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Abstract: LiDAR-based Multi-Object Tracking (MOT) is a critical technology employed in various
autonomous systems, including self-driving vehicles and autonomous delivery robots. In this paper,
a novel LiDAR-based 3D MOT approach is introduced. The proposed method was built upon
the Tracking-by-Detection (TbD) paradigm and incorporated multi-level associations that exploit
an object’s short-term and long-term relationships with the existing tracks. Specifically, the short-
term association leverages the fact that objects do not move much between consecutive frames.
In contrast, the long-term association assesses the degree to which a long-term trajectory aligns
with current detections. The evaluation of the matching between the current detection and the
maintained trajectory was performed using a Graph Convolutional Network (GCN). Furthermore,
an inactive track was maintained to address the issue of incorrect ID switching for objects that have
been occluded for an extended period. The proposed method was evaluated on the KITTI benchmark
MOT tracking dataset and achieved a Higher-Order Tracking Accuracy (HOTA) of 75.65%, marking a
5.66% improvement over the benchmark method AB3DMOT, while also accomplishing the number of
ID switches of 39, 74 less than AB3DMOT. These results confirmed the effectiveness of the proposed
approach in diverse road environments.

Keywords: autonomous driving; 3D LiDAR; Multi-Object Tracking (MOT); occlusion handling;
Graph Convolutional Network (GCN)

1. Introduction

Tracking multiple objects in urban environments such as city roads or highways
plays a vital role in preventing potential traffic accidents and ensuring safe autonomous
driving. Multi-Object Tracking (MOT) can be conducted using various sensors such as
LiDAR [1–4], cameras [5–7], or a fusion of multiple sensors [8–10]. Over MOT using other
sensors, LiDAR-based MOT has the following strengths: (1) LiDAR-based MOT can track
objects’ positions more accurately than other sensors due to its ability to measure distances
accurately. (2) LiDAR is less affected by environmental conditions such as lighting, weather
(e.g., rain, fog), and time of day compared to other sensors. This makes it more reliable
in adverse conditions. These strengths of LiDAR-based MOT have led to a great deal of
research regarding the topic [11,12]. The majority of LiDAR-based MOT methods involve
detecting objects in the current frame and associating them with existing tracks, namely
taking Tracking-by-Detection (TbD) approaches. The TbD approaches in LiDAR-based
MOT are quite effective in many cases, but sometimes suffer from difficulties in handling
missed objects (due to detector or sensor failures) and occluded objects, as they significantly
impact tracking performance.

Some of the LiDAR-based MOT methods have tackled the problem by using short-
term relations between the current detection and the existing tracks. Specifically, they
measure a distance (or the similarity) between the current detection and the new predic-
tions predicted from the past few frames of the existing tracks in terms of the Intersection
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over Union (IoU) [1,4,6,7,9,10] or distance [2,3,8] and associate the current detection and
the existing tracks based on the distance. While these methods that perform short-term
association generally perform well, they sometimes suffer from the possibilities of misasso-
ciation between the detection and the track or the failure in maintaining a track, resulting
in an ID switching problem. Figure 1 shows the typical example of incorrect ID switching.
The vehicle enclosed within the yellow box in Figure 1a starts to be occluded by another
vehicle, which turns left. In the next step, the vehicle inside the yellow box is completely
occluded by the left-turning vehicle and is not detected as all, as shown in Figure 1b. Af-
ter the left-turning vehicle has passed, the occluded vehicle that was inside the yellow box
appears again, but it is considered a new target and assigned a new ID, indicated by a blue
box. In the example, the color of each box corresponds to the ID of the respective target.

Figure 1. An example of ID switching due to occlusion. In (a,c), the color of each box indicates the
ID of each target. (a) There is a vehicle with its ID. (b) Another vehicle turns at the intersection,
occluding that vehicle for about 8 frames. After occlusion, the ID given in (a) is changed in (c).

Recently, some of the LiDAR-based MOT methods started to exploit long-term re-
lations between detection and the existing tracks, as opposed to relying solely on their
short-term associations. These methods establish connections between a new detection and
the trajectory of previous multiple detections obtained over a long period. Many methods
that conduct long-term associations between detections and existing tracks typically rely
on additional data [13–15]. While these methods offer advantages in certain scenarios, they
encounter limitations and operational challenges in real-world situations, where such maps
are unavailable or when only single-frame LiDAR data are provided.

To address the limitations of the previously mentioned LiDAR-based MOT methods,
a novel LiDAR-based 3D MOT approach that exploits multi-level association between
predictions and detections is proposed in this paper. The first level of association is based
on short-term relations between predictions and detections, employing the same 3D Inter-
section over Union (IoU) metric as in [1]. Furthermore, an additional association method
that incorporates long-term relationships alongside the existing short-term associations is
introduced. Specifically, a Graph Convolutional Network (GCN) is employed to establish
reliable associations at the second level. The proposed GCN-based long-term association
method was inspired by [16]. In [16], graph-based tracklet candidates were generated,
and the final tracking output was determined by scoring and ranking the candidates us-
ing a Graph Convolutional Network (GCN). However, the method in [16] is an offline
method and it is not suitable for real-time applications due to its reliance on offline tracking,
which requires the detection of the current time and subsequent future time steps. These
characteristics are bound to be problematic when applied to actual autonomous driving
scenarios where real-time processing is crucial. On the other hand, the proposed long-term
association method relies solely on the current LiDAR frame and past detection results,
allowing for real-time and online application, in contrast to previous works [13–15]. This
eliminates the need for additional information such as a map. Additionally, a strategy for
managing unmatched targets even after implementing the multi-level association method
described above is proposed. When a tracked object becomes occluded and is subsequently
re-detected, previous tracking methods [1–4] often discard the target information, resulting
in a new ID assignment. This problem stems from the conventional approach of removing
target information that has not been actively tracked for a specific number of frames. This
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paper introduces a novel solution that employs “inactive” state tracking to retain target
information. Unlike traditional methods, which typically delete idle target data, the pro-
posed approach preserves this information, ensuring smoother tracking continuity when
an object re-emerges.

As shown in Figure 2, the proposed approach consists of five steps following the
Tracking-by-Detection framework. Firstly, objects are detected in the 3D LiDAR point
cloud using a deep-learning-based 3D object detector. Secondly, the future state of the
maintained tracks is predicted using a Constant Turn Rate and Velocity model (CTRV).
Thirdly, the easy pairs of detections and predictions are associated based on short-term
relations, while passing the remaining unassociated hard detections and predictions to
the next step. Fourthly, the remaining hard detections and predictions are associated by
considering the long-term relation between the remaining hard detections and the trajectory
of the maintained targets. In this step, the GCN is applied for long-term association. Fifthly,
track management is implemented using the association results, which involves updating
existing tracks, creating new tracks, and effectively managing unmatched tracks.

