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Abstract: Most current research on aquaculture ponds focuses on coastal areas, leaving a gap in
understanding of inland regions, such as the strategically significant Yangtze River Economic Belt in
China. This study introduces an intelligent extraction method for extensive monitoring of aquaculture
ponds in Yangtze River Economic Belt, using Landsat and Sentinel data from 1985 to 2020 with five-
year intervals based on the Google Earth Engine (GEE) platform. Land cover change data were also
analyzed to understand the impact of aquaculture-related changes. Results indicate a significant
increase in aquaculture ponds in the Yangtze River Economic Belt from 3235.51 km2 to 14,207.08 km2

between 1985 and 2020. Aquaculture activity primarily shifted eastward from 1985 to 2015, then
westward from 2015 to 2020. Approximately 2018.36 km2 of aquatic areas underwent conversion,
mainly to water bodies or croplands, with fewer transitions to impervious surfaces, grasslands, or
forests. This study highlights that inland areas can also experience significant increases in aquaculture
ponds, particularly alongside large rivers, and that the environmental impacts of these changes differ
from those in coastal areas, warranting specific attention.

Keywords: Google Earth Engine; inland regions; Yangtze River Economic Belt; aquaculture ponds;
Landsat; Sentinel-2; land use/cover change; intelligent interpretation of remote sensing

1. Introduction

Over the past four decades, since the late 20th century, China’s aquaculture industry
has witnessed rapid growth, spurred by the evolution of fishing rights and technological
advancements [1,2]. However, the long-standing practices of small-scale, decentralized
operations and relatively extensive production methods have inevitably led to a series of
ecological issues, such as eutrophication [3]. These issues present significant limitations and
pose challenges to China’s sustainable socio-economic development [4–7]. Therefore, gain-
ing a comprehensive understanding of the spatial distribution and changes in aquaculture
is crucial for the industry’s growth and for investigating the interplay of environmental
changes. On 12 May 2021, China issued a directive to implement policies supporting
the high-quality development of the fishing industry. This directive explicitly advocates
for the green and circular development of the industry, with a focus on standardizing
concentrated inland fish ponds, ensuring aquaculture tail water meets regulatory stan-
dards, and equipping facilities with intelligent water quality monitoring and environmental
control systems. Currently, while aquaculture statistical data provide a summary of the
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industry’s quantity and coverage area, they offer limited real-time spatial distribution
and environmental monitoring information, thus falling short of the requirements for
real-time monitoring during the aquaculture development process. The Food and Agri-
culture Organization recommends the use of geographic information systems and remote
sensing to elucidate geographical spatial information related to food. Consequently, the
judicious use of these systems and remote sensing technology to systematically understand
the spatial distribution and temporal evolution of inland aquaculture can aid fisheries
management departments in accurately assessing aquaculture capacity. This, in turn, can
facilitate the rational regulation and management of aquaculture models and structures,
ensuring the orderly growth of the aquaculture industry while reinforcing resource and
environmental protection.

In the context of large-scale environmental monitoring and resource surveys, the
significance of remote sensing technology is increasingly evident [8–11]. In aquaculture,
the methods of interpreting remote sensing data are consistently evolving towards automa-
tion, speed, and intelligence [12–22]. However, our current understanding of the spatial
distribution of aquaculture ponds remains scant [23–27]. To address this knowledge gap,
numerous scholars have employed remote sensing methods for automated extraction. For
example, Virdis et al. utilized Worldview-1 and SPOT5 remote sensing data, applying an
object-oriented fully automatic classification approach, to successfully extract shrimp ponds
in the Tam Giang-Cau Hai lagoon in central Vietnam [12]. Similarly, Ke Wen et al., using the
northern Beibu Gulf coast of Guangxi as a case study and based on Sentinel-2 and Sentinel-1
SAR time-series remote sensing data, selected the water body index NDWI and calculated
the inundation frequency IF. They introduced SWIR2mean(10%~90%) and VHYEARmean indices
to correct errors such as shadows and dams, proposing a method for extracting aquaculture
ponds by determining the optimal segmentation threshold at multiple scales through train-
ing samples and object-oriented classification [28]. Furthermore, Jiachan Hu et al. leveraged
Sentinel-2 remote sensing images, utilizing the spectral and spatial information of nearshore
aquaculture ponds, calculated indices, and combined the support vector machine model
and the Markov random field model to classify spectral information, successfully extracting
the Haiwangjiu Island aquaculture area in the eastern part of the Liaodong Peninsula [29].

While existing research has yielded some results in small watershed or coastal re-
gions [30–38], studies on inland aquaculture ponds remain scarce, necessitating further
validation of the universality of current extraction findings. Xin Yuan conducted an analysis
of land cover transitions in the coastal areas of Hainan Island, revealing that the expansion
of aquaculture has led to the occupation of substantial coastal agricultural land, water
bodies, and mangrove wetlands, thereby exacerbating coastal land loss [39]. Qiqi Meng
examined the spatiotemporal relationship between land cover intensity and ecosystem
service value in the northern region of Liaodong Bay, discovering that aquaculture has the
highest influx, with the overall value of ecosystem services exhibiting a declining trend [40].
Ramki Periyasamy et al. performed a land cover analysis in the southeastern coastal region
of Nagapattinam, India, assessing the impact of brackish water aquaculture. They found
that fertile agricultural lands, such as arable land, fallow land, and artificial forests, are pri-
marily being converted into aquaculture [41]. Despite the progress made in understanding
land cover transitions in coastal aquaculture, the inland ecosystem differs from its coastal
counterpart, and comparative studies on the rules of aquaculture pond transitions remain
limited. Consequently, the spatiotemporal distribution, inflow and outflow patterns, and
associated resource and environmental issues of aquaculture ponds necessitate further
systematic research and in-depth investigation.

