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Abstract: The polarization crossfire (PCF) suite carried onboard the Chinese GaoFen-5B satellite is
composed of a Particulate Observing Scanning Polarimeter (POSP) and a Directional Polarimetric
Camera (DPC), which can provide multi-angle, multi-spectral, and polarization data. In this paper,
the influence of polarization and the directionality of reflectance in open oceans on the inversion
of chlorophyll a (Chla) concentrations are investigated, from 410 nm to 670 nm. First, we exploit a
vector radiative transfer model to simulate the absolute and relative magnitudes of the water-leaving
radiance signal (I) and the parallel polarization radiance (PPR) to the top-of-atmosphere (TOA)
radiation field. The simulation results show that the PPR can enhance the relative contribution of
the water-leaving signal, especially in sunglint observation geometry. The water-leaving signal for
PPR exhibits significant directional and spectral variations relative to the observation geometries,
and the maximum value of the water-leaving signal for PPR occurs in the backscattering direction. In
addition, the sensitivity of the PPR to the Chla concentration is sufficient. The synthetic datasets are
utilized to develop retrieval algorithms for the Chla concentrations based on the back-propagation
neural network (BPNN). The inversion results show that the PCF strategy improves the accuracy of
Chla retrieval, with an RMSE of 0.014 and an RRMSE of 6.57%. Thus, it is an effective method for
retrieving the Chla concentration in open oceans, by utilizing both the directionality and polarization
of the reflectance.

Keywords: parallel polarization radiance; chlorophyll a concentrations; polarization crossfire strategy;
back-propagation neural network; open oceans

1. Introduction

Phytoplankton can contribute at least 45% of global primary productivity each year,
which profoundly affects the biogeochemical cycle [1,2]. Chla is the main pigment for
photosynthesis in phytoplankton, and its concentration can characterize the biomass of
marine phytoplankton and its primary productivity [3,4]. Satellite remote sensing can
realize the capability to continuously observe the global ocean. The ocean color sensor
receives the total radiance at the TOA, and atmospheric correction is performed to accu-
rately retrieve the water-leaving radiance. The water-leaving radiance is determined by the
absorption and scattering characteristics of the ocean water and its constituents, which can
be used to retrieve the inherent optical properties (IOPs) and biogeochemical properties of
seawater [5]. Generally, the retrieval algorithms for Chla concentration typically include
analytical, empirical, semi-empirical/semi-analytical, and machine learning algorithms [6].

Remote Sens. 2023, 15, 5490. https://doi.org/10.3390/rs15235490 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15235490
https://doi.org/10.3390/rs15235490
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs15235490
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15235490?type=check_update&version=3


Remote Sens. 2023, 15, 5490 2 of 21

The process of the atmospheric correction algorithm implies subtracting the atmo-
spheric contributions and the sea surface contributions from the signals received by the
sensors at the TOA [7,8]. The atmospheric contributions include absorption and scatter-
ing of aerosols and molecules. The sea surface contributions include sunglint radiance
and skylight radiance, both of which are specularly reflected by wave facets [9]. The
traditional atmospheric correction method employs the black pixel assumption at infrared
(IR) wavelengths to obtain the aerosol contributions, which has been applied to open
ocean waters [10]. The traditional method has an inevitable error that increases towards
shorter wavelengths. As the atmospheric contribution increases, this error increases too.
The dominant contributions to the TOA measurement reflectance in chlorophyll-sensitive
wavelengths come from the atmosphere and sea surface in ocean color remote sensing.
The sunglint signal obscures the signal of the water-leaving radiance and saturates the
satellite pixels in the ocean color sensors, especially in open ocean waters. The distribution
of skylight reflection is common, but the intensity is much weaker. These two signals are
independent of the optically active substances in seawater.

To reduce these impacts, related studies have used the polarization properties of
reflected light. Because incident sunlight is polarized by molecules, aerosols, hydrosols,
and the air–sea interface, the polarization state of light carries a lot of information about the
atmosphere–ocean system (AOS). Near the Brewster angle, the skylight reflected from both
flat water and water waves is approximately perpendicularly polarized [11], so Fougnie
et al. [12] measured the parallel component of the upwelling radiance to reduce skylight
contamination in open oceans. Frouin et al. [13] attempted to use unpolarized reflectance at
the TOA to retrieve water properties in open ocean waters. The results demonstrate that the
contribution of the water-leaving signal to the TOA signal is enhanced in most observation
geometries, compared to the total reflectance. This is because the radiance scattered by open
ocean waters is assumed to be unpolarized, and the influence of aerosols and the air–sea
interface on the unpolarized reflectance is relatively small. Instead of using unpolarized
reflectance, He et al. [14] proposed to use parallel polarization radiation (PPR = I + Q) to
retrieve the normalized water-leaving radiance, and proved that the PPR can diminish
sunglint contamination and enhance the ocean color signal, using PCOART simulations
and POLDER-2 polarization data. Also, the experimental and simulation results indicate
that the PPR has a higher ocean color signal for suspended particulate matter compared
to the total radiance [15]. Although PPR has these advantages, its sensitivity to Chla
concentrations and its contribution to the radiation field at the TOA in open oceans have
not been examined yet.