Figure 2. The flowchart for the proposed method.

The main contributions of this paper are summarized as follows:

• A novel Multi-Object Tracking framework that incorporates a multi-level association
approach is proposed. Specifically, it combines short-term relations, which consider
the geometrical information between detections and predictions, with long-term
relations, which consider the historical trajectory of tracks.

• A long-term association method using Graph Convolutional Networks (GCNs) to link
the historical trajectories of targets with challenging detections is introduced.

• The proposed method relies solely on the current LiDAR frame data and past detection
results, making it well-suited for real-time and online applications. By eliminating the
requirement for supplementary data such as a map, the proposed approach becomes
more practical and offers improved efficiency in real-world scenarios.

• An effective approach to manage unmatched targets is suggested, addressing issues
related to short-term and long-term association. This strategy effectively manages
occluded targets, ensuring more-reliable and -accurate tracking results.
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The remainder of this paper is organized as follows. Section 2 briefly introduces
the related works including TbD using a 3D LiDAR and graph-based tracking methods.
Section 3 explains the proposed multi-level tracking method, which exploits the short-
term and long-term relation between the detection and the existing tracks using the GCN.
Section 4 shows the effectiveness of the experiment by applying it to the KITTI MOT dataset.
Finally, some conclusions are drawn in Section 5.

2. Related Works

In this section, related works relevant to the proposed methods are introduced. Firstly,
3D-point-cloud-based deep learning applications for detection and robotics are introduced.
Secondly, previous works on TbD using 3D LiDAR point clouds are presented. Thirdly,
a review of graph-based MOT methods is provided.

2.1. Three-Dimensional-Point-Cloud-Based Deep Learning Applications for Detection and Robotics

In this section, relevant research on point cloud detection in the context of the TbD
algorithm and studies related to 3D feature learning will be explored. Point cloud detection
in 3D can be broadly categorized into two approaches: those employing machine learning
and those leveraging deep learning techniques. In [17–19], object detection using machine
learning methodologies was investigated. These methods often entail segmenting the
LiDAR point cloud into objects, extracting features from each object, and subsequently,
classifying object types using machine learning techniques. The advent of deep learning
has significantly enhanced detection performance by training deep neural networks on
these extracted features. Reference [20] combined a Region Proposal Network (RPN) and a
PointNet-based object-detection network, delivering precise and efficient object detection
in LiDAR data. Additionally, Reference [21] enhanced 3D object detection through a fusion
of voxel and point methods, memory optimization, and the introduction of key point scene
encoding and multi-scale RoI features. Reference [22] proposed an efficient 3D-object-
detection method that enhances object representation, introduces an attention sparsity
scheme, and employs hybrid positional embedding to integrate geometric–semantic in-
formation seamlessly. Reference [23] introduced the VirConv operator, which efficiently
encodes the voxel features and extends the receptive field of 3D sparse convolution into the
2D image space. This extension effectively reduces the influence of noisy points, contribut-
ing to improved data processing and object recognition. In the field of robotics, another
prominent application area for 3D point clouds, has the primary research focus on semantic
segmentation mainly been conducted. It is essential for enabling robots to understand
and interact with their environments effectively, as it serves as a foundational element for
tasks such as object recognition and scene understanding. For instance, Reference [24]
introduced a fast-moving object segmentation method using 3D LiDAR point clouds,
incorporating residual images to achieve frame rates exceeding 10 Hz. Reference [25]
presented an efficient framework for range-based object segmentation, which included
range residual images, a highly effective meta-kernel feature extraction method, and a
multi-scale feature aggregation module. Reference [26] proposed a mask-based panoptic
segmentation approach that eliminates the need for dataset-specific hyperparameter tuning
while maintaining competitive performance with a straightforward feature extractor.

2.2. Tracking-by-Detection in 3D LiDAR Point Clouds

Recent studies in object tracking predominantly employ Tracking-by-Detection method-
ologies. These approaches involve associating current detections with predictions derived
from previous time frames. As one of the fields of object tracking, several research methods
have been explored to enhance the performance by incorporating point cloud comple-
tion, with the goal of ensuring the stable tracking of partially detected objects [27–29].
Reference [27] suggested VPC-Net, an end-to-end network designed for completing 3D ve-
hicle shapes from partial and sparse point clouds. This network comprises a unique encoder
module for global feature extraction and a refiner module for preserving details and in-
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corporates spatial transformer networks and point feature enhancement. Reference [28]
proposed a motion-centric approach for real-time 3D LiDAR Single-Object Tracking (SOT).
This approach does not rely on appearance matching, but instead, utilizes a second-stage
pipeline called M2-Track. In the 1st stage, it predicts the target’s bounding box based on
relative motion, and in the 2nd stage, it refines it using a denser point cloud from two partial
target views and their relative motion. In [29], a Target Knowledge Transfer (TKT) module
was introduced, which utilizes attention-based mechanisms to enhance the completion
of template features. This enhancement is achieved by incorporating Adaptive Refine
Prediction (ARP) techniques, specifically designed to address the issue of score–accuracy
imbalance. In the domain of Multi-Object Tracking (MOT), many methods have been de-
veloped, each exploring various criteria for association and prediction. One such approach,
detailed in [1], employs Kalman filters for object prediction, calculates the 3D Intersection
over Union (IoU) between current detections and predictions, and utilizes the Hungarian
algorithm for association. Conversely, the authors of [3] employed a similar Kalman-filter-
based prediction method, but used the Mahalanobis distance as the association criterion,
differing from [1]. Recently, research has been progressing to enhance MOT by cooperative
interactions among multiple vehicles [30,31] due to the advancement of datasets related
to cooperative vehicles [32,33]. Reference [30] presented a connected infrastructure that
utilizes LiDAR roadside units, providing details on background filtering, object clustering,
lane identification, and tracking. In [31], a framework was proposed that leverages histori-
cal object tracking data to enhance object detection, using a spatial–temporal deep neural
network and a novel detection head to fuse detection and tracking features, particularly in
scenarios with occlusion and out-of-range issues. In contrast, the work presented in [15]
introduces a 3D MOT and motion forecasting approach that combines LiDAR data with
high-definition maps, particularly in complex urban environments. A tracking method [11]
that involves extracting the features of the 3D detection box and using the similarity be-
tween these features as an association cost has also been proposed. Further innovations
aim at improving prediction accuracy in 3D LiDAR MOT, addressing the challenge posed
by the limited point cloud data available for distant objects, compared to image-based
methods. Proposed methods for more-accurate predictions include the cubature Kalman
filter [34] and the precedence-guided association module for enhanced association [35].
Additionally, several MOT methods, such as [8–10,36], explore the fusion of LiDAR and
camera detection results to compensate for the deficiencies of each sensor. However, these
approaches are susceptible to inevitable detection failures or occlusions, as discussed in
Section 1, where ID switching occurs when targets remain invisible for a specific number
of frames.