The Yangtze River Economic Belt, characterized by its coastal proximity, dense river
networks, and numerous lakes, benefits from abundant rainfall resources. This wealth of
material and natural resources underpins the development of China’s aquaculture, securing
a pivotal strategic position within the country’s aquaculture industry. Utilizing a global-
scale remote sensing cloud computing platform, such as Google Earth Engine (GEE) [42],
for the intelligent interpretation of aquaculture areas not only ensures the quality of image
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processing but also significantly reduces processing time. Compared to traditional remote
sensing analysis methods, GEE offers superior capabilities for the rapid processing of
large-scale, high-resolution data. This makes it particularly valuable for fully leveraging
and mining information from remote sensing big data [43].

In conclusion, this study aims to investigate the spatiotemporal evolution patterns
of long-term series of inland aquaculture ponds in China. Leveraging the GEE remote
sensing cloud platform and utilizing Landsat 5 and Sentinel-2 data, we examine the efficient
and accurate identification and extraction patterns of aquaculture areas in the Yangtze
River Economic Belt region from 1985 to 2020, with approximately five-year intervals. The
results were analyzed from various perspectives, focusing on spatiotemporal evolution
characteristics and key resource and environmental issues. Our findings aim to foster
the development of inland aquaculture remote sensing monitoring systems, optimize
land resource utilization structures, and expedite the progress of ecological civilization
construction in the era of big data.

2. Materials and Methods
2.1. Overview of the Study Area

The Yangtze River Economic Belt (Figure 1), which includes provinces such as Jiangsu,
Zhejiang, Hubei, and eight other provinces or municipalities, is a significant region in China
known for its abundant aquaculture yield. This region serves as a strategic conduit for or-
chestrating the growth and development of China’s aquaculture industry. It also represents
a comprehensive green ecological corridor for the river basin, providing a wealth of mate-
rial resources and natural reserves for aquaculture [44]. In 2021, the total economic output
of the fisheries sector within the Yangtze River Economic Belt reached CNY 1.3686 trillion,
constituting 46% of the national total. Freshwater aquaculture production amounted to
20.25 million tons, representing 64% of the nation’s total freshwater aquatic product output
and occupying 56% of the country’s total freshwater aquaculture area. This makes it one
of the key sources of aquatic products in the country [45]. Consequently, accurately and
efficiently acquiring spatiotemporal distribution information on aquaculture ponds within
the Yangtze River Economic Belt region holds significant implications for fishery resource
surveys, scientific industrial management, and high-quality sustainable development.
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2.2. Sources of Data

• Remote Sensing Data: This study utilizes Landsat 5 and Sentinel-2 remote sensing
imagery data, both of which were accessed online and preprocessed via the GEE
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platform. This allowed us to conduct a longitudinal study on the extraction of large-
scale aquaculture ponds in the Yangtze River Economic Belt region. The parameters
and sources of the satellites are detailed in Table 1. To minimize the impact of cloud
interference on the extraction process, we selected Sentinel data with less than 20%
cloud coverage and screened the Landsat data for cloud coverage using the relevant
parameters in the “QA_PIXEL” band. We also employed the median () function
available in GEE [43] to calculate the mean pixel value within the corresponding image
set, thereby constructing the foundational image for the experiment.

Table 1. Introduction and parameter description of Landsat, SRTM, and Sentinel series satellites.

Satellite
Platform Sensor Resolution Access GEE ID Years Selected in

This Paper

Landsat 5 TM 30 m GEE dataset LANDSAT/LT05/C01/T1_SR 1986, 1990, 1995,
2000, 2005, 2010

Sentinel-2 A/B MSI 10 m GEE dataset COPERNICUS/S2_SR 2020

Sentinel-2 A/B MSI 10 m GEE dataset COPERNICUS/S2 2016

SRTM SAR 90 m GEE dataset CGIAR/SRTM90_V4 1986–2020

Landsat 5, 7, 8 TM, ETM+,
OLI/TIRS 30 m GEE dataset JRC/GSW1_4/Monthly

History 1986–2020

• Elevation and Surface Water Data: Leveraging the GEE platform, this study utilizes
the SRTM data [46] measured and released by NASA and the National Geospatial-
Intelligence Agency as the elevation data. This restricts the complex inland terrain
from both the Digital Elevation Model (DEM) and slope perspectives. Additionally,
we selected the corresponding global surface water monthly data [47] to mitigate the
impact of perennial snow in the Yangtze River’s upper reaches on the identification
and extraction of aquaculture ponds. This dataset comprises maps detailing the
location and temporal distribution of surface water from 1984 to 2021. The parameters
and sources of the satellites are detailed in Table 1.

• Land Cover Dataset: The land cover dataset employed in this study is the Annual
China Land Cover Dataset (CLCD) [48], Version 1.0.0, produced by Wuhan University,
with 30 m as the spatial resolution. Yang J and his team selected a stable sample
of China’s land use/cover dataset with visual interpretation samples from multiple
sources, used 335,709 Landsat images from GEE to create time indicators, and used the
Random Forest classifier to generate classification results (for CLCD) with an overall
accuracy of 79.31%. From this dataset, the years from which we selected the data
were 1985, 1990, 1995, 2000, 2005, 2010, 2016, and 2020, and the dataset was sourced
from https://zenodo.org, accessed on 1 May 2023. The classification system used
is the Land Cover Classification System (LCCS) (9), including “Cropland”, “Forest”,
“Shrub”, “Grassland”, “Water”, “Snow/Ice”, “Barren”, “Impervious”, and “Wetland”.

