

L(θ) = Ea

[
(y−Qθ(s, a))2

]
(47)

where
y = r + γQθ′(s

′, a′), a′ ∼ πφ′(s
′) (48)

and where the action a′ is taken according to a target actor network πφ′ . The weights of the
target networks are updated by a certain proportion at each time step:

φ′ ← τφ + (1− τ)φ′ (49)

θ′ ← τθ + (1− τ)θ′ (50)

where τ is the soft update factor.
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5.2. Twin Delay Deep Deterministic Policy Gradient

Twin delay deep deterministic policy gradient (TD3) improves deep deterministic
policy gradient (DDPG) by adding three training tricks as follows [39]:

(1) Clipped Double Q-Learning

Due to the presence of noise, the Q value estimation in DDPG is prone to overesti-
mation. This overestimation poses a risk, as the accumulated estimate errors can lead an
agent converging to a local optimum or suffer from catastrophic forgetting during training.
Consequently, DDPG may become more unstable when confronted with challenging tasks.
To tackle the problem of overestimation bias, TD3 proposes a clipped double Q-learning
approach. Within the actor–critic framework, a target policy network and a pair of target
value networks are used to update the action value, shown as:

y1 = r + γQθ′1
(s′, πφ′(s

′)) (51)

y2 = r + γQθ′2
(s′, πφ′(s

′)) (52)

where θ′1, θ′2 are the parameters of the target value networks.
Then, the smaller of the two estimations is chosen as the target value update:

y = r + γ min
i=1,2

Qθ′i
(s′, πφ′(s

′)) (53)

Although choosing a lower Q value during network updating might introduce a potential
underestimation bias, this bias is not explicitly propagated through the policy update. Therefore,
the error is significantly reduced compared to the original training method.

(2) Target Networks and Delayed Policy Updates

The target networks serve as deep function approximators, contributing to the algo-
rithm’s stability. Deep function approximators typically require several gradient updates
to converge, while target networks offer a steady target during the updating process and
enable the network to adapt to a broader range of training data.

To ensure effective training, the policy network is updated at a slower rate compared
to the value network. This delay in policy updates ensures that the policy is not modified
until the value error is minimized through updates from the value network. Additionally,
to maintain a small error, the policy and target networks are updated after a fixed number
of value network updates. By appropriately delaying the policy updates, we minimize
the likelihood of repeatedly updating an unchanged policy. This approach reduces the
variance in the value estimate, resulting in higher-quality policy updates. In essence, less
frequent policy updates yield value estimates with lower variance, thereby enhancing the
overall quality of the policy updates.

(3) Target Policy Smoothing Regularization

When overfitting to narrow peaks in the value estimate, a deterministic target policy
can be vulnerable to inaccuracies caused by function approximation errors, which increases
the variance in the target policy. To reduce the variance, a regularisation strategy is
introduced to smooth the target policy. In practice, a small amount of random noise is
added to the target policy. The target value update is modified as follows:

y = r + γ min
i=1,2

Qθ′i
(s′, πφ′(s

′) + ε)

ε ∼ clip(N (0, σ),−l, l)
(54)

where ε is normal distributed noise with zero mean and σ variance. The added noise is
clipped at [−l, l] to keep the target action close to the original action.
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5.3. Memory-Enhanced Twin Delay Deep Deterministic Policy Gradient

The dynamics of the UCAV and radar states in the process of UCAV trajectory planning
introduce serious uncertainty and complexity into UCAV motion control. Therefore, it is
essential to integrate the historical trajectory for the agent to learn an optimal policy. From the
previous predictive control model, we know that the radar detection range is determined by its
operating parameters and the UCAV’s RCS. The UCAV’s RCS can be calculated by its position
relative to the radar and its attitude. When the UCAV takes action to change its position and
attitude, the radar detection range also changes accordingly. This makes it necessary for the
UCAV to predict the impact of current observations and actions on future states, planning a
flight trajectory in advance to reach the target area while effectively avoiding radar detection. In
a single scenario, based on the expected return mechanism of reinforcement learning, it is easy
for the UCAV to predict future environmental changes solely based on the current observations
and actions. However, in random and unknown scenarios, the impact of current observations
and actions on future states is unpredictable. Therefore, it is very important to utilize the
features of historical observations and actions to obtain the patterns of radar detection range
and position changes and improve the trajectory planning performance of UCAVs. As shown
in Figure 5, we proposed a memory-enhanced twin delay deep deterministic policy gradient
(ME-TD3) to process the historical features of observations and actions.
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Figure 5. Illustration of the proposed algorithm.