2.3. Graph-Based MOT

To address the challenges associated with detection failures, another approach to MOT
has emerged—the graph-based method. This method involves representing each target’s
trajectory as a graph and employing it to facilitate associations between detections and
tracks. While primarily explored in image-based MOT, this approach presents promising
alternatives. For instance, Reference [37] proposed constructing a graph with detection
boxes as vertices and associations between boxes as edges. This graph is then used for
association through the binary classification of each edge, facilitated by a neural message-
passing network, which extracts the features from each box. In [38], two types of graphs,
an appearance graph network and a motion graph network, were introduced for MOT.
These graphs calculate the similarity between detected objects and tracker predictions and
combine these values through a weighted summation for the association. The authors
in [39] presented MOT methods based on Graph Neural Networks (GNNs) with 2D and
3D feature learning. Appearance and motion features are extracted from each sensor, and a
graph is constructed from the fused features. The graph’s nodes are updated through
feature aggregation, and the affinity matrix is computed with the edge regression module.
Furthermore, Reference [40] introduced an association approach focused on infra-frame
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relationships, represented as a general undirected graph. This work proposes a general
graph-matching algorithm to solve the association problem by expressing relationships
between tracklets and infra-frame detections. Despite successful 2D MOT methods in the
image domain, challenges remain in representing dynamics and associations in the 3D
LiDAR domain, leading to estimation deficiencies. However, the proposed method takes a
trajectory-based approach, creating actual object motion trajectories and performing associ-
ation based on this novel perspective. Meanwhile, several tracklet-based MOT methods
designed for 3D LiDAR have also emerged. In [14], a unified framework was introduced
that integrates detection, tracking, and motion forecasting into a single-stage process, lever-
aging 3D LiDAR data. This approach utilizes multiple consecutive temporal frames as
the input, enabling the accurate extraction of 3D bounding boxes, which encompass both
spatial and temporal dimensions. In [13], a MOT approach focused on tracklet association
using a tracklet proposal network, involving sequence-based point clouds as the inputs.
The method generates tracklet candidates by performing object proposal generation and
motion regression on spatial–temporal point cloud features. It then refines these propos-
als and generates the final tracking results by associating refined tracklets with previous
trajectories. However, these approaches necessitate both current and past LiDAR data,
making them less suitable for real-time or online applications. In contrast, the proposed
method was designed for real-time deployment, requiring only the current LiDAR frame
for association with past track information.

3. Proposed Method

Figure 3 shows the architecture of the proposed multi-level MOT algorithm using a 3D
LiDAR. It takes the TbD approach: It detects some objects each time and, then, associates
them with the predictions from the existing tracks using various criteria. The objective of 3D
MOT is to find the optimal association between 3D detections and the existing tracks so that
consistent identification for each tracked object can be maintained even when the objects
are occluded or interact with other objects. In the following subsections, the components of
the proposed approach will be explained in detail.

3.1. State Definition

Since the TbD approach is employed in the proposed MOT method, it is assumed that
the output from the 3D detector at time t is given by

Di
t = (xi

t, yi
t, zi

t, wi
t, hi

t, li
t, θi

t)(i = 1, · · · , Mt) (1)

where Mt is the number of the detection boxes at time t; (xi
t, yi

t, zi
t), (w

i
t, hi

t, li
t), and θi

t denote
the position, the size, and the orientation of the detection boxes, respectively. Many off-the-
shelf 3D detectors such as [20–23] can be used as the detector, and the one of [20] was used
in this paper. Further, it is supposed that a set of tracks Tt−1 = {Tj

t−1|j = 1, · · · , Nt−1} is
given at time t− 1, where Nt−1 is the number of tracks maintained at time t− 1, and the
jth track Tj

t−1, which was initialized tj time steps ago, is given by

Tj
t−1 =

{
Xj

t−tj
, Xj

t−(tj−1), · · · , Xj
t−2, Xj

t−1

}
(2)

where
Xj

t−1 = (xj
t−1, yj

t−1, zj
t−1, wj

t−1, hj
t−1, l j

t−1, θ
j
t−1, vj

t−1, θ̇
j
t−1, żj

t−1) (3)

Here, Xj
t−1 is the latest state of the jth track Tj

t−1. If Di
t and Xj

t−1 are compared, it can

be seen that they have similar information, except vj
t−1, θ̇

j
t−1 and żj

t−1, where vj
t−1 is the

velocity of the jth track Xj
t−1 at time t− 1. All the variables are depicted in Figure 3.
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Figure 3. The architecture of the proposed method. All procedures are performed in the 3D LiDAR
domain, and the results on 2D images are used only for reference of the visualization by projecting the
3D results. The inputs of association are X̂t, the prediction of time t by using previous tracked state
Xt−1, and Dt, the detection of time t. After short-term and long-term association, the target states are
updated with the condition including whether they are associated, occluded, or deleted. The red and
blue boxes denote the active and the inactive (occluded or disappeared) tracks, respectively.

3.2. State Prediction

In this step, the evolution of the latest states of the maintained tracks Tt−1 = {Tj
t|j =

1, · · · , Nt−1} at time t − 1 is predicted by the Constant Turn Rate and Velocity (CTRV)
motion model in [41]. Specifically, when the latest state Xj

t−1 is given from the jth track
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Tj
t−1 =

{
Xj

tj
, Xj

tj+1, · · · , Xj
t−2, Xj

t−1

}
, the corresponding future state X̂j

t at time t is repre-
sented by

X̂j
t = Xj

t +



v
θ̇

(
sin
(
θ + θ̇∆t

)
− sinθ

)
v
θ̇

(
−cos

(
θ + θ̇∆t

)
+ cosθ

)
ż∆t

0
0
0

θ̇∆t
0
0
0



T

(4)

where tj denotes the length of the jth track and ∆t is the sampling time. In contrast to prior
3D MOT studies, which employed either Constant Velocity (CV) modeling techniques [1,3],
RNN models [42,43], or LSTM models [44,45], the CTRV model was used to decrease the
computational burden and predict more-realistic and smoother trajectories. Moreover,
the CTRV model is particularly well suited for scenarios with complex motion patterns,
as it can effectively handle the nonlinearities associated with turning. This enables the
accurate representation and prediction of trajectories involving curved paths or direction
changes within complex environments.