2.3. Research Methods
2.3.1. Technical Route

In this study, we reference Yuanqiang Duan’s methodology for extracting data on
aquaculture ponds within China’s coastal regions [49]. Given the unique characteristics
of the aquaculture ponds within the inland Yangtze River Economic Belt in China, we
adapted this method accordingly. We meticulously adjusted various parameters and chose
the optimal threshold through visual interpretation to better accommodate the specific
traits of the aquaculture ponds within the Yangtze River Economic Belt. Furthermore,
we incorporated global water body data to mitigate the effects of potential confusion
between high-altitude mountain shadows and accumulated snow with water bodies in
the southwestern region of the Yangtze River Economic Belt. This led to the design of

https://zenodo.org
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an algorithm for the extraction of aquaculture ponds in the Yangtze River Economic Belt
region based on Sentinel-2 and Landsat 5 satellites. The data processing workflow primarily
consists of three steps:

• Step 1. Using the GEE platform, potential aquaculture areas are identified by elimi-
nating background noise. Suitable aquaculture regions are filtered based on terrain
conditions using SRTM elevation data and by setting specific elevation and slope
parameters. The Automated Water Extraction Index (AWEInsh) is computed using pre-
processed Sentinel-2 and Landsat 5 data. The Otsu algorithm is employed to determine
the threshold for water body extraction, which is then combined with global water
data to mitigate the influence of high mountain shadows, ice, snow, and other ge-
ographical features in the upper Yangtze River region. Overlaying water bodies
and terrain-appropriate areas helps exclude complex geographical features and land
classes unsuitable for aquaculture, thereby identifying potential aquaculture areas.

• Step 2. The GEE platform is used to identify aquaculture ponds by leveraging spa-
tial structure and phenological rhythm. The Normalized Difference Vegetation Index
(NDVI), Modified Normalized Difference Water Index (MNDWI), and Laplacian 8 (Lap 8)
edge detection operators are computed, integrating texture information and spectral
characteristics. Morphological operations assist in the identification and extraction of
aquaculture ponds.

• Step 3. Post-processing. ArcGIS and Google Earth Pro software are used for visual
interpretation of the extraction results, primarily to eliminate narrow rivers, coastal
salt fields, and other irregular natural water bodies.

The detailed process is depicted in Figure 2. The following section will elaborate on
the method used for aquaculture pond extraction, using the identification and extraction
of aquaculture ponds in Gaohutang, Beixian, Ningbo City, Zhejiang Province, in 2020 as a
case study.

Remote Sens. 2023, 15, x FOR PEER REVIEW 5 of 20 
 

 

specific traits of the aquaculture ponds within the Yangtze River Economic Belt. Further-
more, we incorporated global water body data to mitigate the effects of potential confu-
sion between high-altitude mountain shadows and accumulated snow with water bodies 
in the southwestern region of the Yangtze River Economic Belt. This led to the design of 
an algorithm for the extraction of aquaculture ponds in the Yangtze River Economic Belt 
region based on Sentinel-2 and Landsat 5 satellites. The data processing workflow primar-
ily consists of three steps: 
• Step 1. Using the GEE platform, potential aquaculture areas are identified by elimi-

nating background noise. Suitable aquaculture regions are filtered based on terrain 
conditions using SRTM elevation data and by setting specific elevation and slope pa-
rameters. The Automated Water Extraction Index (AWEInsh) is computed using prepro-
cessed Sentinel-2 and Landsat 5 data. The Otsu algorithm is employed to determine 
the threshold for water body extraction, which is then combined with global water 
data to mitigate the influence of high mountain shadows, ice, snow, and other geo-
graphical features in the upper Yangtze River region. Overlaying water bodies and 
terrain-appropriate areas helps exclude complex geographical features and land clas-
ses unsuitable for aquaculture, thereby identifying potential aquaculture areas. 

• Step 2. The GEE platform is used to identify aquaculture ponds by leveraging spatial 
structure and phenological rhythm. The Normalized Difference Vegetation Index 
(NDVI), Modified Normalized Difference Water Index (MNDWI), and Laplacian 8 (Lap 8) 
edge detection operators are computed, integrating texture information and spectral 
characteristics. Morphological operations assist in the identification and extraction of 
aquaculture ponds. 

• Step 3. Post-processing. ArcGIS and Google Earth Pro software are used for visual 
interpretation of the extraction results, primarily to eliminate narrow rivers, coastal 
salt fields, and other irregular natural water bodies. 
The detailed process is depicted in Figure 2. The following section will elaborate on 

the method used for aquaculture pond extraction, using the identification and extraction 
of aquaculture ponds in Gaohutang, Beixian, Ningbo City, Zhejiang Province, in 2020 as 
a case study. 

 
Figure 2. Technical route for extraction of aquaculture ponds in Yangtze River Economic Belt. 
(AWEInsh: Automated Water Extraction Index; NDVI: Normalized Difference Vegetation Index; MNDWI: 
Modified Normalized Difference Water Index; Lap 8: Laplacian 8). 

Figure 2. Technical route for extraction of aquaculture ponds in Yangtze River Economic Belt.
(AWEInsh: Automated Water Extraction Index; NDVI: Normalized Difference Vegetation Index; MNDWI:
Modified Normalized Difference Water Index; Lap 8: Laplacian 8).

2.3.2. Intelligent Interpretation of Inland Large-Scale Aquaculture Ponds

• Identify Potential Aquaculture Areas

Aquaculture ponds in the Yangtze River Economic Belt are predominantly located in
coastal low-lying plains, tidal flats, and similar areas, with the pixels of these ponds often
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manifesting as complex mixed pixels, as depicted in Figure 3a. In order to identify potential
aquaculture areas, we used SRTM data to generate a terrain conducive to aquaculture.
Yuanqiang Duan et al. established an elevation threshold of 100 m for the extraction of
coastal aquaculture ponds [49]. However, the distribution of inland aquaculture ponds dif-
fers from that of coastal regions. In this study, the terrain threshold is not solely determined
by the distribution of the aquaculture ponds. Additionally, the snow-capped mountains
and high mountain shadows in the southwest region can easily be mistaken for water
bodies. To minimize this interference, we made multiple adjustments to the threshold,
performing visual interpretations based on shape, texture, and color, among other factors.
Based on the optimal results of these visual interpretations, we ultimately selected an
elevation threshold of 300 m and a slope within 10 degrees. We conducted an on-site
survey of the aquaculture pond distribution in Jinyun Mountain, Chongqing, and found
that the distribution of large-scale aquaculture ponds indeed adheres to the conditions
of an elevation below 300 m and a slope within 10 degrees. To mitigate the influence of
buildings on the extraction of aquaculture ponds and enhance the low water reflectance
characteristics, AWEInsh [50] was used for computation. The calculation method is as
shown in Equation (1). This index can efficiently remove non-water pixels, including dark
building surfaces in urban background areas that are often mistaken for aquaculture ponds.
The results of the AWEInsh computation are illustrated in Figure 3b, and the outcomes
following binary opening and closing operations are presented in Figure 3c. We established
distinct threshold values for the open–close operation parameters corresponding to remote
sensing image data of varying resolutions according to the optimal parameter threshold for
multiple contrast debugging through visual interpretation. Specifically, for Sentinel-2 data
with a spatial resolution of 10 m, we set the threshold at 8; for Landsat data with a spatial
resolution of 30 m, the threshold was set at 6.