Advances in polarimetric remote sensing (PRS) not only effectively improves the
retrieval accuracy of aerosol and hydrosol particles [16–18], but it is also becoming increas-
ingly important for understanding the microphysics and optical properties of particulates
in the AOS [5,19,20]. From the radiative transfer simulations and field measurements, it has
been proved that polarization information on the upwelling radiation can retrieve the inor-
ganic particle concentrations [21,22], chlorophyll fluorescence [23], and IOPs [24–26]. For
example, Chami and Platel [26] used a neural network (NN) to indicate that the polarization
and directional variations of reflectance can significantly improve the retrieval of scattering
coefficients by 75% and 60%, respectively. So, it is promising to use the polarization and
directional variations of reflectance to retrieve water constituents.

In order to obtain reliable polarization data for the establishment and validation of
retrieval models, an above-water instrument named POLWR has been designed to measure
the polarization characteristics of the water-leaving signal, and it has been validated by field
measurements [27]. In addition, several airborne and satellite polarization instruments
have been developed over the last few decades, such as POLDER [28]; the Research
Scanning Polarimeter (RSP) [29]; the Multi-viewing, Multi-channel, and Multi-polarization
Imager (3MI) [30]; the Spectropolarimeter for Planetary EXploration (SPEXone) [31]; and
the Hyper-Angular Rainbow Polarimeter (HARP2) [32]. The polarization crossfire (PCF)
suite is composed of both the Particulate Observing Scanning Polarimeter (POSP) and
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the Directional Polarimetric Camera (DPC), and was successfully launched onboard the
Chinese GaoFen-5B satellite on 7 September 2021. The simultaneous observations by
the DPC and POSP instruments provides more polarization bands and viewing angles.
Moreover, the POSP is equipped with corresponding radiation and polarization calibrators,
which can perform cross-calibration for the DPC on the same platform, further improving
the quality of the PCF data [33].

In this study, we focus on Chla concentrations in open oceans and explore the ad-
vantages of the PPR and PCF strategy in ocean color remote sensing. Firstly, the PCF
suite and the radiative transfer model, together with the input parameters for model, are
introduced. Then, we simulate and analyze the angular and spectral variations of the TOA
reflectance for the PPR in the coupled AOS at different observation geometries and Chla
concentrations. Furthermore, the relative contributions of the water-leaving signals for the
I and PPR at the TOA are shown and compared. Finally, based on the back-propagation
neural network (BPNN), we compare the accuracy of the water-leaving signals for the I
and PPR in the retrieval of Chla concentrations, and examine the PCF strategy in relation
to the performance of the retrieval algorithm.

2. Data and Methods
2.1. Overview of PCF

The Chinese GaoFen-5B satellite is a hyperspectral observation satellite for the detec-
tion of the atmosphere, land, and ocean, by simultaneously conducting spectral, angular,
and polarimetric measurements. The satellite carries the DPC and POSP sensors (PCF),
with five other typical sensors and maintains a sun-synchronous orbit at an altitude of
705 km with an inclination of 98◦. The overpass local time is 1:30 PM and the revisiting
period is two days. The PCF suite can nearly cover overlapping observation regions, with
the same swath width of approximately 1850 km [34]. The band settings for the PCF suite
are listed in Table 1.

Table 1. Band settings for the PCF suite.

Band No.

POSP DPC

Central
Wavelength (nm)

Spectral
Bandwidth (nm) Polarization Central

Wavelength (nm)
Spectral

Bandwidth (nm) Polarization

1 380 20 Yes - - -
2 410 20 Yes - - -
3 443 20 Yes 443 20 No
4 490 20 Yes 490 20 Yes
5 - - - 565 20 No
6 670 20 Yes 670 20 Yes
7 - - - 763 10 No
8 - - - 765 40 No
9 865 40 Yes 865 40 Yes

10 - - - 910 20 No
11 1380 40 Yes - - -
12 1610 60 Yes - - -
13 2250 80 Yes - - -

The DPC is a multi-angle polarized sensor, which is similar to the POLDER design [35].
Compared with the GaoFen-5/DPC, the number of maximum observation angles of DPC
is increased from 12 to 17, and the spatial resolution of a DPC pixel at the nadir point is
higher, from 3.3 km to 1.7 km. The DPC can realize a field of view ±50◦ in both along-track
and cross-track directions, and can perform spectral measurement in eight bands.

The POSP is an APS-like type scanning polarimeter, and its field of view is also ±50◦

in the cross-track direction [33]. Compared to the DPC, the POSP has a spatial resolution of
6.4 km at the nadir point and can only perform single-angle observations, but it can detect
9 polarized spectral bands ranging from 380 to 2250 nm.
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2.2. Radiative Transfer Model and Data Inputs of the Model

The reflectance for the I and PPR at the TOA were simulated using the so-called Ocean
Successive Orders with Atmosphere—Advanced (OSOAA) radiative transfer model [36],
which uses the successive orders from the scattering method and plane-parallel layer
assumption to solve the vector radiative transfer equation for the coupled AOS. The
OSOAA model considers a rough sea surface base on Cox-Munk [37] and outputs the
angular distribution of the upward Stokes vectors. The spectral range of the OSOAA model
is in the visible to near-infrared band (i.e., 400~800 nm).

