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Abstract: Due to the difference of industrialization degree and meteorological conditions, there are obvious
differences in the composition of air pollution between islands and inland areas. With Zhoushan (ZS) and
Nanjing (NJ) representing islands and inland cities in the Yangtze River Delta, the differences in vertical
distribution of atmospheric components were investigated. A combination of multi-axial differential optical
absorption spectroscopy (MAX-DOAS), weather research and forecasting (WRF), and potential source
contribution function (PSCF) models were used to obtain vertical distribution data for aerosols, nitrogen
dioxide (NO2) and formaldehyde (HCHO), meteorological factors, and pollution sources in summer 2019.
The findings indicate that, except for the aerosol extinction coefficient (AE), the atmospheric composition
at the ZS site was not significantly stratified. However, the AE, NO2, and HCHO at NJ all displayed a
decreasing trend with altitude. Here is the interesting finding that the ZS site has a higher AE value than
the NJ site, while NJ displays higher NO2 and HCHO columns than the ZS site. This discrepancy was
primarily attributable to Zhoushan City’s extremely low traffic emissions when compared to inland cities.
In addition, HCHO in the YRD region was significantly affected by human activities. Analysis of potential
pollution sources found that regional transport contributed to differences in atmospheric composition at
different altitudes in different regions. Aerosols, NO2, and HCHO in Nanjing were significantly affected
by transport in inland areas. Aerosols in Zhoushan were easily affected by transport in the Yellow Sea
and East China Sea, and NO2 and HCHO were significantly affected by transport contributions from
surrounding areas in inland areas. The study strongly suggests that land and sea breezes play an important
role in the vertical distribution of aerosols over island regions.
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1. Introduction

As an important economic region in China, the Yangtze River Delta (YRD) is facing
increasingly serious air pollution problems. Air pollution not only restricts economic
development but also affects global climate change and poses a threat to human health [1].
Among them, aerosol, nitrogen dioxide (NO2), and formaldehyde (HCHO), as important
components of the atmosphere, play important roles in the tropospheric atmospheric pho-
tochemistry and the joint prevention and control of PM2.5 and ozone (O3) [2–4]. Therefore,
monitoring the evolution of aerosols, NO2, and HCHO is necessary in order to under-
stand their role in atmospheric chemical processes and to develop effective pollution
control measures.

There have been many meaningful research results on the causes of air pollution in the
YRD [5], but previous studies have focused on single or multiple pollutant gases in a single
city, regional distribution characteristics, and air pollution conditions in the industrially
developed areas of the YRD [6,7]. Few studies have explored the differences between
inland and island regions. The comparison of air pollution characteristics between inland
and island areas deserves attention. On the one hand, industrial and domestic pollution is
mainly concentrated in urban areas, and the quantity of cars and the flow of pollutants have
gradually enhanced the regional pollution characteristics of inland regions. On the other
hand, island areas are important gateways for the exchange of sea, land, and atmosphere,
and island regions are ideal for studying the distribution and source characteristics of
aerosol, NO2, and HCHO components in the marine atmosphere [8]. In addition, due to
the different degrees of industrialization and differences in meteorological conditions, the
composition of the air pollution in the inland and island regions clearly differed. Therefore,
it is of unique scientific significance to pay attention to the air pollution components of the
inland and island regions in the YRD.

With the reduction of emissions, regional transport and secondary pollution problems
have become increasingly prominent, especially in the YRD, which presents uneven re-
gional distribution and frequent transport characteristics. Studies have shown that many
important air pollutant transport processes often occur 1–8 km above the surface, affect-
ing surface air pollution [9]. When assessing the regional transport of air pollutants, the
transport flux will probably be over- or underestimated if only the surface concentration
is employed and the vertical information is disregarded [8]. For a thorough analysis of
the sources and transmission mechanisms of air pollutants, it is crucial to comprehend the
vertical distribution of those contaminants.