AWEInsh = 4 × (ρGreen − ρSWIR1)− 0.25 × ρNIR + 2.75 × ρSWIR2. (1)

In the given equation, the variable ρ denotes the spectral reflectance. The variables
ρGreen, ρNIR, ρSWIR1, ρSWIR2 correspond to Band3, Band8, Band11, Band12 of the Multi-
Spectral Instrument (MSI) sensor on the Sentinel satellite, and to Band2, Band4, Band5,
Band7 of the Thematic Mapper (TM) sensor, respectively. SWIR means short-wave infrared;
NIR means near-infrared spectroscopy.

In this study, we employed the Otsu algorithm to determine the AWEInsh threshold,
also known as the maximum inter-class variance method [51]. This algorithm identifies
an optimal threshold by maximizing the variance between categories, segregating image
pixels into two or more distinct areas, thereby effectively distinguishing image regions with
varying characteristics. According to this algorithm, the AWEInsh threshold calculated
for 2020 is 3.25, which can effectively differentiate water body pixels from other areas, as
depicted in Figure 3d. Since the extracted water body data exclude dam data, which are
not conducive to subsequent texture feature analysis, we performed morphological closing
operations on the extracted water body data to obtain water body mask data, as shown
in Figure 3e. Given that the upper reaches of the Yangtze River, namely the provinces of
Chongqing, Sichuan, Yunnan, and Guizhou, experience perennial cloudiness and mountain
snow accumulation, we divided the research area into two parts: the upper reaches and the
middle and lower reaches of the Yangtze River. The extraction of the water body mask in
the downstream of the Yangtze River Economic Belt follows the aforementioned process;
the extraction result of the upper reaches overlaps with the global surface water body
data of the corresponding year to form an intersection, serving as the water body mask
of the upper reaches of the Yangtze River, thereby enhancing the accuracy of aquaculture
area extraction. The intersection of the terrain mask and the water body mask yields the
potential aquaculture area.
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• Preliminary Identification of Aquaculture Ponds

NDVI represents the normalized ratio between the near-infrared and red bands. This
index serves as an indicator of seasonal variations in vegetation growth and activity [52].
Given that rice fields, prevalent in the Yangtze River Economic Belt region, can be erro-
neously identified as aquaculture ponds during the early growth stages, this study further
incorporates the phenological traits of rice, using NDVI to identify and eliminate rice. As
per the research by Xiaojun Liu et al. [53], the spectral sensor of the rice canopy is influenced
by exposed soil and water backdrop during the early growth stages due to the non-closure
of the rice canopy, thereby reducing the reliability of NDVI in estimating crop growth.
However, from the tillering stage onwards, the NDVI value exhibits a steep trend with the
rapid changes in the growth curve, stabilizing post the heading stage and then gradually
declining. Consequently, this study identifies rice based on the NDVI values during the
tillering and heading stages of rice. In line with the research by Fenghua Yu et al. [54] and
Shanshan Liu et al. [55], the NDVI corresponding to these two stages of rice increases from
0.65 and stabilizes around 0.8, leading us to select 0.65 as the NDVI threshold to effectively
exclude rice. Consequently, we calculate the NDVI with the mathematical expression [56]
presented in Equation (2).

NDVI =
ρNIR − ρRED
ρNIR + ρRED

. (2)

In the presented equation, the variable ρ signifies the spectral reflectance, whereas ρNIR, ρRED
denote the reflectance of the terrestrial object in the near-infrared and red bands, respec-
tively. Specifically, ρNIR, ρRED align with Band8, Band4 of the Multi-Spectral Instrument
(MSI) sensor on the Sentinel-2 satellite, and with Band4, Band3 of the Thematic Mapper
(TM) sensor. NIR means near-infrared spectroscopy.

Given the weak spectral reflectance of the aquaculture zones within the aquaculture
ponds and the easily distinguishable high-frequency information presented by the narrow
dams between the ponds, we employed the MNDWI [57] to enhance the spatial texture
features of the aquaculture ponds. The extraction result is depicted in Figure 3f, and the
outcome post binarization is shown in Figure 3g, where the texture of the dam and the
boundary of the aquaculture pond are notably prominent. Subsequently, we used the
Lap 8 edge detection operator to identify areas in the image where the gray level changed
abruptly, specifically the edge and contour areas of the aquaculture pond, as illustrated in
Figure 3h. Setting the Lap 8 threshold at 0.8 and performing binarization yielded. Following
morphological operations, as shown in Figure 3i, we can observe the successful distinction
between the aquaculture ponds and other water bodies, indicating the initial extraction
of the aquaculture pond. The calculation methods for MNDWI and Lap 8 are presented in
Equations (3) and (4), respectively.

MNDWI =
ρGreen − ρSWIR1

ρGreen + ρSWIR1
. (3)

In the presented equation, the variable ρ denotes the spectral reflectance. The variables
ρGreen, ρSWIR1, ρSWIR2 correspond to the central wavelengths of 0.5625 µm, 0.1610 µm, and
2.200 µm, respectively. SWIR means short-wave infrared.