The OSOAA mode was performed to simulate the upwelling radiation field and
polarized radiation field at six wavelengths, namely 410 nm, 443 nm, 490 nm, 510 nm,
565 nm, and 670 nm. The upper layer is dominated by atmospheric molecules, with a
Rayleigh optical depth of 0.324 (410 nm), 0.235 (443 nm), 0.156 (490 nm), 0.138 (510 nm),
0.088 (565 nm), and 0.044 (670 nm). The calculation of the Rayleigh optical thickness for
each spectral band takes into account the spectral response function of the PCF, except for
at 510 nm.

2.2.1. Aerosol Model

The middle layer is the atmospheric aerosol. We used Shettle and Fenn’s maritime
aerosol type, composed of small rural and oceanic particle components, and a relative
humidity of 80% (M80) [38]. The aerosol optical thickness (AOT) at 550 nm τa is 0.15. The
scattering phase function and polarized phase function for the selected aerosol model at
different wavelengths are computed using Mie theory, as shown in Figure 1.
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2.2.2. Optical Model of Case 1 Water

The research object in this paper is open ocean waters and the lower oceanic layer
consists of pure sea water, phytoplankton, and colored dissolved organic matter (CDOM).
The scattering coefficient of pure sea water is calculated by the Morel’s model [39]. The
absorption coefficient of pure sea water is taken from Pope and Fry (i.e., 380~730 nm) [40].
The absorption and scattering coefficients of phytoplankton are computed using the Chla
concentration [41,42]:

ap(λ, [Chla]) = AP(λ)× [Chla]EP(λ) (1)

bp(λ, [Chla]) = 0.30×
(

550
λ

)
× [Chla]0.62 (2)

where ap(λ, [Chla]) and bp(λ, [Chla]) are the absorption and scattering coefficients of phy-
toplankton at wavelength λ (in nm) for a given Chla concentration [Chla] (in mg/m3),
respectively. AP(λ) and EP(λ) are wavelength-dependent constant coefficients (i.e., the
wavelength range is 400~700 nm) [41].
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The CDOM is a purely absorbing particle, and its absorption coefficient is calculated
as follows [43–45]:

ay(λ, [Chla]) = ay(440, [Chla])× exp(−0.014× (λ− 440)),

ay(440, [Chla]) = p2 × ap(440, [Chla]), (3)

p2 = 0.3 +
5.7× R2 × ap(440, [Chla])

0.02 + ap(440, [Chla])
.

where R2 is a random number ranging from 0 to 1, and we use 0.5 in this study [44].
The backscattering ratio is defined as Bbp = bbp/bp, where bbp is the backward scat-

tering coefficient. The backscattering ratio of phytoplankton Bbp([Chla]) is spectrally
independent [46]:

Bbp([Chla]) = 0.002 + 0.01(0.5− 0.25 log10[Chla]) (4)

The size distribution of the phytoplankton-like particles is often assumed to follow
the Junge power law [47]. In this paper, the Fournier–Forand (FF) phase function with Voss
and Fry (VF) reduced Mueller matrix, which is chosen for the underwater particles. The
VF reduced Mueller matrix provides the normalized light scattering polarization matrix
derived from real measurements [48,49]. The FF phase function is an approximate analytic
form used to describe particles with a Junge particle size distribution [50,51], and it is in
good agreement with the measured Petzold phase function [52]. The FF phase function is
determined as follows:

FFF(Θ) = 1
4π(1−δ)2δv {v(1− δ) − (1− δv) +

[
δ(1− δv)− v(1− δ) sin−2(Θ/2)

]}
+

1−δv
180

16π(δ180−1)δv
180

(
3 cos2(Θ)− 1

) (5)

where:
v =

3− µ

2
, δ =

4

3(n− 1)2 sin2(Θ/2) (6)

Here, Θ is the scattering angle, δ180 is the value of δ at Θ = 180
◦
, µ is the slope param-

eter of the Junge distribution, and n is the real part of the refractive index of the particles.
The backscattering ratio can be obtained using Equation (5) [52]:

Bbp−FF = 1−
1− δv+1

90 − 0.5(1− δv
90)

(1− δ90)δ
v
90

(7)

where δ90 is the value of δ at Θ = 90
◦
. Further, a linear relationship between µ and n is

proposed [52], namely:
n = 1.01 + 0.1542(µ− 3) (8)

According to Equation (4), the value of Bbp([Chla]) for a given Chla concentration can
be calculated. By performing best fits with a look-up table generated by Equations (6)–(8),
the values of µ and n are obtained, which are the two model parameters of the FF phase
function [53].