The vertical monitoring of atmospheric composition has been studied in the past
using crewless aerial vehicles, tethered balloons, airplanes, and light detection and rang-
ing (LIDAR) [10–14]. Although LIDAR has near-ground blind spots, it can monitor the
vertical profiles of aerosols and O3 with high temporal resolution [15]. To track the ver-
tical distribution of atmospheric constituents, on-site measurement equipment can be
mounted on aircraft and drones, but continuous monitoring is not feasible, and detection
is expensive [16]. A multi-axis differential optical absorption spectrometer (MAX-DOAS)
captures dispersed sunlight through a telescope at various elevation angles before directing
it through a prism reflector and quartz fiber as a passive ground remote sensing technique.
It has been extensively utilized to assess the vertical distribution of trace gases because of
its high spectral resolution, high sensitivity, and long-term steady observation profile. The
most important advantage of the MAX-DOAS is that it can simultaneously monitor various
atmospheric components, including aerosols, NO2, and HCHO, thereby overcoming the
errors of atmospheric component monitoring using different instruments. MAX-DOAS
has been widely used in studies of the vertical distribution characteristics of atmospheric
components in different environments (suburban, regional, island, and offshore) in different
regions, e.g., the Beijing-Tianjin-Hebei [9,17–19], the Pearl River Delta region [13,20,21] and
the YRD region [22–27]. This technology provides a promising method for the accurate
monitoring and management of air pollution.
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To explore the differences in atmospheric distribution between the island and inland
regions in the YRD region, Zhoushan and Nanjing have been chosen as the observation
areas, and MAX-DOAS was used to examine the vertical profiles of aerosols, NO2, and
HCHO. To identify their temporal and spatial distribution characteristics and sources, as
well as to gauge the impact of regional transport, their distribution, daily and weekly
variation, and pollutant characteristics were examined from a variety of angles. This study
aids in clarifying the differences in the vertical distribution of air pollution between inland
areas and the islands of the YRD.

2. Materials and Methods
2.1. Observation Site

The vertical distributions of atmospheric compositions in inland and island locations
during the summer is the main topic of this study. The experimental data were measured
from 6 May to 18 July 2019, and were collected from the Zhoushan (ZS) site (island region)
and Nanjing (NJ) site (inland region). The MAX-DOAS instrument at the ZS site (~60 m
a.s.l.) was set up on Huaniao Island (30.86◦N, 122.67◦E) that is roughly 80 km from the
mainland. It is 5 m above the ground. There is no industry and low traffic, but the site
is heavily affected by land transport, ships, and marine emissions within the East China
Sea (ECS) region [26,27]. Nanjing, a comprehensive national transportation hub with well-
developed electronic, automobile, petrochemical, and steel industries, is one of the most
important urban areas in the YRD. The MAX-DOAS observation system was located at
the Nanjing University of Information Science and Technology (32.21◦N, 118.72◦E), Pukou
District, Nanjing, China, at an altitude of 73 m. The equipment was attached to the roof
20 m above the ground with a tripod, and the instrument’s azimuth was 31◦ (northeast
direction). It is far from the city center, with three expressways within five kilometers, but
the industrial area is not far north of the observation site. Figure 1 displays the locations of
the two observation sites.
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2.2. Spectral Analysis and DOAS Vertical Profile Retrieval

A telescope, a control and data analysis terminal, and a spectrometer make up the
three major components of the MAX-DOAS. The information of the two spectrometers is as
follows: the model is AvaSpec-ULS2048L-USB2, the ultraviolet band range is 296–408 nm,
the visible band range is 420–565 nm, the spectral resolution is 0.45 nm. The temperature
needs to be controlled at 20 ◦C (±0.5 ◦C). The telescope’s elevation accuracy (α) is 0.1◦, and
its field of vision (FOV) is 0.3◦. A total of 11 elevation angles—1◦, 2◦, 3◦, 4◦, 5◦, 6◦, 8◦, 10◦,
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15◦, 30◦, and 90◦—were established for this observation. Throughout the day, the device
gathered stray sunlight. The script was used to automatically measure the dark current
and offset spectra at night and subtract them from all observed spectra. To evaluate the
vertical profile of near-surface gas, only partial spectra with a solar zenith angle (SZA) of
less than 75◦ were examined.