On the basis of TD3, we construct a memory of size L to collect historical observations
and actions. At time t, the contents of memory M are generated through a sequence
of observations ho,t = ot, ot−1, ot−2, . . . , ot−L and actions ha,t−1 = at−1, at−2, . . . , at−L. The
memory is utilized as input for the actor network to update the current action at. Then, we
collect the reward rt and the next observation ot+1 obtained through interaction with the
environment. During the interaction with the environment, the observations and actions
obtained are first stored in the memory. When the amount of data in the memory exceeds the
maximum capacity limitation, the bottom observation and action will be deleted and the data in
the memory will be updated. The transition tuple (M, a, r, o′) is stored in the replay buffer B.
The actor and critic networks utilize the experience randomly sampled from the replay buffer
to learn optimal policies. The actor network takes action a based on historical observations ho
and then updates the next historical observations h′o. The critic network updates the action
value based on the next historical memoryM′ and noise action ã, shown as:

y = r + γ min
i=1,2

Qθ′i
(M′, ã)

ã← πφ′(h
′
o) + ε, ε ∼ clip(N (0, σ),−l, l)

θi ← argminθi
N−1Σ(y−Qθi (M, a))2

(55)
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Similar to the TD3 algorithm, the actor network and target networks are updated after
a K-step update of the critic network. The parameters of the actor and critic networks are
updated, shown as:

∇φ J(φ) = N−1Σ∇aQθ1(M, a)|a=πφ(ho)∇φπφ(ho) (56)

In this algorithm, we design actor and critic networks based on an attention mecha-
nism, as shown in Figure 6. The historical observations and actions are normalized in the
range [−1, 1] as the inputs of the actor network and the critic network, respectively. In the
actor network, the normalized observations are linearized by two linear network layers
with 128 nodes. Then, the linearized vectors are processed by an attention network. Finally,
the vectors are linearized by linear network layers with 128 nodes and 1 node, respectively.
The first three linear layers are followed by a Rectified Linear Unit (ReLU) activation
function, and the fourth linear layer is followed by a hyperbolic tangent (tanh) activation
function to output a current action at in the range [−1, 1]. There are two differences in
the critic network that distinguish it from the actor network. First, after the normalized
observations and actions are linearized by linear network layers, the linearized vectors are
concatenated. Second, there is no activation function following the fourth linear layer.

128 128 128

Actor Network

……

……

128 128 128……
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Figure 6. The network structure of the proposed algorithm.

In deep learning, attention mechanisms are usually applied to the processing of
sequential data. The attention mechanism allows the model to assign different weights to
different positions of the input sequence in order to focus on the most relevant part when
processing each sequence element. We use an additive attention mechanism to obtain the
context vector [40]. Suppose the input sequence is M = (m1, m2, . . . , mn), where mi ∈ Rd

represents the ith state vector. The weight vector e = (e1, e2, . . . , en) can be computed by

ei(mi) = V>m tanh(Wm ·mi + bm) (57)

where Vm, Wm, bm are trainable parameters. The softmax function is used to normalize
these weights:

αi =
ei

∑n
j=i ej

, ∀i = 1, 2, . . . , n (58)

Then, a context vector is computed as the output of the attention network layer
as follows:

catt =
n

∑
i=1

αi ·mi (59)

The importance of appropriate weights for historical observations and actions can be
understood through some examples. When a UCAV evades radar detection threats, the
radar detection range changes with the UCAV’s attitude. If the UCAV only focuses on
the current observation, it cannot predict whether the radar detection range will increase
or decrease in the future. By utilizing historical information, it can sensitively perceive
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the changing trends in the radar detection range. Secondly, the cruise trajectory of the
airborne radar is also unknown, and its future flight intentions can easily be predicted by
processing the historical position of the airborne radar. The improved TD3 algorithm based
on a memory-enhanced mechanism can better utilize the features of historical observations
and actions, helping UCAVs better plan future control policies.

A summary of ME-TD3 for UCAV trajectory planning is given in Algorithm 1.