The bulk scattering matrix of open ocean water FBulk can be written as:

FBulk(λ, Θ) =
bw(λ)Fw(Θ) + bp(λ)Fp(Θ)

bw(λ) + bp(λ)
(9)

where bw(λ) is the scattering coefficient of pure sea water. Fw(Θ) represents the scattering
matrix of pure sea water and is obtained through Rayleigh scattering. Fp represents the
scattering matrix of phytoplankton.
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2.3. The Concept of Parallel Polarization Radiance

The vector radiation field of the coupled AOS can be expressed by the Stokes vector,
as follows:

S =


I
Q
U
V

 =


< E2

x(t) > + < E2
y(t) >

< E2
x(t) > − < E2

y(t) >
< 2Ex(t)Ey(t) cos δ >
< 2Ex(t)Ey(t) sin δ >

 (10)

where I is the total intensity of the light beam, Q is the intensity difference between the
polarized components of the electromagnetic wave parallel and perpendicular to the refer-
ence plane. U indicates the intensity difference between the polarized components in the
planes 45◦ and −45◦ to the reference plane. V is the circularly polarized component, which
is negligible for most cases of light scattered by the sea surface and atmosphere [54,55].
Ex(t) and Ey(t) are components of the electric vector in the local-view meridian plane
(determined by a scatted beam in the view direction of the sensor and normal local surface)
and in the plane perpendicular to the meridian plane, respectively. Moreover, δ is the phase
difference between Ex(t) and Ey(t), and the notation < > represents the time average. The
PPR and VPR (vertical polarization radiance) are defined as follows [14]:

PPR = I + Q
VPR = I −Q

(11)

Based on the OSOAA and the input parameters of the model described in Section 2.2,
we set a black ocean (i.e., light fully absorbed by the ocean) to simulate the reflectance of the
I, PPR, and VPR just above the sea surface (0+) at 443 nm. The reflectance is, thus, the sum
contribution of both the reflectance reflected by scattered skylight at the air–sea surface
and the reflectance reflected by direct sunlight at the air–sea surface. The reflectance for the
PPR at 0+ is defined as:

ρ0+, ppr =
πPPR0+

Es cos θs
(12)

where Es is the extra-terrestrial solar irradiance and the solar zenith angle θs is set to 30◦.
The reflectance for the I or VPR can be obtained by replacing the PPR.

As shown in Figure 2, the smallest of the three reflectance is ρ0+, PPR, which can
also be observed at other wavelengths. Therefore, selecting the PPR can reduce the sea
surface effects [14]. Unlike the second and third Stokes vectors (Q, U), the PPR has a similar
physical meaning to I and represents the intensity of the parallel polarization radiance,
making PPR easier to apply in ocean remote sensing.
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Figure 2. Polar diagram of the angular variation of the reflectance for PPR, I, and VPR at 0+ at
443 nm. The position of the sun (ϕOSOAA = 180◦ and θv = 30◦) is represented by the yellow star.
(a) reflectance for PPR; (b) reflectance for I; (c) reflectance for VPR.
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2.4. Definition of the Radiation Field at the TOA

The total reflectance for the I and PPR at the TOA are, respectively, represented as:

ρt =
π It

Es cos θs

ρt,ppr =
πPPRt
Es cos θs

(13)

where It is the TOA total radiance from all the components of the AOS, including the
atmosphere, ocean surface, and phytoplankton in the seawater. PPRt is the TOA total
parallel polarization radiance.

The water-leaving signals for the I and PPR at the TOA are defined as:

ρ′w = π I′w
Es cos θs

ρ′w,ppr =
πPPR′w
Es cos θs

(14)

where I′w is the water-leaving radiance contribution at the TOA. PPR′w is the water-leaving
parallel polarization radiance contribution at the TOA. I′w is expressed in this article as:

I′w = It − It,b (15)

where It,b is the background radiance at the TOA, which equates to an AOS with the same
atmosphere and sea surface, but with a black ocean. Similarly, PPR′w is calculated using:

PPR′w = PPRt − PPRt,b (16)

where PPRt,b is the background parallel polarization radiance at the TOA.

2.5. Back-Propagation Neural Network

The back-propagation neural network is a multi-layer feed-forward neural network
that considers the backward error. The BPNN can use nonlinear units (neurons) to map
input–output nonlinear features and is widely used in the estimation of water quality
parameters [6]. The outstanding advantage of BPNN is that a unique transfer function is
added to each neuron of the network, and the network weights are adjusted during each
training process through the error backpropagation technique. The input layer, hidden layer,
and output layer constitute the most basic BPNN structure, and each layer is connected
by neurons.