3.3. First Association Based on Short-Term Relation

In this step, the first association between the predicted state X̂t and the detection Dt in
the 3D LiDAR domain was conducted to maximize the matching weight between the two
sets by the Hungarian algorithm [46]. Here, the matching cost C(i, j) between the two sets
Di

t and X̂j
t is defined in [1] by

C(i, j) =
IV
UV

=
IV

VDt + VX̂t
− IV

(5)

where VDt and VX̂t
are the volumes of Di

t and X̂j
t, respectively; IV and UV are those of the

intersection and the union between Di
t and X̂j

t, respectively. More specifically, to calculate

IV and UV , Di
t and X̂j

t are projected onto a two-dimensional representation from a bird’s-
eye view. Subsequently, the projected area is multiplied by the corresponding height to
obtain the results. The definition of the matching cost given in Equation (5) is based on
the observation that vehicles cannot suddenly accelerate or turn sharply beyond a certain
level. An affinity matrix of size Mt × Nt is constructed using the matching cost provided
by Equation (5). The bipartite association is then made between Di

t and X̂j
t, with Mt

representing the number of current detections and Nt denoting the number of existing
tracks at time t. After the first association based on the short-term relation, the sets of
new detections and the predictions from the existing tracks are divided into the matched
pairs (=track update) and unmatched instances. For example, it was assumed that three
tracks Tt−1 = {T1

t−1, T2
t−1, T3

t−1} exist at time t− 1, the scenario in Figure 3. The latest states

X1
t−1, X2

t−1, and X3
t−1 of the existing tracks Tt−1 are updated (predicted) as X̂1

t , X̂2
t , and X̂3

t ,
respectively. Then, it was supposed that three detections Dt = {D1

t , D2
t , D3

t } are given at
time t. If X̂2

t and X̂3
t are associated with D1

t and D2
t , respectively, the corresponding tracks

T2
t−1 and T3

t−1 will be updated by T2
t ←− T2

t−1 ∪ {D1
t } and T3

t ←− T3
t−1 ∪ {D

2
t }, respectively.

In this case, the Kalman filter or other filters can be applied to update X̂2
t and X̂3

t , but they
were not utilized as they did not make much of a difference. The track T1

t−1 = {X1
t−1} and

the measurement D3
t remained as the unmatched instances, as shown in Figure 3.
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3.4. Second Association Based on Long-Term Relation

The first association based on the short relationship might not be enough when a
tracked object becomes temporarily hidden or obscured from view, making it challenging to
maintain a continuous association. Figure 4a depicts an example where the first association
failed. As seen in Figure 4a, a vehicle turning at an intersection is occluded at Frame 124 and
is detected again six frames later at Frame 130. Figure 4b shows the trajectories before and
after the occlusion in the situation of Figure 4a. The trajectory colored in red corresponds
to the motion of the vehicle before the occlusion, indicating its path up until the point of
disappearance (=occlusion). On the other hand, the trajectory colored in blue corresponds
to the motion of the vehicle after the vehicle re-appears from Frame 130 and comes back
into view. Occlusion occurred during the space between the red and blue trajectories. When
relying solely on the first short-term association, the object that re-appears at Frame 130
cannot be assigned the same ID that the vehicle had before the occlusion at Frame 124
because the predicted target and the detection do not overlap, making the IoU zero. In such
situations, ID switching occurs, which is indicated by the change of the trajectory color
from red to blue.

Figure 4. (a) Situation when the 1st association failed. (b) Trajectories before and after occlusion in
the situation of (a). The red and blue trajectory represents the trajectory before occlusion and after
reappearing, respectively.

To solve the problem, a long-term association that exploits the historical trajectory of
the existing track is proposed. This approach aims to mitigate ID switching and improve
the overall performance of the tracking system. Even when the trajectory of the same object
is divided into two segments, if the two segments exhibit similar-looking behavior, the con-
nection of the two segments is made, creating a path even after occlusion. By leveraging
this idea, the association method relies on long-term relationships to handle situations
where a prediction–detection pair remains unmatched after the 1st association is proposed.
The proposed method considers objects’ historical information and trajectory patterns
to establish the associations beyond the immediate frame, ensuring a more-robust and
-accurate tracking process. Thus, when the previously disappeared target reappears, it
would be possible to maintain the existing ID rather than assign a new one. By considering
the long-term relationship between tracks and detections, the proposed method aims to
improve the overall tracking performance and handle cases where immediate associations
are not feasible. For example, as shown in Figure 5, it was supposed that D1

t and X̂2
t remain

unmatched after the first association, and these two are employed as the inputs of the
second association. In this situation, D1

t and X̂2
t will be re-named as D̄1

t and ˆ̄X2
t , respectively,

where the “bar” means the instances that remain unmatched after the first association.
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Figure 5. An example of the input and situation for the proposed 2nd association. In the figure, D̄1
t

and ˆ̄X2
t are the input of the 2nd association because D2

t and T1
t−1 are matched by the 1st association

and updated as T1
t ←− T1

t−1 ∪ {D
2
t }.

Moreover, for the second association, the trajectory Trj
t is also defined as Trj

t =

{(x, y)j
t−tj

, (x, y)j
t−(tj−1), · · · , (x, y)j

t−1}, generated by connecting the coordinates from the

entire track Tj
t, where it was initialized tj time steps ago. The latest time of the trajectory

Trj
t is denoted as t− 1 since this target is not associated with it at time t, but is associated

until time t− 1. An example figure explaining Trj
t is shown in Figure 6.

Figure 6. An example of Trj
t. In this figure, the jth track was initialized time tj ago and tracked until

time t− 1. The predicted position of this track at time t is denoted as (x̂, ŷ)j
t, but it was assumed that

this track does not match any detections from the 1st association. In this case, the trajectory Trj
t is

generated by connecting all target locations except the predicted state.

An example of the proposed GCN-based long-term association procedure is depicted
in Figure 7, and the steps are as follows: The inputs of the 2nd association consist of the
unmatched track and the detection set after the 1st association. In Figure 7a, the scenario
assumes that, after the 1st association, two targets have not been matched with any de-
tections, and there are also two detections that have not been matched with any targets.
To generate trajectory candidates, all possible combinations of tracks (D̄i

t, ˆ̄Xj
t, and Trj

t) are
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connected with the detection set. In this case, as depicted in Figure 7b, a total of four
trajectory candidates are generated by considering all target–detection sets. If D̄i

t and ˆ̄Xj
t

are the same object, the trajectory connecting the two points, along with Trj
t, as illustrated

in Figure 4b, will exhibit the same directivity, and this indicates a high classification score
in the GCN. Hence, as depicted in Figure 7c, the GCN score is calculated for each trajectory
candidate. The graph for the GCN is constructed as follows: The nodes of the graph are
composed of the coordinates of D̄i

t, ˆ̄Xj
t, and Trj

t. The input graph for the GCN is connected
(x, y)j

t−1, the most-recent coordinates of Trj
t, with ˆ̄Xj

t and, then, further connects with D̄i
t,

maintaining the chronological order of these three components. The classification score of
the GCN’s output is then used to determine the validity of the generated paths. To clarify,
the GCN score reflects the likelihood that two instances denoted as D̄i

t and ˆ̄Xj
t represent

the same object. A high GCN score indicates a strong connection between the trajectory
of these instances. Consequently, associations between the tracking–detection sets of the
generated candidates are established when their scores surpass a predetermined threshold.
Referring to the table in Figure 7c, it is evident that the validity scores of all detections
associated with ˆ̄X1

t fell below the threshold. As a result, ˆ̄X1
t remained unmatched even after

the second association.