QDOAS software (http://uv-vis.aeronomie.be/software/QDOAS/, accessed on 22 De-
cember 2022) developed by BIRA-IASB was employed to analyze the filtered spectrum [8].
The difference in slant column density (dSCD), or the difference between the outer zenith
skew column concentration and the zenith slant column density, is the result of the DOAS
fitting process. Using the recommended setting based on the CINDI International com-
parison exercise [28], the spectra between the bands of 338–370 nm were used to examine
the dSCDs of oxygen dimer (O4) and NO2, and HCHO absorption was analyzed using
wavelength intervals of 322.5–358 nm, with low RMS and residual errors [16]. The detailed
DOAS fitting information used in this study appears in Table 1. Illustrations of the DOAS
fitting results on 6 July 2019 are shown in Figure 2. The root mean square (RMS) larger than
5 × 10−4 filtered out during the DOAS fitting process.
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Figure 2. Examples of O4, NO2, and HCHO findings from DOAS fitting at the ZS and NJ sites. 

Table 1. Setting up the DOAS retrieval for a spectrum analysis of NO2, O4, and HCHO. 
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Fitting Interval (nm) 

O4/NO2 HCHO 

Wavelength range  338–370 322.5–358 

NO2 298 K, I0 correction (SCD of 1017 molecules cm−2) [29] √ √ 

Figure 2. Examples of O4, NO2, and HCHO findings from DOAS fitting at the ZS and NJ sites.

Utilizing the inversion procedure of the HEIPRO algorithm based on the optimal
estimation method (OEM), vertical profiles of aerosols, NO2, and HCHO concentrations
were obtained [8]. Our previous research study provided a detailed introduction to the
HEIPRO algorithm [16]. The aerosol, NO2, and HCHO profiles were inverted, covering
a range of 0–3.8 km, in which the vertical resolution below 2 km was 100 m and that of
2–3.8 km was 200 m. The inversion period was specified at 15 min. The vertical integral of
the inversion profile was used to determine the AOD and VCD for trace gases. Additionally,
the retrieved profiles with relative errors of more than 50% and degrees of freedom lower
than 1.0 were removed.

http://uv-vis.aeronomie.be/software/QDOAS/
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Table 1. Setting up the DOAS retrieval for a spectrum analysis of NO2, O4, and HCHO.

Parameter Data Source
Fitting Interval (nm)

O4/NO2 HCHO

Wavelength range 338–370 322.5–358
NO2 298 K, I0 correction (SCD of 1017 molecules cm−2) [29]

√ √

NO2 220 K, I0 correction (SCD of 1017 molecules cm−2) [29]
√ √

O3 223 K, I0 correction (SCD of 1020 molecules cm−2) [30]
√ √

O3 243 K, I0 correction (SCD of 1020 molecules cm−2) [30]
√ √

O4 293 K [31]
√ √

BrO 223 K [32]
√ √

H2O 296 K, HITEMP [33]
√

×
HCHO 297 K [34]

√ √

Ring Calculated with QDOAS [35]
√ √

Wavelength calibration A high-resolution solar reference spectrum (SAO2010 solar spectra) [36]
√ √

Polynomial degree Order 3 Order 5
Intensity offset Constant Constant

2.3. Potential Source Analysis

The National Oceanic and Atmospheric Administration’s Air Resources Laboratory
(NOAA-ARL, http://www.ready.noaa.gov (accessed on 21 January 2021)), based on the
global data assimilation system (GDAS 1◦), developed a hybrid single-particle Lagrange
integral path (HYSPLIT) model. It is used to analyze the 24-h and 72-h back trajectories
of the air mass arriving at the observation sites. Cluster analysis is carried out based on
statistical analysis.