KernelLap 8 =

1 1 1
1 −8 1
1 1 1

. (4)

We performed binarization on the preliminary extraction of the aquaculture ponds depicted
in Figure 3i, resulting in Figure 3j. It is important to note that we utilized the nearest-
neighbor method within the GEE platform to generate images with a spatial resolution of
30 m, based on the extraction results derived from the 10 m resolution Sentinel-2 data. It
is evident that some aquaculture ponds are densely distributed and were not effectively
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extracted. Given the scarcity of such patches, we employed visual interpretation to rectify
this shortcoming, which serves as the extraction result of the aquaculture ponds in the
Yangtze River Economic Belt region.
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• Post Processing

During the post-processing phase, we used ArcGIS software to visually interpret
and manually remove inaccurately extracted rivers, narrow channels, and coastal salt
pans. The middle and lower regions of the Yangtze River Economic Belt exhibit a dense
distribution of river networks. A minor proportion of rivers and narrow channels were
erroneously identified as having the textural characteristics of aquaculture ponds, leading
to their incorrect extraction. These inaccurately extracted features are predominantly found
in this area and exhibit distinct shape characteristics, simplifying the identification and
removal process. Coastal salt pans in China are relatively concentrated, primarily around
the Bohai Sea and certain regions in northern and central Jiangsu [49]. These can be
systematically removed through visual interpretation. We leveraged the comprehensive
and reliable spatial and attribute information provided by high-resolution imagery, Point of
Interest (POI) layers, and street view image data in Google Earth Pro. This information was
compared with the aquaculture extraction results of our study, facilitating the identification
and removal of narrow rivers and coastal salt pans.

2.3.3. Precision Evaluation

We employed the validation point efficacy analysis method [58] to quantitatively
assess the consistency and accuracy between the classification or segmentation results and
the actual geographical features. After calculations, we find that 1000 validation points
can satisfy the requirements for validation accuracy. Initially, we generated 1000 random
points within the study area using the GEE platform. Subsequently, these points were
superimposed onto Google Earth Pro software, where we use its high-resolution imagery,
POI layers, and street view image data for reference. Each point was visually interpreted
based on attributes such as shape, color, and spatial structure, thereby assigning each
random point with the corresponding real-world surface attributes. In the third step,
these random points, now equipped with real-world surface attributes, were imported
into ArcGIS software as validation points. These points were then assigned the attributes
derived from the aquaculture extraction results of our study, facilitating the creation of a
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confusion matrix. Finally, this process was repeated annually for the aquaculture extraction
results, yielding multiple confusion matrices, as presented in Tables 2 and 3.

Table 2. Confusion matrix of aquaculture pond extraction results, 2020.

Reference Points

Aquaculture Ponds Non-Aquaculture Ponds User
Accuracy

Classification Points
Aquaculture Ponds 131 17 0.89

Non-Aquaculture Ponds 27 825 0.97

Cartographic Accuracy 0.83 0.98
Overall Accuracy 0.96

Kappa 0.82

Table 3. Accuracy evaluation of aquaculture pond extraction results, 1985–2015.

Year Overall Accuracy Kappa Coefficients

1985 0.88 0.76
1990 0.89 0.79
1995 0.90 0.79
2000 0.91 0.80
2005 0.92 0.81
2010 0.93 0.82
2015 0.95 0.83

The overall accuracy of the automatic extraction results of aquaculture ponds in the
Yangtze River Economic Belt region in 2020 is 0.82. Additionally, to analyze the accuracy of
the extraction results of the aquaculture ponds, we also used the bootstrapping method [59]
to obtain a representative sample set that fulfilled the research needs. After performing
1000 iterations on the sample results, we obtained Table 2. The overall accuracy of the
extraction of aquaculture ponds in the Yangtze River Economic Belt is 0.96 (0.94–0.97,
95% confidence interval), the user accuracy of non-aquaculture pond classification points
is 0.97 (0.96–0.98, 95% confidence interval), and the user accuracy of aquaculture pond
classification points is 0.89 (0.83–0.94, 95% confidence interval).

3. Results
3.1. The Spatiotemporal Changes in Aquaculture Ponds of the Yangtze River Economic Belt from
1985 to 2020

Using the research methodology outlined in this paper, we procured data pertaining
to aquaculture ponds in the Yangtze River Economic Belt from 1985 to 2020. These data,
downloaded from the Google Earth Engine (GEE) platform and imported into ArcGIS,
were then statistically analyzed by province, the results of which are presented in Table 4.
Table 4 shows that from 1985 to 2020, the aquaculture ponds in the Yangtze River Economic
Belt region have experienced significant changes, generally exhibiting a continuous growth
trend. The aquaculture ponds expanded from 3235.51 km2 in 1985 to 14,207.08 km2 in
2020, marking a substantial increase. The newly added aquaculture ponds are primarily
located in Zhejiang, Jiangxi, Jiangsu, Hubei, Anhui, and Hunan provinces. However, it is
noteworthy that the growth rate of aquaculture ponds first increases and then decreases.
The annual growth rate rose from 1.07% in 1985 to 9.09% in 2010, and then fell to 4.16% by
2020. Zhejiang province has the most significant increase in aquaculture ponds, with an
addition of 2229.6 km2 over 35 years. Although the scale of aquaculture in Shanghai shows
fluctuations, it maintains an overall upward trend. Between 2000 and 2010, the growth rate
of aquaculture in various provinces was generally high, with Jiangxi province experiencing
the most substantial increase, reaching 1039.85 km2, before slightly decreasing.
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Table 4. Changes in the area * of aquaculture ponds in the Yangtze River Economic Belt from 1986
to 2020.

Province 1985 1990 1995 2000 2005 2010 2015 2020

Anhui 399.73 423.29 454.8 482.16 733.58 885.03 1051.46 1357.22
Guizhou 6.98 14.08 101.64 116.16 325.29 482.6 653.96 746.33

Hubei 434.21 480.61 513.75 552.03 903.75 1527.66 2141.36 2468.29
Hunan 431.6 296.4 340.32 406.45 649.6 797.9 887.56 1255.15
Jiangsu 501.23 575.71 606.37 658.07 889.66 1485.85 1424.29 1932.57
Jiangxi 614.5 640.83 674.54 711.37 989.26 1751.22 1924.14 2622.55

Shanghai 25.23 29.12 32.62 35.6 33.15 53.62 62.37 66.44
Sichuan 121.96 171.81 180.02 191.1 345.68 430.49 536.34 616.85
Yunnan 24.26 29.31 34.7 39.48 86.23 106.34 141.89 172.36
Zhejiang 624.7 694.67 729.87 813.18 1071.98 1811.44 2655.66 2854.3

Chongqing 51.11 56.45 62.76 65.81 72.31 94.27 106.36 115.02
Summation 3235.51 3412.28 3731.39 4071.41 6100.49 9426.42 11,585.39 14,207.08

* Unit is km2.