3. Results and Discussion
3.1. Angular Variation of TOA PPR Reflectance

Figure 3 displays the polar diagram of the angular variations of the reflectance for
the I and PPR at 443 nm at the TOA. Figure 4 is the same as Figure 3, but for 565 nm.
In these figures, the solar zenith angle θs is 30◦ and the Chla concentration [Chla] is
0.1 mg/m3. The radial coordinate represents the viewing zenith angle θv, and the angular
coordinate represents the relative azimuth angle ϕOSOAA. The azimuth angle of 180◦

corresponds to the backscattering half-plane (i.e., the sensor and the sun are in the same
half-plane). The azimuth angle of 0◦ corresponds to the specular half-plane (i.e., the sensor
and the sun are located in opposite half-planes), which contains sunglint. As shown
in Figures 3a,b and 4a,b, the angular distributions of the TOA reflectance ρt,ppr and ρt
are similar, and the values for both are larger at a high zenith angle, this is because the
total reflectance at the TOA is mainly affected by the atmospheric layer [56]. The longer
atmospheric path length increases the effect of atmospheric scattering with the increase in
the viewing zenith angle. The phase matrices of the atmosphere and ocean determine the
exact location of the minimum total reflectance, which is usually near the nadir point [57].
The reflectance ρt,ppr is significantly smaller than ρt within relative azimuth angles ϕOSOAA
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ranging from 0◦ to 60◦ and the viewing zenith angles θv ranging from 30◦ to 75◦. Similar
result can also be obtained for a large viewing zenith angle θv (e.g., 75◦~90◦).
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Figure 4. (a–d) Similar to Figure 3 but corresponding to a different wavelength at 565 nm. The
position of the sun (ϕOSOAA = 180◦ and θv = 30◦) is represented by the yellow star and the Chla
concentration [Chla] is 0.1 mg/m3.

Figures 3c,d and 4c,d show the angular variation of ρ′w is smaller, while the azimuth
variation of ρ′w,ppr is larger. The angular distributions for ρ′w,ppr and ρ′w are different for
a region located in the range of ϕOSOAA between 0◦ to 60◦, where the values of ρ′w are
higher than that of ρ′w,ppr. Figure 5 shows the maximum value of ρ′w,ppr (0.0129) is bigger
than that of ρ′w (0.0127) at 443 nm when the Chla concentration is 0.1 mg/m3, and both
maximum values occur in the backscattering direction but do not exactly align with the
solar zenith angle. At different Chla concentrations, similar variations for ρ′w,ppr and ρ′w as
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function of the viewing zenith angle can be observed within the ϕOSOAA of 90◦ to 180◦. The
water-leaving signal at the TOA is the smallest at a large viewing zenith angle due to the
increase in atmospheric attenuation. For all azimuth angles, the water-leaving signals for I
and PPR at 443 nm decrease with increasing Chla concentration, and their variation curves
with respect to the viewing zenith angle are more uniform for a high Chla concentration.
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angle θs is 30◦.

Figure 6 shows that the water-leaving signals for I and PPR exhibit similar angular
variations and magnitudes in the backscattering half-plane. Figure 7 shows the polar
diagram of the water-leaving signal for the PPR at the TOA at 443 nm, 490 nm, and 565 nm,
for different solar zenith angles (0◦, 30◦, and 60◦). Notably, at a solar zenith angle of 0◦, the
angular distribution of the water-leaving signal ρ′w,ppr is symmetrical. As the solar zenith
angle increases, the symmetry of ρ′w,ppr is disrupted, and the maximum value of ρ′w,ppr
changes with the solar zenith angle, moving towards the backscattering direction. The
observation geometry can significantly affect the angular variation of ρ′w,ppr, especially at
solar zenith angles of 30◦ and 60◦.

3.2. Spectral Variation of TOA PPR Reflectance

Figure 8 shows spectral variation of TOA reflectance at the nadir point for different
Chla concentrations. As shown in Figure 8a, the spectral variation of ρt,ppr is similar to ρt
but with a lower value. The total reflectance at the TOA is smaller for longer wavelengths,
owing to the decreasing molecular and aerosol scattering with increasing wavelength. This
demonstrates that atmosphere scattering is the predominant contributor to the TOA total
reflectance in visible bands.

Figure 8b shows the value of ρ′w is slightly higher than that of ρ′w,ppr. The water-leaving
signal ρ′w decreases with the increase in the Chla concentration at 410 nm and 443 nm, this
is due to the fact that chlorophyll has a strong ability to absorb blue light. When the Chla
concentration changes from 0.03 to 10 mg/m3, ρ′w at 410 nm decreases by 0.025. There
is an inflection wavelength around 550 nm, where ρ′w is nearly independent of the Chla
concentration. At 565 nm and 670 nm, the reflectance ρ′w increases as the Chla concentration
increases, due to a stronger backscattering and a weaker absorption effect. The above
results are the theoretical basis of the band ratio method for the Chla concentration retrieval
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algorithm, and the water-leaving signal for the PPR has similar spectral characteristics.
Furthermore, the spectral variations and magnitudes of the reflectance ρ′w and ρ′w,ppr are
similar under different observation geometries (Figure 9).
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Figure 8. TOA reflectance at the nadir point as a function of the wavelength for a set of Chla
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reflectance for I (solid lines) and PPR (dotted lines); (b) TOA water-leaving signals for I (solid lines)
and PPR (dotted lines).
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Figure 9. Variations of TOA water-leaving signal for I (solid lines) and PPR (dotted lines) in the
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(d–f) θv = 30◦.