The main transport routes and possible sources of atmospheric compositions in the
YRD were identified using the potential source contribution function (PSCF) [23]. After
the research area had been gridded, a single grid coordinate was (i, j), the total number of
trajectory endpoints that fell within the lattice point ij was determined to be nij. mij was
the total number of endpoints with pollutant concentrations over the established standard
concentration, and Equation (1) specified the PSCF value for the ijth grid:

PSCFij =
mij

nij
. (1)

A weighted PSCF index, Wij, the empirical weight value derived from the number
of endpoints of the air mass trajectory in the grid, was utilized in the study [25]. The Wij
value is as shown in Equation (2):

Wij =


1.00 nij > 3Avg
0.70 Avg < nij ≤ 3Avg
0.42 0.5Avg< nij ≤ Avg
0.17 nij ≤ 0.5Avg

, (2)

where Avg is the average number of endpoints in each cell.
Further weighted calculations of PSCF and the values are shown in Equation (3):

WPSCF = Wij × PSCFij. (3)

2.4. Ancillary Data

The PM2.5 and NO2 concentrations for the research period were obtained from the
monitoring station of the CNEMC. The TROPOspheric Monitoring Instrument (TROPOMI)
measurements were used to determine the vertical column concentration (VCD) of HCHO.
The overpass time for TROPOMI is 13:30 (LST), and the spatial resolution is 7.0 × 3.5 km2.
The National Center for Environmental Prediction (NCEP), the Global Analytical Dataset
(FNL), and the weather research and forecast (WRF) atmospheric weather model, with a

http://www.ready.noaa.gov


Remote Sens. 2023, 15, 5475 6 of 18

spatial resolution of 0.1◦ × 0.1◦, were used to obtain the vertical distribution of meteorolog-
ical parameters such as wind speed (WS), wind direction (WD), relative humidity (RH),
and temperature (T). Detailed instructions on the WRF model configuration are included
in the Supplementary File (S1).

2.5. Data Verification

To evaluate the credibility of the data, AE and NO2 obtained via MAX-DOAS inversion
and PM2.5 and NO2 obtained via CNEMC data were compared and verified for the ZS and
NJ sites. The correlation between the HCHO obtained by the MAX-DOAS inversion and
the TROPOMI HCHO obtained via simultaneous TROPOMI HCHO was compared. As
shown in Figure 3, the AE and NO2 data of the two MAX-DOAS sites and the data of the
CNEMC showed a good correlation, with the correlation coefficient (R) exceeding 0.76. The
HCHO, MAX-DOAS, and TROPOMI data from the two sites showed a good correlation.
The HCHO correlation coefficient (R) of the ZS site was 0.78, and the HCHO correlation
coefficient (R) of the NJ site was 0.82. Therefore, this study analyzed and discussed the data
of AE, NO2, and HCHO obtained via MAX-DOAS inversion.
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Figure 3. Linear regression plots between (a) MAX-DOAS AE and CNEMC PM2.5 in the ZS site, (b) 

MAX-DOAS AE and CNEMC PM2.5 in the NJ site, (c) MAX-DOAS NO2 and CNEMC NO2 in the ZS 

site, (d) MAX-DOAS NO2 and CNI NO2 in the NJ site, (e) MAX-DOAS HCHO and TROPOMI 

HCHO in the ZS site, and (f) MAX-DOAS HCHO and TROPOMI HCHO in the NJ site. 

Figure 3. Linear regression plots between (a) MAX-DOAS AE and CNEMC PM2.5 in the ZS site,
(b) MAX-DOAS AE and CNEMC PM2.5 in the NJ site, (c) MAX-DOAS NO2 and CNEMC NO2 in the
ZS site, (d) MAX-DOAS NO2 and CNI NO2 in the NJ site, (e) MAX-DOAS HCHO and TROPOMI
HCHO in the ZS site, and (f) MAX-DOAS HCHO and TROPOMI HCHO in the NJ site.