Algorithm 1 ME-TD3 for UCAV trajectory planning

1: Randomly initialize actor network πφ, and critic networks Qθ1 , Qθ2 with parameters φ,
θ1, θ2

2: Initialize target networks φ′ ← φ, θ′1 ← θ1, θ′2 ← θ2
3: Initialize replay buffer B, memoryM,batch size N, target update interval K
4: for episode = 1 to T do
5: Reset the environment
6: while not done do
7: Select action with exploration noise a ∼ πφ(ho) + ε, ε ∼ N (0, σ) and observe

reward r and new state o′

8: Store transition tuple (M, a, r, o′) in B and a, o′ inM
9: end while

10: Sample mini-batch of N transitions (M, a, r, o′) from B
11: ã← πφ′(h′o) + ε, ε ∼ clip(N (0, σ̃),−l, l)
12: y← r + γ min

i=1,2
Qθ′i

(M′, πφ′(h′o))

13: Update critic networks θi ← argminθi
N−1Σ(y−Qθi (M, a))2

14: if episode mod K = 0 then
15: Update φ by the deterministic policy gradient:
16: ∇φ J(φ) = N−1Σ∇aQθ1(M, a)|a=πφ(ho)∇φπφ(ho)

17: Update target networks:
18: φ′ ← τφ + (1− τ)φ′

19: θ′i ← τθi + (1− τ)θ′i
20: end if
21: end for

6. Results

In this section, we present the situation environment used for UCAV trajectory plan-
ning and conduct targeted experiments to evaluate the proposed algorithm. First, the
training results are shown to analyze the performance of the proposed algorithm. Second,
the flight trajectory of the UCAV trained by the proposed algorithm is demonstrated to
verify the algorithm’s effectiveness. Third, the proposed algorithm is tested in different
scenarios to verify its adaptability. All computations were executed on the same worksta-
tion with an AMD Ryzen threadripper 3970X CPU and an NVIDIA RTX A6000 GPU. The
operating system is Ubuntu 20.04 and the computing architecture is CUDA 11.6. All of the
experiments are performed under Python 3.9 and Pytorch 1.8.0. The visual display is based
on the Matplotlib library.

6.1. Experimental Environment and Settings

To facilitate the training and testing of the DRL algorithm for UCAV trajectory plan-
ning, we developed a general simulation environment, shown in Figure 7. The mission
space of the UCAV is a square area, subject to surveillance by hostile ground-based radars
and airborne radars. Airborne radars fly back and forth along the x-axis or y-axis with
constant speeds. The red areas represent the effective detection ranges of the radars. The green
area represents the target area. The blue line represents the UCAV’s flight trajectory. The black
arrows represent the flight directions of airborne radars. The UCAV departs from a start point
and navigates through a hostile surveillance area, eventually reaching the designated target
area. It is obvious that the radar detection range alters as the UCAV‘s attitude changes. The
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parameters of the UCAV motion model and the RCS model are shown in Table 1. We assume
that the operating parameters of both the ground-based radars and the airborne radars are
known and consistent within the same radar type, shown in Table 2. The structures of the
actor and critic networks are shown in Figure 6. The parameters of radars and the UCAV are
designed by referencing real-world data. The hyperparameters of the proposed algorithm are
shown in Table 3.
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Figure 7. UCAV trajectory planning simulation environment. (a) The early stage of trajectory
planning. (b) The later stage of trajectory planning.

Table 1. Parameters of the UCAV.

Parameter Value

Size of mission area 1000 km × 1000 km
Time step of decision 20 s

Flight altitude h f 20 km
Max velocity vumax 0.5 km/s

Pitch θu 0°
Range of yaw ψu (−180°, 180°)
Range of roll φu (−90°, 90°)

Max roll velocity φ̇umax π/3 rad/s
Radii of the ellipsoid RCS a, b, c (0.1, 0.5, 1)

Table 2. Parameters of radars.

Parameter
Value

Ground-Based Radar Airborne Radar

Transmit power Pr 32× 106 W 30× 103 W
Antenna gain Gt 104.5 104

Wavelength λc 0.1 m 0.1 m
Noise temperature T0 290 K 290 K

Bandwidth of receiver Bn 40 MHz 5 MHz
Noise factor of receiver Fn 100.5 100.1

False alarm probability Pf a 10−6 10−6
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Table 3. Hyperparameters of the proposed algorithm.

Hyper Parameter Value

Max episodes 500× 103

Max steps 200
Discount factor γ 0.99

Soft update factor τ 0.01
Actor learning rate 0.001
Critic learning rate 0.001
Replay buffer size 10× 106

Memory size 3
Batch size 4096

Max policy noise 1
Action bound π/6

Noise delay factor 0.9999
Delayed policy update interval 3

Target update interval 100

6.2. Experiment of Algorithm Performance

In order to demonstrate the performance of the proposed algorithm, it is essential
to perform appropriate comparative experiments. We use DDPG and TD3 as baseline
comparisons, implementing them with almost the same hyperparameters as ME-TD3. To
avoid the influence of random numbers, all agents for the three algorithms were trained in
the same simulation environment with 10 random seeds. At the beginning of each episode,
the starting positions of the UCAV and the radars are randomly initialized within the
square area, and the flight speed of the airborne radar is randomly initialized within a
range of (0.4 km/s, 0.6 km/s).