Figure 7. Illustration of 2nd-association-based long-term relation.

On the other hand, consider ˆ̄X2
t , which exhibits an exceeding GCN score with D̄2

t .
In this case, the corresponding track ˆ̄X2

t will be updated as follows: T2
t ←− T2

t−1 ∪ {D2
t }.

This update occurs due to the high GCN score for the trajectory connecting ˆ̄X2
t and D̄2

t ,
surpassing the threshold. Simultaneously, D̄1

t becomes an unmatched detection, resulting
in the scenario illustrated in Figure 7d. This outcome demonstrates the dynamic nature
of the proposed tracking and association methodology, where GCN-based scoring plays a
crucial role in determining valid object trajectories.

Figure 8 provides a real data example of tracking using the proposed second asso-
ciation based on the long-term association. In Figure 8a, the situation before and after
an occlusion is illustrated. In Frames 95 and 110 (top-left and top-right), a cyan-colored
vehicle is seen making a right turn at an intersection, with the front view of the ego-vehicle
assumed to be facing north. This vehicle was tracked for approximately 35 frames, but
becomes occluded by another vehicle moving straight from east to west of the intersection
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at Frame 130. Due to this occlusion, the tracked vehicle is not detected for 10 frames.
However, in Frame 141, it is detected again and marked as blue (note that it is shown in
a color other than cyan to depict the progress of the proposed method). Figure 8b shows
the LiDAR domain view of the situation at Frame 141, and Figure 8c provides an enlarged
view of specific areas within Figure 8b. In Figure 8c, it is observed that the red point labeled
as A represents the predicted position of the existing track (marked as cyan). However,
Point A cannot be associated with either the green or blue box in the image. In this scenario,
the proposed second association method is applied.

Figure 8. The real data example of robust tracking using long-term association. (a) The situation
before and after the occlusion (the cyan vehicle in Frame 95 and the blue vehicle in Frame 141 are the
same object). (b) The situation of Frame 141 in the LiDAR domain. (c) Enlarged view of the area
indicated in (b). Point A is the predicted location of the ˆ̄XA

t . (d,e) are the generated graph by
connecting the detection (Objects B and C in (c)) and the track marked as cyan color in (c).
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In Figure 8c, Points B and C represent the center points of the unmatched detection
boxes after the first association (referred to as D̄B

t and D̄C
t ). Point A represents the predicted

location of the unmatched track, ˆ̄XA
t , and the cyan trajectory indicates the trajectory from

the time of the initial track initialization to before the occlusion, TrA
t . Figure 8d,e showcase

the temporary trajectories created by connecting point D̄B
t (or D̄C

t ) with points ˆ̄XA
t and

TrA
t , respectively. Upon examining Figure 8d,e, it becomes apparent that the GCN score

for a point D̄C
t is higher than that of point D̄B

t , and this score surpasses the threshold.
Consequently, it can be inferred that the object with Center Point C is the same as the
initially initialized object in Frame 95, employing the proposed second association. Previous
MOT methods [1–3] typically initialize it as a new target if it remains unassociated for
a certain number of frames after the occlusion. This can lead to ID switching errors,
where the object detected in Frame 141 would be considered a new target. In contrast,
by utilizing the proposed second association, it becomes possible to identify the object that
was occluded for a long period (10 frames in this example) as the same object, resulting in
more-stable tracking.

3.5. Track Management

While the proposed approach incorporates two-level associations in Sections 3.3 and 3.4,
there can still be unmatched tracks or detections. Existing MOT methods [1–3] typically
handle unmatched tracks by employing a threshold age mechanism, wherein a track is
deleted and re-initialized if it remains unmatched for a specific duration. This threshold age
is a critical parameter, and finding the optimal value requires careful consideration. Using
smaller threshold age values may lead to reduced tracking performance, as temporarily
missed objects may not be effectively tracked and removed. Conversely, larger threshold
age values can decrease tracking accuracy due to the possibility of erroneous associations
caused by unmatched targets lingering within the sensor’s Field of View (FoV), leading to
increased data association mismatches.

In this paper, a solution to address these challenges is proposed by introducing an
“inactive” state for targets that cannot be matched even after employing the short-term and
long-term association techniques. These “inactive” tracks undergo the same prediction
method as other tracks and remain in this state until a successful association is established.
If the predicted “inactive” target cannot be associated with any detections in the frame
following its exit from the sensor’s Field of View (FoV), that track is eliminated in the
subsequent frame. This approach significantly improves tracking performance compared
to existing methods. Additionally, any unmatched detections are initialized as new tracks,
and their associated targets are updated using the detection results.

4. Experiment

In this section, a real-world dataset for autonomous driving applications is employed
to validate the performance of the proposed method. Through comparative experiments,
the proposed method outperformed several other well-known tracking methods, 3D
LiDAR-based methods, as well as camera–LiDAR sensor fusion methods.

4.1. Dataset and Experiment Settings

The KITTI benchmark tracking dataset [47] was utilized as the evaluation platform.
This dataset provides 21 training sequences and 29 test sequences of front-view camera
images and 3D LiDAR point clouds. The training and test sequences contain a total of
8008 and 11,095 frames, respectively. The 3D LiDAR point clouds in the KITTI dataset
were produced by recording with a Velodyne HDL-64E LiDAR, manufactured by Velodyne
Lidar, Inc. in California, USA. In the experiments, the 2D camera data were not used for
the proposed algorithm, but for visualization to see the results more clearly. The proposed
method was implemented on a personal computer equipped with an Intel Core i7-6700
CPU, 64 GB of RAM, and an NVIDIA TITAN Xp GPU. The proposed MOT method
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averaged about 40 ms (25 FPS) per LiDAR frame on the KITTI dataset, using the previously
mentioned computer environment.