3. Results
3.1. Spatiotemporal Variations of AE, NO2, and HCHO

The temporal evolution of AE, NO2, and HCHO at different altitude layers is shown in
Figure 4. These three atmospheric components (AE, NO2, and HCHO) at the NJ site were
mainly concentrated below 200 m, possibly because the main source of these atmospheric
components were near-surface emissions [23,37]. From the perspective of height distribu-
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tion, the high stratification of the three atmospheric components at the ZS site was less
pronounced during the study period. The temporal variability of these three atmospheric
components at Zhoushan was obvious. The variation amplitude of these three atmospheric
components in the NJ site was opposite to that in the ZS site, and the horizontal variation
amplitude of NO2 and HCHO is more prominent than that of AE.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 19 
 

 

3. Results 

3.1. Spatiotemporal Variations of AE, NO2, and HCHO 

The temporal evolution of AE, NO2, and HCHO at different altitude layers is shown 

in Figure 4. These three atmospheric components (AE, NO2, and HCHO) at the NJ site 

were mainly concentrated below 200 m, possibly because the main source of these atmos-

pheric components were near-surface emissions [23,37]. From the perspective of height 

distribution, the high stratification of the three atmospheric components at the ZS site was 

less pronounced during the study period. The temporal variability of these three atmos-

pheric components at Zhoushan was obvious. The variation amplitude of these three at-

mospheric components in the NJ site was opposite to that in the ZS site, and the horizontal 

variation amplitude of NO2 and HCHO is more prominent than that of AE. 

As an island region, the AE value of the ZS site fluctuated greatly at different altitude 

levels; in particular, the frequency of the AE value greater than 0.8 km−1 was generally 

higher than that of the NJ site (Figure 4a,d). On the one hand, the high surface relative 

humidity at island areas increases the AE due to the hygroscopic development of fine par-

ticles [38]. However, heterogeneous interactions between aerosols with trace gases (such 

as NO2, SO2, and HCHO) increasing aerosols favor the growth of secondary aerosols 

[39,40]. Additionally, sea breezes circulation enhances the buildup of pollutants at island 

locations and has an impact on air pollution [8]. In comparison to the ZS site, the NO2 

concentrations in the NJ site were substantially greater. This phenomenon could be 

brought on by the NJ site, which, as a large inland region, has fast industrialization and 

high car ownership, leading to the emission of primary pollutants [41]. Similar to NO2, the 

HCHO values at different heights at the NJ site were significantly higher than those at the 

ZS site. This phenomenon is attributed to the high density of population and cars at the 

NJ site. In addition to anthropogenic sources, biological sources are also one of the reasons 

for the higher HCHO at the NJ site [7]. 

0.0

0.4

0.8

1.2

1.6

0.0

0.4

0.8

1.2

2019/5/1 2019/5/22 2019/6/12 2019/7/3 2019/5/1 2019/5/22 2019/6/12 2019/7/3

12

16

8

4

0

9

6

3

0

18

24

6

0

12

6

4

2

 

A
E
（

k
m

-1
)

 100-200m layer  500-600m layer  900-1000m layer

(a)

0

(d)

 

(b)

 

N
O

2
 V

M
R
（

p
p

b
） (e)

 

(c)

DATE

H
C

H
O

 V
M

R
（

p
p

b
）

DATE

(f)

0

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Time trends of the following concentrations in the lower (100–200 m), middle (500–600 m),
and upper (900–1000 m) layers from May to July 2019: (a) ZS_AE, (b) ZS_NO2, (c) ZS_HCHO,
(d) NJ_AE, (e) NJ_NO2, and (f) NJ_HCHO.