To evaluate the algorithms’ performance, we used several quantitative evaluation
metrics: the hit rate, crash rate, lost rate, and average reward. Specifically, the hit rate
denotes the percentage of successful missions to the target area, the crash rate denotes the
percentage of encounters with radar detection threats resulting in a crash, and the lost rate
denotes the percentage of episodes where the vehicle remains trapped until the episode
ends. These values were calculated over the most recent 500 episodes. Furthermore, we
measured the average reward by calculating the mean value of the total rewards attained
during the last 100 episodes. Due to the severe fluctuation in these evaluation indicators
caused by random initialization and action noise, we processed the experimental results
using the weight smoothing method with a weight factor of 0.9.

The convergence curves of the three algorithms are shown in Figure 8. It is evident
that the agent explores the environment haphazardly in the initial training phase, leading
to a remarkably low average reward. As the agent engages more frequently with the
environment, it acquires more knowledge and improves its policy. The average reward
curves of ME-TD3 tend to converge by approximately the 70,000th episode, whereas DDPG
and TD3 typically converge by around the 100,000th episode. As training advances, the
curves for ME-TD3 exhibit less fluctuation when compared to the other algorithms. The
proposed algorithm demonstrates a faster convergence rate and a more stable convergence
process in comparison to both DDPG and TD3. In the final training stage of the ME-TD3
algorithm, the hit rate is above 95%, the crash rate is below 3%, and the lost rate is less
than 2%. ME-TD3 performs better compared to other algorithms in terms of the hit rate
and crash rate. The loss rates of ME-TD3 and TD3 are generally the same, but both are
significantly lower than that of DDPG. For further verification, we calculated the hit rates,
crash rates, lost rates, and average rewards of different algorithms in the convergence phase.
To avoid the impact of outliers on the performance analysis, we removed the maximum
and minimum values of each indicator. The results of the best, worst, median, and mean
values of these indicators under different random seeds are shown in Table 4.

Looking at the results, it is clear that ME-TD3 outperforms the other algorithms in
terms of the hit rate, crash rate, and average reward. The best value of the lost rate of
ME-TD3 is the smallest, and the worst, median, and mean values of TD3 are the smallest.
The lost rate of ME-TD3 is close to that of TD3, but significantly lower than that of DDPG.



Remote Sens. 2023, 15, 5494 20 of 25

The reason for this is that the ME-TD3 effectively processes historical information using
attention networks, which allows it to better adapt to dynamic and unknown environments.

Table 4. The overall results of the algorithms.

Algorithm
DDPG [38] TD3 [39] ME-TD3

HR CR LR AR HR CR LR AR HR CR LR AR

Best 92.52% 4.410% 2.780% −39.34 96.21% 3.570% 0.140% −35.32 97.06%. 2.720% 0.090% −33.31
Worst 89.57% 4.830% 5.550% −43.28 95.45% 3.830% 0.890% −37.14 95.95% 3.140% 0.930% −36.53

Median 90.90% 4.620% 4.800% −42.34 95.96% 3.720% 0.320% −36.40 96.41% 2.900% 0.510% −35.05
Mean 90.79% 4.630% 4.520% −41.89 95.93% 3.700% 0.410% −36.27 97.06% 2.920% 0.490% −35.08

The best data are presented in bold.

(a) (b)

(c) (d)

Figure 8. The convergence curves of algorithms. (a) Average reward. (b) Hit rate. (c) Crash rate.
(d) Lost rate. Shadow areas represent the statistical distribution of data.

6.3. Experiment of Algorithm Effectiveness

To verify the effectiveness of the proposed algorithm, we constructed a dynamic
simulation scenario of UCAV trajectory planning under radar detection threats. Specifically,
the UCAV must start from the initial point (0, 0) km, cross a hostile radar surveillance
area, and reach the target area centered around a circle at (1000, 1000) km. To directly
demonstrate the coupling relationship between the radar detection probability and flight
attitude, we intercepted the trajectories of UCAVs trained by different algorithms, indicating
the number of steps below the image, as shown in Figure 9.