Figure 8b shows the largest water-leaving signal for the PPR is found in the blue
wavelength for [Chla] = 0.03 mg/m3 and [Chla] = 0.1 mg/m3. The reflectance ρ′w,ppr

decreases as the wavelength increases to 670 nm. For [Chla] = 10 mg/m3, the maximum
ρ′w,ppr occurs at 565 nm, because of the combined effect of the spectral variations of the
total absorption and scattering coefficients [57]. On both sides of the maximum, as the
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wavelength approaches 410 nm and 670 nm, the value of ρ′w,ppr decreases. In particular,
the water-leaving signal for the PPR has a minimum at 670 nm. This is due to the higher
absorption coefficient of seawater and the lower scattering coefficient of phytoplankton.

3.3. Enhancement of Contributions of the Water-Leaving Signals by PPR

The relative contributions of the water-leaving signals for the I and PPR at the TOA
are estimated in the following way:

η = 100 · ρ′w/ρt
ηppr = 100 · ρ′w,ppr/ρt,ppr

(17)

The variations of η and ηppr are examined at 443 nm in the principal plane (Figure 10a).
Figure 10a shows the value of ηppr is higher than η in the principal plane. The maximum
value of η in the two half-planes is around 9.5%, which is consistent with previous research
findings [57–59]. For the observation geometry of the sunglint, the value of η is minimal
due to the pronounced influence of sunglint. The roughness of the sea surface induced
by the wind enables the observation of the sunlight reflection effect within a range of
±20◦ from the specular direction (θv = +30◦) [9]. However, the value of ηppr is much
higher compared to that of η in this particular geometry. For example, ηppr is around
13.3% compared with 5.8% for η at the viewing zenith angle of 54◦. Note that ηppr is
mostly higher than η regardless of the variations in the viewing zenith and azimuth angle
outside the principal plane (Figure 10b,c). Therefore, the PPR can enhance the relative
contribution of the water-leaving signal, especially in the sunglint observation geometry
(Figures 10 and 11).
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Figure 12 shows the comparisons of the TOA relative contributions of the water-
leaving signals for the I and PPR at different solar zenith angles and Chla contributions.
Obviously, the PPR can enhance the relative contribution of the water-leaving signal except
for the observation geometry (with a sun zenith angle of 0◦ and a viewing zenith angle
of less than 20◦), where the PPR and I exhibit similar detection capabilities for the ocean
color signal.
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Figure 12. Angular distribution of η (solid lines) and ηppr (dotted lines) (in %) in the specular half-
plane (ϕOSOAA = 0◦), as a function of the viewing zenith angle θv at different solar zenith angles
(0◦, 30◦, and 60◦) and Chla concentrations (0.03, 0.1, and 10 mg/m3). (a–c) 443 nm; (d–f) 565 nm.

Figure 13 shows the spectral variations of η and ηppr at different solar zenith angles
and Chla concentrations. The relative contribution of the water-leaving signal on the PPR
is greater than that for the I at all wavelengths. In addition, the relative contributions of
the PPR and I are noticeable between 410 nm and 565 nm for different Chla concentrations.
Note that the change trend in the relative contribution η is consistent with the results by
Zhai et al. [57] and Ottaviani et al. [60], where the result by Ottaviani et al. was simulated
using field measurements from IOPs in open oceans.

We calculate the relative deviation of the relative contributions for the I and PPR at
the TOA as:

χ = (
ηppr − η

η
)× 100% (18)

The PPR can significantly enhance the ocean color signals in most observation ge-
ometries, with the maximum enhancement (136.5%) observed in the sunglint observation
geometry at 565 nm (Figure 14). The benefit of the PPR is attributed to the compensatory
effect of Q and the total radiance [14,61]. As the viewing zenith angle increases, both
the radiance and Q at the TOA increase, and the negative values of Q can partially off-
set the increase in radiance (Figure 3a,b). Moreover, the polarization reflectance at the
TOA is insensitive to the Chla concentration in open ocean waters [62,63]. As shown in
Figure 3c,d, the PPR does not substantially reduce the TOA water-leaving signal. Thus, the
water-leaving relative contribution on the PPR increases.
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Figure 13. Variations of η (solid lines) and ηppr (dotted lines) (in %) in the specular direction
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Figure 14. Polar diagram of the angular variation of χ (in %) at the TOA. The position of the sun
(ϕOSOAA = 180◦ and θv = 30◦) is represented by the yellow star and the Chla concentration [Chla] is
0.1 mg/m3. The white line represents χ = 0. (a) 410 nm; (b) 443 nm; (c) 490 nm; (d) 565 nm.