4.2. Evaluation Metrics

The quantitative performance verification of the proposed method was performed
by projecting the 3D tracking result into the 2D image plane. After that, the CLEAR MOT
metric [48], which is the most-used for the KITTI tracking benchmark, was employed to
evaluate the tracking performance. Brief descriptions of the metrics used in the evaluation
are as follows. The Multi-Object Tracking Accuracy (MOTA), which calculates the overall
tracking performance, is defined as

MOTA = 1− ∑t mt + f pt + mmet

∑t GTt
(6)

where mt, f pt, mmet, and GTt are the number of misdetections, false positives, mismatches,
and the ground truth for the entire time t, respectively. The Multi-Object Tracking Precision
(MOTP) metric was used to measure the object localization precision, which is defined as:

MOTP =
∑t,i di

t

∑t ct
(7)

where di
t is the overlap between the ith prediction box and the corresponding ground truth

box and ct represents the total number of matches between the detection and ground truth
for the entire time t. Fragmentation (FRAG) calculates the number of frames in which a
complete whole path splits, i.e.,it measures the times disturbed during tracking, and ID
Switching (IDS) is counted by the number of mismatches in the entirety of the tracking.
Recently, Higher-Order Tracking Accuracy (HOTA) [49] has been suggested as another
MOT evaluation metric, which is different from CLEAR metrics, and it is mainly employed
in the KITTI dataset as one of the main evaluation metrics for tracking performance. HOTA
considers the equilibrium of accurate detection, correct association, and precise localization,
and it can be decomposed into two sub-metrics, which are the Detection Accuracy (DetA)
and Association Accuracy (AssA). Each of these is defined as follows:

DetA =
|TP|

|TP|+ |FN|+ |FP| (8)

AssA =
1
|TP| ∑

i∈{TP}

|TPA(i)|
|TPA(i)|+ |FNA(i)|+ |FPA(i)| (9)

HOTA =
√

DetA× AssA (10)

In Equations (8) and (9), |TP|, |FN|, and |FP| are the overall number of true positives,
false negatives, and false positives in the total data, respectively. In Equation (9), |TPA(i)|,
|FNA(i)|, and |FPA(i)| represent the number of True Positive Associations (TPAs), False
Positive Associations (FPAs), and False Negative Associations (FNAs), respectively. Each
of these is explained as follows: The TPAs represent the number of correct associations
made by the tracking system. In other words, it is the count of correctly identified tracked
objects that match the ground truth annotations. The FPAs indicate the number of incorrect
associations made by the tracking system. This refers to the situations where the tracking
system identifies an object that does not have a corresponding ground truth annotation.
The FNAs represent the number of missed associations by the tracking system. It refers to
the situations where the tracking system fails to identify an object that should have been
tracked according to the ground truth annotations. In this paper, both the CLEAR and
HOTA metrics were selected for MOT performance evaluation.
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4.3. Quantitative Result

Many papers regarding 3D Tracking-by-Detection (TbD) MOT have used PointR-
CNN [20] as a 3D detector. Thus, PointRCNN [20] was also used as a detector for a fair
comparison with the previous methods. In Table 1, the quantitative results of the pro-
posed method are presented in comparison to the other 3D LiDAR-based MOT methods
specifically for the “Car” category using the KITTI tracking test set. The results indicated
that the proposed method outperformed the others in terms of the HOTA and AssA while
exhibiting the lowest IDS.

Table 1. Quantitative results compared to other 3D LiDAR-based MOT methods on the test set of
the KITTI dataset. In the first row of the table, “↑” indicates the higher the value, the better the
performance, and ”↓” means vice versa. Methods with mark “#” use PointRCNN [20] as the 3D
detector. The values showing the best performance for each metric are indicated in bold. The results
are obtained from https://www.cvlibs.net/datasets/kitti/eval_tracking.php (accessed on 5 October
2023).

Method (Abbreviation) HOTA (↑) MOTA (↑) MOTP (↑) AssA (↑) IDS (↓) FRAG (↓)

Point3DT [50] 57.20% 67.56% 76.83% 59.15% 294 756
AB3DMOT [1] # 69.99% 83.61% 85.23% 69.33% 113 206

DiTNet [51] 72.21% 84.53% 84.36% 74.04% 101 210
PolarMOT [12] # 75.16% 85.08% 85.63% 76.95% 462 599
CenterTube [4] 71.25% 86.97% 85.19% 69.24% 191 344

Proposed method # 75.65% 85.03% 84.93% 80.02% 39 367

The results presented in [12], which demonstrate a HOTA performance similar to the
proposed method, and in [4], which exhibit a slightly higher MOTA performance compared
to the proposed approach, were closely examined. Initially, the results of the proposed
method and the method in [12] using the same detector were analyzed. While the MOTA
performance was nearly identical, the method in [12] boasted an approximately 0.9% higher
MOTP score. In contrast, the proposed method excelled in the AssA category, outperform-
ing the method in [12] by approximately 3%. The AssA, as defined by Equation (9), signifies
the degree to which the targets tracked by the proposed algorithm maintain their unique
IDs. A high AssA score indicated that the proposed method demonstrated significantly
lower IDS and FRAG than the method in [12]. In essence, this suggested that the proposed
method provided more-robust tracking for individual objects with consistent IDs when
using the same detector as the method in [12]. Now, the results of method [4] will be com-
pared. The method in [4] demonstrated commendable performance on traditional tracking
metrics, boasting a 2% higher MOTA and a 1% higher MOTP compared to the proposed
method, showcasing its proficiency in basic object tracking and localization. However,
the proposed method appeared to be a superior tracker, outperforming that in [4] with a
4% higher HOTA score, 11% higher AssA score, and significantly lower IDS. These results
indicated that the proposed method is critical for complex tracking scenarios; therefore,
based on the comprehensive evaluation of these performance metrics, the proposed method
stood out as the preferred choice for robust and accurate object tracking.

Table 2 presents the quantitative results comparing the proposed method to other
LiDAR–camera sensor fusion tracking methods, specifically for the “Car” category, using
the KITTI tracking test set. As seen in Table 1, the proposed approach excelled in several
critical tracking aspects, relying solely on 3D LiDAR data. The proposed method achieved
the best performance according to the HOTA metric and recorded the lowest number of
Identity Switches (IDSs).

https://www.cvlibs.net/datasets/kitti/eval_tracking.php
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Table 2. Quantitative result compared to other LiDAR–camera sensor fusion MOT methods on the
test set of the KITTI dataset. In the first row of the table, “↑” indicates the higher the value, the better
the performance, and ”↓” means vice versa. Methods with mark “#” use PointRCNN [20] as the 3D
detector. The values showing the best performance for each metric are indicated in bold. The results
are obtained from https://www.cvlibs.net/datasets/kitti/eval_tracking.php (accessed on 5 October
2023).