It can be clearly seen that the radar detection ranges vary at different times. When
the UCAV’s front faces the radar, its RCS decreases, leading to a reduction in the radar
detection range. Conversely, when the UCAV’s side faces the radar, its RCS increases,
leading to an increase in the radar detection range. The UCAV must predict the changes in
its own attitude that could result in alterations in the radar detection range. This proactive
prediction is essential to prevent instances where sudden changes in the radar detection
range could hinder its ability to rapidly evade threats. In addition, in some cases, the
UCAV can briefly cross the radar detection range as long as it is not effectively tracked by
the radars. DDPG, TD3, and ME-TD3 have reward values of (−105.52,−102.82,−94.15)
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and (144, 150, 137), respectively. ME-TD3 has the highest reward and the fewest running
steps. DDPG has fewer running steps than TD3, but its reward is lower. This is because it
adventures through radar detection areas to reach the target area as quickly as possible.

(a) DDPG step = 36 (b) DDPG step = 72 (c) DDPG step = 108 (d) DDPG step = 144

(e) TD3 step = 37 (f) TD3 step = 75 (g) TD3 step = 112 (h) TD3 step = 150

(i) ME-TD3 step = 35 (j) ME-TD3 step = 70 (k) ME-TD3 step = 104 (l) ME-TD3 step = 137

Figure 9. Flight trajectories of the UCAVs by trained different algorithms in a complex dynamic
environment.

6.4. Experiment of Algorithm Adaptability

In this subsection, we constructed different simulation scenarios to test the adaptability
of the proposed algorithm. Typical cases in which the UCAV successfully reaches the target
area using the ME-TD3 algorithm are shown in Figure 10. We can see that the trained
UCAV can adapt to different scenarios with an excellent trajectory planning performance.

We compared the performance of different algorithms in the above scenarios. At the
end of training, these algorithms can ensure that the UCAV reaches the target area smoothly.
In order to reduce the unreliability of the experimental results caused by fewer random
seeds and test environments, we only analyzed the mean values of running steps and total
rewards for different algorithms shown in Table 5. The total reward for ME-TD3 is the
highest in all test scenarios, and the running steps are the fewest in case 1, case 2, and
case 3.

Table 5. The results of algorithms in different scenarios.

Algorithm
DDPG TD3 ME-TD3

Step Reward Step Reward Step Reward

Case1 144 −105.52 150 −102.82 137 −94.15
Case2 142 −99.74 141 −96.04 136 −93.44
Case3 151 −103.95 143 −96.46 141 −94.72
Case4 142 −118.49 140 −110.99 141 −106.15
Case5 152 −106.25 146 −107.20 154 −103.68

The best data are presented in bold.
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In all tests designed according to the distribution of radar in reality, the UCAV con-
trolled by the ME-TD3 algorithm can successfully complete the mission. However, there are
still some crash cases in the late stages of training. We found that failure cases are caused
by abnormal initialization of the UCAV and radar positions at the beginning of certain
episodes. When the UCAV is initialized within the radar detection range, it cannot escape
the threat area in a short time, resulting in a crash. Therefore, the random initialization
limit of the training environment should be designed more reasonably to reduce useless
training samples and improve the training efficiency.

(a) Case1 (b) Case2 (c) Case3

(d) Case4 (e) Case5

Figure 10. Typical cases in which the UCAV successfully reaches the target area using the ME-
TD3 algorithm.

7. Discussion

For a comprehensive evaluation of the proposed ME-TD3 algorithm, we conducted
a large number of experiments by comparing it with the DDPG and TD3 algorithms to
verify its performance, effectiveness, and adaptability. Different algorithms were trained
and tested in randomly generated UCAV trajectory plans to avoid radar detection threat
environments. These algorithms used the same hyperparameters, which were continuously
tuned through repeated trials.

In the experiment investigating the algorithms’ performance, we compared the hit
rate, crash rate, lost rate, and average reward of different algorithms with environmental
settings of 10 random seeds. As shown in Table 4, the ME-TD3 algorithm has the best
success rate, crash rate, and average return. Furthermore, the best value of its lost rate
is the lowest. Overall, the ME-TD3 algorithm performs better than the other algorithms
in UCAV trajectory planning. The reason for this is that ME-TD3 employs an attention
mechanism to process historical information, making it able to cope well with the dynamics
and randomness of the environment.