As an island region, the AE value of the ZS site fluctuated greatly at different altitude
levels; in particular, the frequency of the AE value greater than 0.8 km−1 was generally
higher than that of the NJ site (Figure 4a,d). On the one hand, the high surface relative
humidity at island areas increases the AE due to the hygroscopic development of fine
particles [38]. However, heterogeneous interactions between aerosols with trace gases (such
as NO2, SO2, and HCHO) increasing aerosols favor the growth of secondary aerosols [39,40].
Additionally, sea breezes circulation enhances the buildup of pollutants at island locations
and has an impact on air pollution [8]. In comparison to the ZS site, the NO2 concentrations
in the NJ site were substantially greater. This phenomenon could be brought on by the
NJ site, which, as a large inland region, has fast industrialization and high car ownership,
leading to the emission of primary pollutants [41]. Similar to NO2, the HCHO values at
different heights at the NJ site were significantly higher than those at the ZS site. This
phenomenon is attributed to the high density of population and cars at the NJ site. In
addition to anthropogenic sources, biological sources are also one of the reasons for the
higher HCHO at the NJ site [7].
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3.2. Vertical Profiles of Aerosols, NO2 and HCHO

The vertical profile features of aerosols, NO2, and HCHO at the ZS and NJ sites were
further examined based on the variations in atmospheric composition between the island
and inland regions at various elevations (Figure 5). As shown in Figure 4a, the vertical
distribution pattern of AE at the NJ site was Gaussian, with a peak value appearing at
0.5 km, which agrees with the findings of other research conducted in other areas [16,42].
However, at 200–700 m, the AE values of the ZS site are significantly higher than those
near the ground, which is likely due to external propagation. According to Xing et al. [8]
and Pace et al. [43], sea breezes circulation causes pollutant deposition at island locations.
In addition to being influenced by local emissions, meteorological conditions also have a
role in the variance in air pollution components [44]. As shown in Figure S1, Zhoushan, an
island region, has a strong relative variation in wind direction, mainly from the southeast,
south, and southwest. The wind speed was higher than that at the NJ site and was mainly
distributed in the 6–8 m/s range. The correlation coefficient between AE and wind speed
was large and positive (0.74) at ZS (Table 2). This correlation is consistent with the above
speculation that the AE at the ZS site was caused by the exportation of pollutants from the
continent. In addition, the AE at the NJ site showed a significant positive correlation with
HCHO (Table 3), whereas the AE at the ZS site was not correlated with NO2 or HCHO,
which indicated that aerosols at the ZS site were mainly from external transport. As shown
in Figure 5b, the NO2 concentrations of the two sites revealed a decreasing trend with
altitude, and the NO2 values of the NJ site at 2.5–3 km showed a high value, which may be
due to transport impact from the surrounding areas [8]. In addition, HCHO at the NJ site
decreased with altitude (Figure 5c), whereas it showed little variation at the ZS site, and
even a slight increase at 1.5–2 km. Some studies have pointed out that levels of pollutants
increase at higher elevation due to transport from polluted areas [16,23].

Table 2. Correlation analysis between atmospheric composition and meteorological factors at the
ZS site.

ZS_NO2 ZS_HCHO ZS_AE

ZS_NO2 1
ZS_HCHO 0.98 ** 1

ZS_AE −0.19 −0.19 1
ZS_T 0.14 0.18 −0.74 **

ZS_RH 0.65 * 0.64 * 0.19
ZS_WD 0.116 0.04 0.74 **
ZS_WS −0.22 −0.25 0.35

** p < 0.01; * p < 0.05.

Table 3. Correlation analysis between atmospheric composition and meteorological factors at the
NJ site.

NJ_NO2 NJ_HCHO NJ_AE

NJ_NO2 1
NJ_HCHO −0.16 1

NJ_AE 0.34 0.73 * 1
NJ_T 0.38 −0.71 * −0.18

NJ_RH 0.65 * −0.83 ** −0.35
NJ_WD −0.45 0.81 ** 0.29
NJ_WS −0.72 * 0.70 * 0.19

** p < 0.01; * p < 0.05.
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4. Discussion
4.1. Diurnal and Weekly Variations of Aerosols, NO2, and HCHO