Method (Abbreviated) HOTA (↑) MOTA (↑) MOTP (↑) AssA (↑) IDS (↓) FRAG (↓)

MOTSFusion [52] # 68.74% 84.24% 85.03% 66.16% 415 569
JRMOT [36] 69.61% 85.10% 85.28% 66.89% 271 273
JMODT [9] 70.73% 85.35% 85.37% 68.76% 350 693

EagerMOT [8] # 74.39% 87.82% 85.69% 74.16% 239 390
Opm-NC2 [53] # 73.19% 84.21% 85.86% 73.77% 195 301

DeepFusionMOT [10] # 75.46% 84.63% 85.02% 80.05% 84 472
BcMOT [54] 71.00% 85.48% 85.31% 69.14% 381 732

StrongFusion-MOT [55] 75.65% 85.53% 85.07% 79.84% 58 416
Proposed method # 75.65% 85.03% 84.93% 80.02% 39 367

Upon closer examination of Table 2, it is clear that the proposed tracking method
maintained a commendable level of performance in dynamic scenarios. Notably, it matched
the tracking accuracy of that in [55], a system that employs LiDAR–camera fusion, in terms
of the Highest Overlap and Track Accuracy (HOTA) metric. Furthermore, the proposed
method outperformed that in [55] in other vital aspects, including the Association Accuracy
(AssA), Identity Switches (IDSs), and Fragmentation (FRAG) metrics. The higher AssA
values reflected the proposed method’s proficiency in maintaining consistent object associ-
ations over time, while the lower IDS and FRAG values underscored its ability to minimize
tracking inconsistencies and fragmented tracks. In summary, the proposed method offered
robust tracking capabilities in dynamic scenarios, relying solely on 3D LiDAR data. These
findings demonstrated the effectiveness of the proposed tracking strategy in providing
robust performance in dynamic environments.

4.4. Qualitative Result

In the field of Multi-Object Tracking, various challenges, including occlusion, present
significant difficulties. To assess the effectiveness of the proposed method, a comparative
analysis was conducted using the KITTI tracking dataset [47]. In this evaluation, three
distinct experimental scenarios were focused on, each highlighting a different aspect of the
proposed method’s superiority. These scenarios included instances of short-term occlusion
when the ego-vehicle was motionless, occlusion occurring while the ego-vehicle was in
motion, and prolonged occlusion when the ego-vehicle was stationary. To provide a visual
context for these scenarios, please refer to Figures 9–11.

Figure 9 showcases a comparison of the tracking results in a stationary situation of
the ego-vehicle (Testing Sequence 0010). In Figure 9, the tracking results obtained from the
3D LiDAR are projected onto the 2D image plane to enhance the visualization, and each
color represents a distinct object ID. Figure 9a,b correspond to the results of AB3DMOT [1]
and the proposed method, respectively. In Figure 9a,b, the object’s state before, during,
and after occlusion is illustrated progressing from left to right, as indicated by the red
circle. From Frame 66, it is witnessed that the object experiencing occlusion reappears
in Frame 72. This observation highlights a key difference between the proposed method
and the existing approach. In the existing method, occlusion persists beyond a predefined
threshold, leading to the deletion of the current track information and an associated ID
switching event. In contrast, the proposed method temporarily deactivated the target,
applying an “inactive” state during occlusion while preserving the track information.
Consequently, it can be confirmed that the same ID was re-assigned to the object upon
re-detection after occlusion. In essence, the proposed method demonstrated stable tracking
without ID switching.

https://www.cvlibs.net/datasets/kitti/eval_tracking.php
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Figure 9. Qualitativeresult for Testing Set Sequence 0010, with the ego-vehicle stationary. This
figure demonstrates a scenario where a stopped vehicle is occluded by another vehicle turning at the
intersection and reappearing. Each color represents a distinct object ID.

Figure 10 illustrates a scenario in which two stationary vehicles are occluded by
another vehicle approaching from the opposite direction, while the ego-vehicle is in forward
motion. In the first column of Figure 10, the two vehicles marked in blue are initially
detected in Frame 12. As shown in the center column of Figure 10, both vehicles become
occluded by the oncoming vehicle in Frame 35. However, in Frame 45, which is 10 frames
after the initial occlusion, these two vehicles reappear. Similar to the findings in Figure 9,
the existing method assigned new IDs to the two vehicles. In contrast, the proposed method
maintained the original IDs for both vehicles when they reappeared. This preservation of
IDs was achieved by considering the “inactive” state of each target during occlusion.
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Figure 10. Qualitative result for Testing Set Sequence 0018, with the ego-vehicle in motion. This figure
illustrates a scenario where two stationary vehicles are occluded by another vehicle approaching
from the opposite direction while the ego-vehicle continues moving forward.

Figure 11 depicts a scenario where a moving vehicle becomes occluded by a stationary
vehicle at an intersection. In Figure 11a the detection of a vehicle moving from east to
west at Frame 95 (assuming the ego vehicle’s location is south) is observed. This vehicle
is occluded for approximately 10 frames, reappears at Frame 121, and continues to be
tracked until Frame 133 within the sensor’s Field of View (FoV). Figure 11b,c illustrate
the trajectory connecting the center coordinates of the tracked object using two different
methods: AB3DMOT [1] and the proposed method. Figure 11b displays the results from
the previous tracking method, which encounters an issue when tracks are deleted during
occlusion. Even if the same object was detected again, it was assigned a new ID. In contrast,
the proposed method, as shown in Figure 11c, demonstrated a more-robust tracking
approach. It maintained the track during occlusion by utilizing the “inactive” state and
continued tracking the object with the same ID. This was achieved by leveraging the
Graph-Convolutional-Network (GCN)-based long-term association.



Remote Sens. 2023, 15, 5486 19 of 25

Figure 11. Qualitative results for Testing Set Sequence 0013. This figure compares the tracking results
using the GCN-based long-term relation approach. In (a), the situation before and after the occlusion
of the target is illustrated. The left and right column show the tracking results using AB3DMOT
and the proposed method, respectively. Frame 95 features a red vehicle, and Frames 121 and 133
depict a blue vehicle, all referring to the same object. Unlike existing tracking methods, which often
encounter ID switching problems, the proposed method maintained consistent IDs assigned to objects.
(b,c) present the trajectory-based tracking results transformed and projected into the Bird’s-Eye View
(BEV). Specifically, (b) illustrates the results from the existing tracking method, while (c) showcases
the tracking results achieved by the proposed method, highlighting its effectiveness.
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4.5. Ablation Study

In the ablation studies, the KITTI tracking validation dataset was employed to demon-
strate the effectiveness of the proposed method.