In the experiment investigating the algorithms’ effectiveness, we showed the flight
trajectories of UCAVs trained by different algorithms in a typical scenario. As shown
in Figure 9, it is obvious that the radar detection ranges change due to the effect of the
spatial geometry relationship between the UCAV and the radar on the RCS. Both DDPG
and TD3 only focus on the current state of the environment to make radical or cautious
decisions. However, the UCAV trained by ME-TD3 has the predictive ability to adjust its
flight attitude properly based on the dynamics of the environment. Furthermore, the flight
trajectory generated by ME-TD3 has fewer running steps and higher rewards.

In the experiment investigating the algorithms’ adaptability, different scenarios were
established to test the performance of the algorithms, as shown in Figure 10. We compared
the running steps and rewards of different algorithms while ensuring that the UCAV
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successfully reaches the target area in each scenario, as shown in Table 5. The total reward
of ME-TD3 is the highest in all test cases, which demonstrates it has better adaptability to
dynamic and uncertain environments than DDPG and TD3.

Although we have provided preliminary statistics on the data generated by different
random seeds in the performance experiments of the algorithm, further statistical signifi-
cance testing is still important. Due to the small sample size, we are unable to effectively
prove that the data satisfy normality and variance homogeneity. Therefore, we adopted the
Friedman test method. Let f1, f2, and f3 represent DDPG, TD3, and ME-TD3, respectively.
The significance levels were calculated to assess whether the differences between f1 and f3;
f2 and f3; and f1, f2, and f3 are significant. The basic hypothesis is that the difference will
not be significant. From the significance test results under different indicators shown in
Table 6, the condition p < 0.05 occurs in tests of the hit rate, crash rate, and average reward,
which means the hypothesis should be rejected. The significance between ME-TD3 and
TD3 in the lost rate is 0.2059. The reason for this is that the loss rate has approached the
optimization limit in the later stages of training, leading to an insignificant difference. In
general, the differences in experimental results between DDPG, TD3, and ME-TD3 are still
proven to be significant.

Table 6. Friedman test results.

p( f1, f3) p( f2, f3) p( f1, f2, f3)

Hit rate 0.0016 0.0114 0.0001
Crash rate 0.0016 0.0016 4.54 × 10−5

Lost rate 0.0016 0.2059 0.0004
Average reward 0.0016 0.0016 4.54 × 10−5

We have verified the effectiveness and adaptability of the proposed method through
comprehensive experiments. By appropriately processing historical states, the UCAV can
sensitively perceive the dynamics of the environment and thus exhibit a better trajectory
planning performance. However, there are still some weaknesses and limitations for real-world
development. In reality, the estimation of UCAV and radar states obtained by inertial navigation
systems and specialized reconnaissance systems is inaccurate, which leads to a degradation in
the UCAV trajectory planning performance. In addition, the lack of countermeasures against
adversarial attacks on sensor data can lead to potential hazards in the UCAV control system.

We believe that the proposed algorithm has broad application prospects in practical
applications. In the field of UCAVs entering battles with electronic countermeasures [41,42],
this algorithm can be used to achieve more effective trajectory planning and improve UCAVs’
safety under radar detection threats. However, the potential impact of this algorithm in
practical applications needs to be noted. If the algorithm encounters malfunctions or errors in
certain situations, this may have a negative impact on the security and stability of the system.
Therefore, we need to ensure that the algorithm has sufficient robustness and fault tolerance.

8. Conclusions

In this paper, we proposed a method based on deep reinforcement learning to develop
an intelligent UCAV that can perform automatic trajectory planning tasks under radar
detection threats in dynamic and unknown environments. By analyzing the dynamics and
randomness of the environment, we established a predictive control model and described
it as a POMDP. A memory-enhanced TD3 algorithm based on an attention mechanism
was proposed, which can utilize historical information to improve the performance of
UCAV trajectory planning. Then, the UCAV was trained and tested in randomly generated
simulation environments. The simulation results showed that the trained UCAV can safely
and quickly penetrate a surveillance area composed of hostile ground-based radars and air-
borne radars and successfully reach the target area. Furthermore, compared with the DDPG
and TD3 algorithms, the proposed algorithm has better performance and adaptability in
complex environments.
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In future work, the errors of state estimation and adversarial attacks on sensors will
be considered to build a more realistic simulation environment for UCAV training. More
methods to mitigate the impact of sensor data disturbances on algorithms will be studied to
improve the robustness and stability of UCAV trajectory planning. In addition, considering
their actual deployment, we will conduct in-depth research on potential issues in the
migration process from simulation systems to hardware systems to meet the requirements
of real-time performance and computational resources.
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