In this study, we substitute the corresponding pixels of the Annual China Land
Cover Dataset (CLCD) land cover data with the extraction results of large-scale inland
aquaculture areas in the Yangtze River Economic Belt from 1985 to 2020. This substitution
results in a spatial pattern of land cover in the Yangtze River Economic Belt that includes
the aquaculture area, as depicted in Figure 4.
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In terms of spatial distribution, the changes in aquaculture areas in Hubei and Jiangxi
provinces are particularly noticeable, demonstrating various degrees of expansion. From
1985 to 2015, the overall aquaculture area exhibited an “east more, west less” spatial dis-
tribution pattern. In other words, the eastern provinces had larger aquaculture areas,
primarily concentrated in the central and northern parts of Jiangsu and the southern areas
bordering Shanghai, Anhui, and Zhejiang. In contrast, the western provinces had rela-
tively fewer aquaculture areas, and their distribution was more scattered and fragmented.
However, between 2015 and 2020, the spatial distribution of aquaculture ponds underwent
significant changes. Overall, the aquaculture areas on the east and west sides showed an
increasing trend, but the increase on the west side was more pronounced than on the east.

3.2. Analysis of the Centroid Shift in Aquaculture Ponds of the Yangtze River Economic Belt from
1985 to 2020

The centroid shift provides an intuitive representation of the overall characteristics of
spatial changes in regional land cover. By examining the direction and distance of this shift
across different land cover types, we can gain insights into the distributional characteristics
of these spatial changes. Furthermore, associating the direction and distance of the centroid
shift with the regional natural economic conditions can shed light on the variations in
the quality of land cover types. The direction and distance of the centroid shift can be
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articulated through the changes in the centroid coordinates [60], which can be calculated
using Equation (5):

Xt =
∑n

i=1(Cti × Xi)

∑n
i=1 Cti

, Yt =
∑n

i=1(Cti × Yi)

∑n
i=1 Cti

(5)

where Xt and Yt denote the longitudinal and latitudinal coordinates of the centroid for
a specific land cover type’s distribution in the t-th year. Cti signifies the area of the i-th
patch of a specific land cover type in the t-th year. Xj and Yi, on the other hand, represent
the longitudinal and latitudinal coordinates of the geometric center of the i-th patch of
a specific land cover type. The centroid shift analysis results, depicted in Figure 5, were
obtained by conducting calculations in ArcGIS based on Equation (5).

Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

3.2. Analysis of the Centroid Shift in Aquaculture Ponds of the Yangtze River Economic Belt 
from 1985 to 2020 

The centroid shift provides an intuitive representation of the overall characteristics 
of spatial changes in regional land cover. By examining the direction and distance of this 
shift across different land cover types, we can gain insights into the distributional charac-
teristics of these spatial changes. Furthermore, associating the direction and distance of 
the centroid shift with the regional natural economic conditions can shed light on the var-
iations in the quality of land cover types. The direction and distance of the centroid shift 
can be articulated through the changes in the centroid coordinates [60], which can be cal-
culated using Equation (5): 𝑋௧ = ∑ ሺ𝐶௧௜ × 𝑋௜ሻ௡௜ୀଵ∑ 𝐶௧௜௡௜ୀଵ ,𝑌௧ = ∑ ሺ𝐶௧௜ × 𝑌௜ሻ௡௜ୀଵ∑ 𝐶௧௜௡௜ୀଵ  (5)

where Xt and Yt denote the longitudinal and latitudinal coordinates of the centroid for a 
specific land cover type’s distribution in the t-th year. Cti signifies the area of the i-th patch 
of a specific land cover type in the t-th year. Xj and Yi, on the other hand, represent the 
longitudinal and latitudinal coordinates of the geometric center of the i-th patch of a spe-
cific land cover type. The centroid shift analysis results, depicted in Figure 5, were ob-
tained by conducting calculations in ArcGIS based on Equation (5). 

 
Figure 5. The centroid shift in aquaculture ponds of the Yangtze River Economic Belt from 1985 to 
2020. 
Figure 5. The centroid shift in aquaculture ponds of the Yangtze River Economic Belt from 1985
to 2020.

As depicted in Figure 5, the centroid of the aquaculture ponds was situated within
the boundaries of Hubei Province during the periods of 1985–2005 and 2020, and within
Anhui Province in the years 2010 and 2015. In general, the centroid of aquaculture exhibited
a trend of initially moving eastward, then westward in the east–west direction, and an
overall southward shift in the north–south direction. More specifically, from 1985 to 2010,
the centroid of the aquaculture ponds shifted westward, and continued this westward shift
from 2010 to 2020. The precise numerical values of the direction and distance of the centroid
migration are presented in Table 5. In recent years, the centroid has gradually shifted to
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the west side, mainly concentrating in certain areas of Hubei and Anhui provinces. This
shift indicates that, in recent years, the aquaculture ponds in the western provinces have
experienced relatively rapid expansion, which is more evident compared to the expansion
speed in the eastern provinces.

Table 5. Parameters of the centroid shift in aquaculture ponds in Yangtze River Economic Belt,
1985–2020.

