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Abstract: The comprehensive use of high-resolution remote sensing (HRS) images and deep learning
(DL) methods can be used to further accurate urban green space (UGS) mapping. However, in the
process of UGS segmentation, most of the current DL methods focus on the improvement of the
model structure and ignore the spectral information of HRS images. In this paper, a multiscale
attention feature aggregation network (MAFANet) incorporating feature engineering was proposed
to achieve segmentation of UGS from HRS images (GaoFen-2, GF-2). By constructing a new decoder
block, a bilateral feature extraction module, and a multiscale pooling attention module, MAFANet
enhanced the edge feature extraction of UGS and improved segmentation accuracy. By incorporating
feature engineering, including false color image and the Normalized Difference Vegetation Index
(NDVI), MAFANet further distinguished UGS boundaries. The UGS labeled datasets, i.e., UGS-1
and UGS-2, were built using GF-2. Meanwhile, comparison experiments with other DL methods
are conducted on UGS-1 and UGS-2 to test the robustness of the MAFANet network. We found the
mean Intersection over Union (MIOU) of the MAFANet network on the UGS-1 and UGS-2 datasets
was 72.15% and 74.64%, respectively; outperforming other existing DL methods. In addition, by
incorporating false color image in UGS-1, the MIOU of MAFANet was improved from 72.15% to
74.64%; by incorporating vegetation index (NDVI) in UGS-1, the MIOU of MAFANet was improved
from 72.15% to 74.09%; and by incorporating false color image and the vegetation index (NDVI) in
UGS-1, the MIOU of MAFANet was improved from 72.15% to 74.73%. Our experimental results
demonstrated that the proposed MAFANet incorporating feature engineering (false color image and
NDVI) outperforms the state-of-the-art (SOTA) methods in UGS segmentation, and the false color
image feature is better than the vegetation index (NDVI) for enhancing green space information
representation. This study provided a practical solution for UGS segmentation and promoted
UGS mapping.

Keywords: urban green space; deep learning; high-resolution remote sensing images; multiscale
pooling attention; feature engineering

1. Introduction

UGS is one of the important components of the urban ecosystem and plays an impor-
tant role in ecological environment, public health, social economy, and other aspects [1–4].
In recent years, to promote sustainable planetary health, providing balanced UGS resources
for urban residents has become an increasingly important goal for governments and institu-
tions at all levels around the world [5,6]. To promote equitable access to UGS, it is essential
to gain insights into the distribution of UGS. Such insights can aid in the development
of well-informed policies and the allocation of funds [7]. While the Statistical Yearbook
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may provide an approximate area of UGS in a given region or city, obtaining precise UGS
distribution data remains a challenge [8]. Furthermore, some areas lack reliable information
regarding UGS distribution, posing significant obstacles to effective policy development
and resource allocation. Therefore, to supply reliable basic geographical information for
in-depth UGS research, it is crucial to conduct fine-grained and accurate extraction of UGS.

With the advancement and application of remote sensing technology, a variety of
remote sensing images have become valuable sources of data for obtaining urban geo-
graphical information coverage [9]. For instance, Sun et al. [10] utilized MODIS data to
extract UGS in certain Chinese cities. Jun et al. [11] constructed GlobeLand30 data based
on Landsat images. In another study, Huang et al. [12] calculated object UGS coverage
based on Landsat images to evaluate changes in health benefits when UGS exists. However,
despite the rich data provided by multispectral images, their lower spatial resolution often
limits the precision of the UGS information obtained. Furthermore, compared with low-
and medium-resolution remote sensing images such as MODIS and Landsat, HRS images
can provide more and more detailed ground information, helping to refine the extraction of
UGS. At the same time, UGS extraction methods mainly include traditional machine learn-
ing methods and DL methods. Machine learning includes maximum likelihood methods,
Random Forest, support vector machines, etc. For example, Yang et al. [13] and Huang
et al. [14] applied machine learning methods to extract green space coverage information.
However, these methods necessitate manual feature engineering for classification, which
can be time-consuming, labor-intensive, and have a low degree of automation.