We analyzed the diurnal variation of the pollutants at 0–200 m from 08:00 to 18:00 LT.
Figure 6a shows that during the period from 8:00 to 18:00 LT, the daily variation of AE at
the ZS site is bimodal, with peak values occurring at 9:00 and 15:00. The AE value of the
ZS site is higher than that of the NJ site. This may be caused by the frequent industrial
activities and traffic activities in Nanjing area [45–47]. The AE peak of the NJ site appeared
in the afternoon. Figure 6b shows that the variation in NO2 during the daytime is not
apparent at ZS, mainly due to the low traffic emissions, and there was no obvious traffic
emission source [27]. In addition, the photolysis of NO2 led to the low NO2 value near
noon [8]. The peak of NO2 at the NJ sites occurred at 10:00 and 17:00, which was mainly
caused by vehicle emissions during traffic hours [5]. Figure 6c shows that the HCHO value
of ZS began to decline in the morning and increased from 14:00 to 18:00. This may relate
to changes in wind speed and direction in the island region [26,27]. The HCHO value of
the NJ site increased from 10:00 to approximately 14:00, remained constant until 17:00,
and then began to decline. The daily pattern of formaldehyde in Nanjing was similar to
that in Shanghai in the YRD and Beijing, which should be attributed to vehicle biogenic
emissions, and the secondary formation from the photolysis of volatile organic compounds
(VOCs) [5,48].
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Figure 6. The diurnal variation of (a) AE, (b) NO2, and (c) HCHO from May to July 2019. Error bars
represent the mean retrieved errors of AE, NO2, and HCHO.

The weekend impact denotes the decrease in traffic, human industrial activity, and
pollutant emission levels over the weekend [49]. By comparing the daily distribution
characteristics of the three atmospheric components at the two sites on weekdays and
weekends (Figure 7), the HCHO content at the NJ site was slightly higher on weekends
than that during the workday. Considering the uncertainty in the monitoring process of
HCHO, there was no significant difference between workdays and weekends, which was
also confirmed via ANOVA analysis (p > 0.05). In addition to the time period of 17:00–18:00,
the HCHO distribution of the ZS site also showed the same characteristics as that of NJ
site. This may be because Zhoushan was a tourist attraction; the tourist flow on weekends
was higher than on weekdays, and May to July was the peak season for tourism [26]. NO2
at the Nanjing site showed a noticeable weekend effect and a bimodal distribution. This
conclusion is consistent with that for Shanghai [50].
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4.2. Differences in Potential Sources of Aerosols, NO2, and HCHO between Islands and
Inland Areas

Previous studies have found that higher values of atmospheric components at high
altitudes (greater than 500 m) may be sourced from regional transport [16,51–53]. Therefore,
this study used the PSCF model to study the relative contributions of potential source
regions. Since aerosol and the other two trace gases (NO2 and HCHO) have different
lifetimes in the atmosphere, 72-h and 24-h air mass backward trajectory analyses were
adopted for aerosol and trace gases (NO2 and HCHO) to analyze potential sources of
pollutants, respectively [6,23].