Time Period Offset Direction Offset Angle Offset Distance

1985–1990 West by South 86.00◦ 97.10 km
1990–1995 East by North 44.61◦ 41.71 km
1995–2000 East by South 35.80◦ 65.46 km
2000–2005 East by North 55.82◦ 31.30 km
2005–2010 East by North 14.75◦ 185.07 km
2010–2015 West by South 34.73◦ 674.96 km
2015–2020 West by South 17.16◦ 222.03 km

3.3. The Impact of Changes in Aquaculture Ponds on the Yangtze River Economic Belt region from
1985 to 2020

The land cover transition matrix provides insights into the structural characteristics of
land cover types at the beginning and end of the study period, as well as the state of land
class transitions. It is currently the most extensively utilized method in studies of dynamic
land cover changes [61]. Its expression is represented as in Equation (6):

Sij =


S11 S12 S13 · · · S1n
S21 S22 S23 · · · S2n
S31 S32 S33 · · · S3n
· · · · · · · · · · · · · · ·
Sn1 Sn2 Sn3 · · · Snn

 (6)

where S represents area; n represents the type and quantity of land cover; Sij is the area of
land cover type i transformed into type j during the study period.

This study used the land cover data (including aquaculture areas) of the Yangtze River
Economic Belt region from 1985 to 2020, as discussed in the previous section, to calculate
the corresponding land cover transition matrix in ArcGIS. We then analyzed the changes in
land cover transitions of the aquaculture ponds in the Yangtze River Economic Belt region
from 1985 to 2020. As shown in Table 6 and Figure 6, between 1985 and 2020, the overall
area of inland aquaculture ponds was on an upward trend, increasing from 3235.51 km2 in
1985 to 14,207.08 km2 in 2020, indicating a significant expansion.

From the perspective of transfer, the aquaculture ponds was mainly transferred out to
water body and cropland, and the transfer area was 1232.39 km2 and 371.41 km2, accounting
for 61.06% and 18.40% of the total area transferred out, respectively; on the other hand,
aquaculture ponds was mainly transferred in from cropland, water bodies, and forests, and
the transfer areas are 7786.77 km2, 3297.68 km2, and 1404.90 km2, accounting for 70.97%,
30.06%, and 12.80% of the total area transferred in, respectively.

In terms of net increase or decrease, grassland and wetland were mainly restored from
aquaculture ponds, and the restored area is 4.03 km2 and 0.16 km2, accounting for 96.18%
and 3.82% of the total restored area, respectively; additionally, aquaculture ponds mainly
expanded to cropland, water bodies, and forests, with expansion areas of 7415.36 km2,
2065.29 km2, and 1260.69 km2, accounting for 67.84%, 18.90%, and 11.53% of the total
expansion areas, respectively, from 1985 to 2020.
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Table 6. Land cover type transition matrix * in Yangtze River Economic Belt, 1985–2020.

1985

2020

Snow/Ice Impervious Grassland Shrub Barren Cropland Forest Wetland Water
Aquaculture

Ponds Decrement

1217.64 60,195.54 180,779.04 16,614.20 4365.13 655,891.59 1,064,211.64 373.30 37,439.45 14,207.08

Snow/Ice 1462.48 741.08 190.08 1.00 392.39 7.81 129.24 0.10 721.39
Impervious 17,175.23 14,616.60 5.27 0.12 1.38 1456.74 128.38 673.32 290.85 2558.63
Grassland 203,723.54 155.57 299.33 164,647.71 1962.81 1995.75 8699.14 25,280.66 82.01 488.46 85.63 39,075.83

Shrub 29,970.56 6.48 2232.31 6560.52 1.43 5081.56 16,056.43 1.00 14.13 11.30 23,410.04
Barren 3630.97 314.28 122.04 1038.31 0.11 1854.13 60.91 19.52 169.86 47.21 1776.84

Cropland 710,983.67 41,132.19 7162.65 2232.23 24.68 551,915.00 92,015.44 1.73 8634.24 7786.77 159,068.66
Forest 1,028,542.01 0.55 2496.46 4883.15 5851.82 11.24 83,253.22 929,790.55 0.44 691.02 1404.90 98,751.46

Wetland 702.81 377.28 3.99 30.68 286.77 3.35 0.74 416.05
Water 35,853.13 6.11 1353.63 139.12 0.08 79.99 4992.01 581.76 0.46 25,399.17 3297.68 10,453.95

Aquaculture
Ponds

3235.51 0.05 154.59 89.66 3.80 1.58 371.41 144.21 0.90 1232.39 1217.14 2018.36

Increment 476.56 45,578.93 16,131.33 10,053.69 2511.00 103,976.59 134,421.09 86.54 12,040.27 12,989.94 /

Net Increase or Decrease −244.83 43,020.30 −22,944.51 −13,356.36 734.16 −55,092.08 35,669.62 −329.51 1586.32 10,971.57 14.71

* Unit is km2.
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Further longitudinal analysis revealed that the expansion of aquaculture ponds ex-
hibited different trends at various stages: Initially, inland aquaculture ponds mainly tran-
sitioned to cropland and water bodies; with industry development, aquaculture ponds
began transitioning to more diverse types of land, particularly expanding into ecologically
vulnerable areas like forests and grasslands. In recent years, the trend of transitioning
to water bodies and cropland has remained stable. However, it is worth noting that the
transition of aquaculture ponds to ecologically vulnerable areas like forests and grasslands
continues to increase, suggesting that its impact on the ecological environment may become
increasingly complex and significant in the future.
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4. Discussion

Currently, studies on land cover transitions in aquaculture ponds predominantly
concentrate on coastal regions or smaller inland zones, leaving the land transition scenarios
and driving factors in extensive inland aquaculture regions largely unexplored. For instance,
Chunying Ren et al. discovered that the expansion of coastal aquaculture ponds in China,
primarily triggered by wetlands and cropland, was evident from the analysis of land cover
types converted into aquaculture ponds in China’s coastal provinces from 1984 to 2016 [62].
Similarly, Bochuan Zhao et al. deduced from the 2009 and 2019 land cover data of Suining
City, Jiangsu Province, in China’s coastal region, that the area primarily expanded its
aquaculture ponds by encroaching upon cropland [63]. Jie Xu et al., utilizing Landsat
imagery, visually interpreted and extracted the aquaculture area in Qianjiang City, Hubei
Province, from 1990 to 2022, noting a rapid decrease in cropland area and an increase in
aquaculture area [64]. These findings bear relevance to this study’s conclusion that the
expansion of aquaculture ponds within the Yangtze River Economic Belt primarily involves
the utilization of cropland, water bodies, and forests, albeit with certain discrepancies.
Consequently, this paper will delve into the driving forces behind the inflow and outflow
transitions in the aquaculture ponds within China’s inland Yangtze River Economic Belt.