3.4. Sensitivity of PPR Reflectance to Chla in Open Oceans

The sensitivity of the water-leaving signal for the PPR to the Chla in open oceans
is investigated by analyzing the variations in ρ′w,ppr with different Chla concentrations.
To assess these variations, the absolute difference (ADppr) and relative difference (RDppr)
between the reflectance ρ′w,ppr calculated at a given Chla concentration and the reflectance
ρ′w,ppr calculated at a reference concentration are defined by:

ADppr = ∆ρ′w,ppr(Chla, Chlaref) = ρ′w,ppr(Chla)− ρ′w,ppr(Chlaref)

RDppr = ADppr/ρ′w,ppr(Chlaref)
(19)

where ref stands for the reference Chla concentration with a value of 0.01 mg/m3. The AD
and RD for I can be obtained by replacing the reflectance ρ′w,ppr with the reflectance ρ′w.



Remote Sens. 2023, 15, 5490 15 of 21

Figure 15 shows the variations of ADppr as a function of the viewing zenith angle in
the principal plane at different wavelengths and Chla concentrations. Negative values of θv
are related to the backscattering half-plane and positive values are related to the specular
half-plane. The ADppr value at 565 nm is positive and increases with the increase in the
Chla concentration, meaning that the reflectance ρ′w,ppr also increases at 565 nm. On the
other hand, the ADppr values at 410 nm, 443 nm, and 490 nm are negative, indicating that
as the Chla concentration increases, and the water-leaving signal for the PPR decreases.
The absolute ADppr at 443 nm ranges from 0.0027 to 0.0291, and its maximum appears at a
viewing zenith angle of around −30◦. The reflectance ρ′w,ppr of these four wavelengths is
linearly related to the Chla concentration. Similar results can also be observed in Figure 6.
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Figure 15. Angular distribution of ADppr in the principal plane, as a function of the viewing zenith
angle θv for a set of Chla concentrations, namely 0.03, 0.1, 1, and 10 mg/m3. The solar zenith angle θs

is 30◦ and the reference Chla concentration [Chlaref] is 0.01 mg/m3. (a) 410 nm; (b) 443 nm; (c) 490 nm;
(d) 565 nm.

Figure 16 shows the variation of RDppr and RD, as a function of the viewing zenith
angle in the principal plane at different wavelengths and Chla concentrations. The angular
variations of RDppr and RD are similar, and the absolute values of RDppr are larger than
RD in the majority of the observation geometries. For example, the small viewing zenith
angle is around 0◦ for 410 nm, 443 nm, and 490 nm. The large viewing zenith angle is
around 70◦ for 565 nm. This means that the sensitivity of the PPR to the Chla concentration
is sufficient.
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Figure 16. Angular distribution of RD (solid lines) and RDppr (dotted lines) in the principal plane,
as a function of the viewing zenith angle θv for a set of Chla concentrations, namely 0.03, 0.1, 1,
and 10 mg/m3. The solar zenith angle θs is 30◦ and the reference Chla concentration [Chlaref] is
0.01 mg/m3. (a) 410 nm; (b) 443 nm; (c) 490 nm; (d) 565 nm.

3.5. Chla Inversion Algorithm Based on BPNN

The datasets required for the neural network are obtained using OSOAA simulation;
90% of the synthetic datasets were randomly selected for model training, and the remaining
10% of the datasets were used for testing. We chose the K-fold cross-validation to randomly
divide the training datasets into K groups. Among them, K-1 groups are used for model fit-
ting, and the remaining group is used for model testing. This process should be repeated K
times [64]. In this article, K is set to 10. By performing 10-fold cross-validation, inaccuracies
in the model evaluation due to accidental segmentation of the dataset can be avoided.

The Chla concentrations were generated logarithmically with a range of 0.005~1.5 mg/m3,
inducing an increased proportion of lower Chla concentrations, which makes the simu-
lations more consistent with the realistic open ocean. Adding 5% Gaussian noise to the
simulated reflectance corresponds with the performance of the actual instrument.

3.5.1. Architecture of the BPNN Algorithm

This study constructed a 3-layer BPNN model, with an input layer, a hidden layer, and
an output layer. To investigate the effects of the ρ′w, ρ′w,ppr and PCF strategy on the retrieval
of the Chla concentration, three different configurations of the input layer were examined.
In the first configuration, the input layer consists of the water-leaving signal for the I at a
nadir point obtained for four wavelengths, namely 410 nm, 443 nm, 490 nm, 565 nm. This
case is referred to as case I. The second configuration is similar to the first configuration, but
the reflectance ρ′w is replaced with the reflectance ρ′w,ppr. Such a configuration is referred to
as case PPR. The input layers in case I and case PPR consist of four neurons, because four
wavelengths are used.

In the third configuration, the input layer at 410 nm selects the water-leaving signal for
the PPR at the nadir point, and the input layers at 443 nm, 490 nm, and 565 nm consist of
the reflectance obtained for 17 scattering angles, respectively, namely 102◦, 106◦, 111◦, 116◦,
122◦, 128◦, 135◦, 143◦, 145◦, 148◦, 150◦, 152◦, 155◦, 156◦, 159◦, 160◦, and 161◦. Note that
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the scattering angle of 150◦ corresponds to the observation at the nadir point. However,
the input layer composition for the three wavelengths is different. Specifically, among
all observation directions, the input layer at 490 nm selects the water-leaving signal for
the PPR and the input layer at 565 nm uses the water-leaving signal for the I. For the
input layer at 443 nm, select the water-leaving signal for the PPR at the nadir point and
choose the water-leaving signal for the I for the remaining observation directions. The
third configuration described above is intended to be consistent with the PCF strategy and,
therefore, is referred to as the case PCF. In the case PCF, the input layer contains 52 neurons.