For the Zhoushan site (Figures 8 and 9), the 24-h backward air masses mainly come
from YRD and central provinces, such as Jiangsu Province, southern Anhui Province,
Henan Province, northern Zhejiang Province, Shanghai, and ECS. In addition to the above
areas, the sources of the 72-h backward air masses also include Mongolia and the Yellow Sea.
In Nanjing, China (Figures 8 and 9), the sources of the 24-h backward air masses mainly
included Jiangsu Province, Shandong Province, northern Zhejiang Province, southern
Anhui Province, and Shanghai, which is consistent with the findings of various other
studies [27,54–57]. Sources of the 72-h backward air masses mainly include Mongolia, the
Yellow Sea, and the ECS, in addition to the areas covered in 24 h. Contrary to Zhoushan, the
24-h backward air masses at different altitudes mainly come from the northeast, southeast,
south, and east. Nonetheless, the 72-h backward air masses originate from several sources
at various altitudes.
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Figure 8. Backward trajectory and cluster analysis of ZS site: (a,b) represent the 24 and 72-h back-
ward track, respectively; 1–4 represent 100 m, 500 m, 1000 m and 2000 m, respectively; the black
line represents the backward trajectory of the air masses; the colored lines represent clusters for
cluster analysis.
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Figure 9. Backward trajectory and cluster analysis of NJ site: (a,b) represent the 24 and 72-h back-
ward track, respectively; 1–4 represent 100 m, 500 m, 1000 m and 2000 m, respectively; the black
line represents the backward trajectory of the air masses; the colored lines represent clusters for
cluster analysis.
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The WPSCF results showed that the local emissions and the ECS were the main
sources of aerosols in Zhoushan at elevation of 100 m, 500 m, and 1000 m, whereas
the pollution sources at 2000 m mainly included Jiangsu Province and the Yellow Sea
(Figure 10). The NO2 pollution sources at 500 m were mainly northeastern Zhejiang,
Shanghai, and the ECS. The HCHO sources at different heights were mainly distributed
in Jiangsu Province, northeastern Zhejiang Province, and the Yellow Sea. Figure 11
shows that the potential sources of aerosol pollution at 100 m from Nanjing were mainly
local emissions and Jiangsu Province. However, aerosol sources at 500 m, 1000 m, and
2000 m included Shanghai and southeastern Anhui Province in addition to Jiangsu
Province and local emissions. The NO2 source area at 500 m was mainly distributed
in the southeastern Jiangsu Province and Shanghai. Local emissions primarily affected
HCHO at a distance of 100 m, whereas at a distance of 500 m, pollution sources included
Shanghai, southern Jiangsu Province, and southeast Anhui Province [23]. Southeast
Anhui Province and Jiangsu Province are two of the areas where pollution from the
1000 m HCHO is produced. Pollution sources at 2000 m included southeastern Anhui
Province, Jiangsu Province, and Shandong Province. In summary, aerosols, NO2, and
HCHO in Nanjing were more influenced by the transport of inland regions, whereas
aerosols in Zhoushan were more susceptible to the transport of pollutants in the Yellow
Sea and ECS, and the transport contributions of the surrounding inland regions more
influenced NO2 and HCHO.
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Figure 11. WPSCF distribution map of the NJ site: (a–c) represent AE, NO2, HCHO, respectively; 1–4
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5. Conclusions

This research revealed the vertical and temporal distribution features, as well as
possible pollution sources, of various atmospheric components (aerosols, NO2, and HCHO)
at different heights on islands and inland regions in the YRD region based on MAX-DOAS
measurements. Compared to the ZS site, the AE values close to the surface at the NJ site
were greater. Owing to the impact of sea breezes, the AE value at high altitude in ZS is
higher than that in NJ. In contrast, because of the high degree of urbanization, Nanjing’s
NO2 and HCHO values were higher than those in Zhoushan. The diurnal variation
characteristics of HCHO at both sites showed that the HCHO content on working days
was slightly lower than on weekends. The correlation between meteorological factors
and AE, NO2, and HCHO confirms that the high AE value of ZS is consistent with the
regional transport of pollutants driven by wind speed. Identifying potential sources of
air pollution components at vertical heights in the YRD showed that aerosols, NO2, and
HCHO in Zhoushan and Nanjing were mainly influenced by pollutant transport in the
Yellow Sea, inland regions, and the ECS. According to our study, the pollutants transported
from surrounding seas play an important role in the vertical distribution characteristics of
aerosols, NO2, and HCHO in Zhoushan. In the future, we plan to study more coastal air
composition samples using our study methodology and remote sensing technologies.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/rs15235475/s1. S1: WRF model configuration. Figure S1: The
averaged vertical profiles of (a) T, (b) RH, (c) WD and (d) WS from May to July 2019. Table S1:
Parametric scheme of physical process in WRF model. Refs. [16,25,58–61] are cited in the Supplemen-
tary Materials.

https://www.mdpi.com/article/10.3390/rs15235475/s1
https://www.mdpi.com/article/10.3390/rs15235475/s1
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