• Aquaculture ponds in inland regions predominantly transition into cropland, while
those in coastal regions largely convert into water bodies. This trend could be at-
tributed to the relatively fertile soil conditions in inland areas, coupled with the
state’s enforcement of permanent basic cropland protection and cropland occupation–
compensation balance systems to safeguard arable land. Conversely, coastal regions
are influenced by the richness of marine resources and the tradition of aquaculture.
Given the limited nature of terrestrial resources, a majority of coastal countries or
regions have adopted strategies for large-scale marine development. China has also
officially proposed and initiated the implementation of marine–land spatial planning,
extending the spatial functional zoning previously confined to land to encompass
marine areas [65]. Consequently, this paper advocates the formulation of differenti-
ated planning and management strategies for aquaculture areas in both inland and
coastal regions to cater to the unique development needs and environmental protection
objectives of these diverse regions.

• The primary land types transitioning into aquaculture areas are cropland, water
bodies, and forests. Specifically, the area of cropland transitioning into aquaculture
ponds amounts to 7415.36 km2. This shift could be associated with agricultural trans-
formation and adjustments in industrial structure. As a significant sector within
agriculture, aquaculture attracts farmers to allocate a portion of their cropland for
breeding purposes, aiming to reap higher economic returns. The area of water bodies
transitioning into aquaculture zones is 2065.29 km2. This transition could be attributed
to the scarcity of fishery resources and the surge in market demand. As aquaculture
expands, some water bodies are repurposed for aquaculture to cater to the public’s
demand for aquatic products. The area of forests transitioning into aquaculture zones
is 1260.69 km2. This shift could be due to a combination of resource utilization and
market demand, as aquaculture necessitates a certain area of forest for farm construc-
tion and timber supply. However, it is crucial to note that the large-scale transition of
cropland, water bodies, and forests could potentially impact food production and the
sustainable development of ecosystems. Therefore, in the decision-making process, it
is essential to strike a balance between the growth of agriculture and aquaculture and
reinforcing the protection and rational utilization of water and forest resources.

Furthermore, Procambarus clarkii, commonly known as crayfish, plays a pivotal role
in the proliferation of aquaculture within the Yangtze River Economic Belt. A comparative
analysis of the “China Fisheries Statistical Yearbook” and the “China Crayfish Industry
Development Report” for corresponding years reveals that from 1985 to 2020, provinces
such as Zhejiang, Hubei, and Jiangxi, which have witnessed significant aquaculture ex-
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pansion within the Yangtze River Economic Belt, primarily cultivate species like crayfish,
bass, and tilapia. Notably, the evolution of crayfish aquaculture in this region is the most
striking [66,67]. The crayfish industry experienced a rapid expansion from 2000 to 2018,
and although the growth rate decelerated from 2018 to 2020, it maintains a steady up-
ward trajectory (Figure 7). This pattern is consistent with the expansion of aquaculture in
the western region of the Yangtze River Economic Belt, providing some explanation for
its transformation.
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This study has accomplished an examination of the spatiotemporal evolution of aqua-
culture ponds in the Yangtze River Economic Belt from 1985 to 2020, primarily focusing on
large-scale, typical aquaculture ponds. Despite achieving initial research findings, the di-
versity of aquaculture methods and water bodies has not been fully considered. This study
does not account for small, fragmented earth ponds or offshore cage farming, among others.
Some paddy fields utilized for freshwater farming have not been considered. Additionally,
the aquaculture ponds have not been segmented into distinct categories. Consequently, the
study has certain limitations and presents a gap in conducting a comprehensive national
fishery resource survey. These aspects will be addressed and enhanced in future research.

5. Conclusions

This study uses Landsat 5 and Sentinel-2 data to identify aquaculture ponds within
the Yangtze River Economic Belt. The employed method amalgamates various types
of information, including spectral characteristics, spatial structure, cyclical rhythms of
objects, and topography, thereby ensuring effective extraction. Further analysis of spa-
tiotemporal distribution shifts and land cover evolution patterns leads to the following
specific conclusions:

• From the perspective of scale, the area of aquaculture ponds in the Yangtze River
Economic Belt underwent substantial changes from 1985 to 2020, exhibiting an overall
growth trend, escalating from 3235.51 km2 in 1985 to 14,207.08 km2 in 2020. The newly
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established aquaculture ponds are primarily located in Zhejiang, Jiangxi, Jiangsu, and
Hubei provinces.

• In terms of spatial distribution, the overall aquaculture ponds in the Yangtze River
Economic Belt from 1985 to 2015 displayed an “east-heavy, west-light” spatial distri-
bution pattern, primarily concentrated in the central–northern and southern parts of
Jiangsu, bordering Shanghai, Anhui, and Zhejiang. From 2015 to 2020, the aquaculture
area gradually shifted westward, primarily concentrating in parts of Hubei, Hunan,
and Jiangxi provinces. In recent years, the aquaculture area in the western region has
experienced a relatively rapid expansion, noticeably contrasting with the expansion
speed in the eastern region.

• From the perspective of land cover changes, between 1985 and 2020 the aquaculture
area in the Yangtze River Economic Belt increased overall, with the aquaculture area
mainly transitioning to water bodies and cropland, and a minor portion transitioning
to impervious surfaces, forests, and grasslands. The expansion in the aquaculture area
exhibited different trends at different stages. The large-scale conversion of cropland,
water bodies, and forest land could potentially impact food production and the sus-
tainable development of ecosystems. Therefore, in the decision-making process, it is
crucial to balance the protection and rational utilization of water and forest resources
while promoting agricultural and aquaculture development. Given the differences
between Inland and coastal areas, it is recommended to formulate differentiated plan-
ning and management strategies for aquaculture areas to cater to the development
needs of different regions and achieve environmental protection objectives.
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