The output layer only contains one neuron, representing the Chla concentration. For
each neural network model, the optimal number of hidden layer neurons is determined
through experiments [26].

3.5.2. Chla Inversion Results

The root mean square error (RMSE) and the relative root mean square error (RRMSE)
were used to evaluate the performance of the neural networks in three cases. The RMSE
and RRMSE are defined as:

RMSE =

√
1
n

n
∑

i=1
(Chlai

known −Chlai
retrieved)

2

RRMSE =

√
1
n

n
∑

i=1
(

Chlai
known−Chlai

retrieved
Chlai

known
)

2
(20)

where n is the number of the validation datasets; Chlai
known is the known Chla concentration

used for the simulation, and Chlai
retrieved is the Chla concentration retrieved from the BPNN.

We used the following formula to evaluate the differences between case I and the other
cases (PPR and PCF):

∆RMSEx = RMSEx − RRMSEI (21)

where subscript x represents case PPR or PCF, and subscript I represents case I.
The inversion results from three BPNN models were evaluated using the validation

datasets (see Table 2). Figure 17 shows the comparison between the retrieved values and
the known values for the three cases. The models with three different configurations have
good performance, and the coefficients of determination are close to 1. Similar results were
also observed for the training datasets. Figure 17a,b indicates that the performance of the
model of the Chla retrieval is better for the water-leaving signal of the PPR compared with
the water-leaving signal of the I, with an RMSE value of 0.033 and an RRMSE value of
9.16%. The RMSE of the Chla retrieval for case PPR is approximately 0.002 lower than that
of case I. This means that the PPR performs better in the retrieval of Chla in open oceans
compared to the I.

Compared with case I and PPR, case PCF not only has the lowest RMSE (0.014) and
RRMSE (6.57%), but also the slope in the linear model is the closest to 1 (Figure 17c).
The RMSE decreases by around 0.021 when case PCF is considered. Therefore, the PCF
strategy considering multi-directional and polarimetric detection significantly enhances
the accuracy of the Chla retrieval.

Table 2. The performance of three BPNN models in retrieving Chla concentration and ∆RRMSE for
case PPR and PCF.

Case RMSE (mg/m3) RRMSE (%) ∆RMES (mg/m3)

I 0.035 9.21 -
PPR 0.033 9.16 −0.002
PCF 0.014 6.57 −0.021
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4. Conclusions

In this paper, the impacts of both the PPR at the TOA and the PCF strategy on the
retrieval of Chla concentrations in open oceans has been investigated, based on the OSOAA
radiative transfer model. The spectrum ranges from 410 nm to 670 nm, covering the bands
sensitive to Chla, as well as the bands set by the PCF.

First, the angular and spectral variations of the TOA reflectance for the I and PPR were
examined. The results revealed that the values on the angular pattern of total reflectance
for the PPR are smaller than that for the I. The water-leaving signals for the I and PPR at the
TOA have the same magnitude in most observation geometries, and the maximum water-
leaving signal for the PPR is higher. Therefore, the relative contribution of the water-leaving
signal on the PPR is enhanced. Moreover, the water-leaving signal for the PPR exhibits
significant directional and spectral variations relative to the observation geometries and
Chla concentrations. The maximum value of ρ′w,ppr appears in the backscattering direction
at 410 nm. When the Chla concentration is 0.03 and 0.1 mg/m3, the largest relative
contribution by the PPR is found at 410 nm. With an increase in the Chla concentration to
10 mg/m3, the maximum contribution is observed at 565 nm. Note that the water-leaving
signal for the PPR is more sensitive to Chla concentration variations than that of I in the
majority of observation geometries, especially at 565 nm and a high Chla concentration
(10 mg/m3). Finally, the influence of the polarization and multi-directionality of the
reflectance at the TOA on the retrieval of the Chla concentrations (ranging from 0.1 to
1.5 mg/m3) was studied based on the BPNN. The results showed that the water-leaving
signal for the PPR slightly improved the accuracy of the Chla retrieval compared to that
of I. Thus, the PPR can more comprehensively characterize the information on marine
components. In the three cases, the PCF strategy performed best, with an RMSE of 0.014
and an RRMSE of 6.57%. This indicates that the polarization and directionality of the
reflectance can improve the inversion of Chla in open oceans.

In conclusion, it is beneficial for ocean color remote sensing to take into account the
directionality and polarization of the reflectance. The PPR can reduce sea surface effects
and enhance the relative contribution of the water-leaving signal at the TOA. Our results
indicate that the PCF data received from the Gaofen-5B satellite has encouraging potential
for ocean color remote sensing in open oceans.
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