4.5.1. Effectiveness of the Predictor

To validate the effectiveness of the predictor, the tracking performance with the
Constant Turn Rate and Velocity (CTRV) model was compared with other predictors.
The models included the Constant Velocity (CV), Linear Regression (LR), Ridge Regression
(RR), RANSAC with ridge regression, and LSTM models from [56]. These models were
applied to predict motion in the proposed method using the KITTI validation set, while
keeping all other elements constant. Figure 12 illustrates the result of the MOTA and IDS
on the KITTI validation set. In the figure, the blue section represents the MOTA, where
a higher value signifies better performance. Conversely, the orange part corresponds
to the ID Switches (IDSs), with a lower value indicating better performance. The results
indicated a slight improvement of the CTRV model in the MOTA compared to other models.
The distinctive feature of the CTRV model lies in its utilization of the target’s heading angle
for prediction, unlike the LSTM and CV models, which rely solely on the target’s previous
coordinates. Notably, the CTRV model demonstrated similar performance without the need
for additional training, offering computational efficiency. This characteristic stems from the
assumption that the CTRV model makes predictions based on the vehicle’s motion model.

Figure 12. Comparison of prediction models with the CTRV model on the KITTI validation set.

4.5.2. Effectiveness of Proposed Multi-Level Association

To demonstrate the effectiveness of every component in the proposed multi-level
association and track management strategy, each component was separately removed and
kept unchanged. As shown in Table 3, each component had a positive impact on the pro-
posed tracking method. Comparing the method utilizing only the short-term association
with the one incorporating track management by introducing an “inactive” state for the
unassociated target, the IDS decreased. Furthermore, it was confirmed that improving
tracking performance can be achieved through the implementation of the long-term as-
sociations with unmatched targets through the short-term associations. In other words,
the proposed strategies, which involve assigning an “inactive” state for an unassociated
target and applying the long-term associations, effectively reduced the IDS while enhancing
the overall tracking performance.
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Table 3. Performance comparison with and without proposed methods on KITTI validation dataset.
In the table, “X” indicates that the part is applied, while “-” denotes that it is not applied. Moreover,
“↑” indicates that the higher the value, the better the performance, and “↓” means vice versa. The
values showing the best performance for each metric are indicated in bold.

Application
MOTA (↑) IDS (↓) FRAG (↓)

Short-Term Long-Term Track Management

X - - 85.28% 23 219
X X - 86.01% 15 142
X - X 85.84% 18 184
X X X 86.79% 7 83

4.5.3. Tracking Performance with Respect to Target Distance

To investigate the effectiveness of the proposed method, a comparative analysis of
the tracking performance results was conducted, specifically focusing on the distance
between tracked objects with the existing method, AB3DMOT [1]. As shown in Table 4, it
is apparent that the proposed method consistently outperformed AB3DMOT in tracking,
regardless of the target distance. Notably, while an increase in the number of IDSs was
experienced by AB3DMOT as the distance from the target grew, fewer IDSs were exhibited,
and solid tracking performance was maintained in the proposed method. These results
emphasize that, as tracking based solely on the IoU became less effective for distant targets,
robust tracking was ensured by utilizing the long-term association with the target’s path
as proposed.

Table 4. Performance comparison between the proposed method and existing MOT method with
respect to target distance on the KITTI validation dataset. In the table, “↑” indicates that the higher
the value, the better the performance, and “↓” means vice versa. The values showing the best
performance for each metric are indicated in bold.

Method
Distance < 30 m 30 m ≤ Distance ≤ 50 m Distance > 50 m

MOTA (↑) IDS (↓) MOTA (↑) IDS (↓) MOTA (↑) IDS (↓)

AB3DMOT [1] 86.85% 6 85.27% 9 83.73% 8
Proposed method 88.89% 0 86.35% 5 85.13% 2

4.5.4. Tracking Performance with False Detection

To demonstrate the robustness of the proposed method against false detections, a qual-
itative study was conducted, focusing on scenarios in which false detections might occur
within a road environment. Within various road scenarios, false detections can occasionally
be attributed to the reflection of the LiDAR point cloud by a large piece of glass along
the street. Figure 13 depicts a scenario in which false detection took place near a large
piece of glass in the street. In Figure 13, the upper line and lower line correspond to the
proposed method’s and AB3DMOT’s tracking results, respectively. As shown in Figure 13b,
the false detection occurred due to the reflected point cloud on the glass. The proposed
method initialized the falsely detected object in Figure 13b as a new track, but managed
the tracked object in Figure 13a as an “inactive track”. Consequently, when the vehicle was
re-detected, as depicted in Figure 13c, it could be assigned the same ID as in Figure 13a.
On the contrary, the AB3DMOT method removed the target information in Frame 2 that
had not been associated for a long time. Therefore, even if the same vehicle was re-detected
after a false detection, it was allocated a different ID than before. In summary, though
tracking performance may be impaired by false detections near large pieces of glass, stable
tracking can be achieved through the application of the proposed multi-level association
and track management.
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Figure 13. False detection situations occur near a large piece of glass. The upper line and lower line
of the figure correspond to the proposed method’s and AB3DMOT’s tracking results, respectively.
In (b), the false detection occurs due to the reflection of the point cloud on the glass, (a,c) represent the
tracking results before and after false detection, respectively. As depicted in the figures, the proposed
method maintains the same ID for the object re-detected after false detection, thanks to the "inactive
state". In contrast, AB3DMOT assigns a different ID to that object since the track information before
false detection is deleted.

5. Conclusions

In this paper, a robust Multi-Object Tracking (MOT) framework tailored for 3D Li-
DAR data was introduced, with a specific focus on meeting the demands of intelligent
transportation systems and Autonomous Driving Assistance Systems (ADASs). The pro-
posed approach incorporates a multi-level association technique that effectively mitigates
challenges such as ID switching after occlusion, and it introduces an innovative associ-
ation method utilizing Graph Convolutional Networks (GCNs) to evaluate the vehicle
trajectories. The comparative analysis with the state-of-the-art LiDAR and LiDAR–camera
fusion tracking methods demonstrated the clear effectiveness of the proposed approach
in enhancing robustness, particularly in addressing ID switching and fragment problems.
The proposed method was examined using the KITTI benchmark MOT tracking dataset and
attained a HOTA of 75.65%, representing a 5.66% enhancement compared to the benchmark
method, AB3DMOT. Moreover, it significantly reduced the number of ID switches to 39, 74
fewer than AB3DMOT. These outcomes provide strong validation for the effectiveness of
the proposed approach across various road environments. In future work, the strategy to
robustly detect occluded objects through completion will be studied as a pre-processing
step. Moreover, the management of the “inactive” state will be enhanced, such as by using
reinforcement learning, or the proposed single-vehicle-centric tracking will be developed
for its application in a connected automated vehicle-based MOT method.
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