DL can automatically extract multi-level features and finds widespread application
across domains [15], including computer vision [16], natural language processing [17],
and more. In the realm of remote sensing image interpretation, DL algorithms such as
U-Net [18], FCNs [19], SegNet [20], DeepLabv3+ [21], etc., have been widely adopted. For
example, Liu et al. [22] used DeepLabv3+ and Tong et al. [23] used residual networks to
automatically obtain UGS distribution from GF-2 images, respectively. The automated
extraction of high-resolution UGS has assumed increasing importance [24,25]. Although
deep learning methods have achieved good application results in UGS classification tasks,
current methods mostly focus on the improvement of DL networks, ignoring the spectral
information of HRS images. Harnessing this spectral information to its full potential has
the potential to further improve the accuracy of UGS classification. To this end, we propose
a MAFANet network that incorporates feature engineering. The network uses ResNet50
as the backbone network. In terms of feature extraction, we constructed a multiscale
pooling attention (MSPA) module. The MSPA module focuses on extracting the contextual
information of multiscale UGS, which in turn enhances the relevance of the MAFANet
model in capturing long-range feature information of UGS, which is more effective than
ordinary convolution in extracting features. The decoder module consists of a new decoder
block (DE) and a bilateral feature fusion (BFF). We build the decoder module to enhance the
dual-channel communication capability, allowing the two adjacent layers of the ResNet50
network to guide each other for feature mining. And it helps in the recovery and fusion of
the acquired image feature information by the decoder module. False color image synthesis
and NDVI vegetation index are incorporated to enhance the identification of UGS boundary
can effectively improve the segmentation accuracy of UGS.

In summary, our main contributions are as follows:

(1) Design the MSPA module to extract the intra-contextual information of multiscale UGS,
and then improve the relevance of the MAFANet model to capture the long-range feature
information of UGS, thus improving the overall USG segmentation effect;

(2) Designing the DE and BFF module construction new decoder to enhance the dual-
channel communication capability, so that the two neighboring layers of ResNet50
network can guide each other in feature mining and improve the anti-interference
capability of the MAFANet model;
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(3) Introducing false color image synthesis and NDVI vegetation index to improve seg-
mentation accuracy while proving that false color feature is better than the vegetation
index in the process of UGS information extraction.

2. Materials and Methods

This paper combines HRS image band information and the vegetation index to propose
a DL method (MAFANet) based on encoding and decoding structure. This method uses
attention aggregation and bilateral feature fusion to realize the utilization of multi-scale
information and can effectively segment green areas. Figure 1 shows the overall structure
of MAFANet, which consists of the ResNet50, MSPA, BFF, and DE modules.
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2.1. MAFANet Network

The extraction accuracy of UGS feature plays a crucial role in the final segmentation
accuracy. To optimize the MAFANet model performance, we modify the input image size
and channel number during the encoding part, increasing information richness. During the
decoding part, we restore the image size and reduce channels to the input size, preserving
image details. This work employs ResNet50 as the backbone network, complemented by an
MSPA module for multiscale contextual awareness and deep spatial channel information
extraction, aiding UGS segmentation based on contextual cues. Furthermore, to retain es-
sential information while filtering out noise, we built a novel decoder module by designing
a DE and a BFF module. The DE module is mainly used for information fusion between
the encoding and decoding layer. The BFF module enhances communication between
channels, facilitating mutual guidance in feature mining between adjacent layers of the
ResNet50 network, promoting feature fusion, and providing richer feature information for
upsampling. The use of four upsampling modules progressively integrates features from
high to low and reinstates the details of HRS image, significantly enhances the MAFANet
model segmentation performance.

2.2. Encoder with Residual Network

HRS images are rich in data, and DL networks have the capability to capture more
information and richer features from HRS image data. However, during training, deep
networks often face challenges such as gradient explosion and gradient disappearance
due to the increasing number of network layers, which can hinder effective training of
the network and affect the segmentation effect. ResNet50 [26] effectively addresses these
issues, allowing the construction of very deep networks. Resnet50 uses three convolutional
layers of 1 × 1, 3 × 3, 1 × 1, respectively, while introducing a branch to add with the
convolutional layers and then outputs the final result. Therefore, this article uses ResNet50
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as the backbone for multi-level feature extraction, forming the encoding part. Resnet50
residual structure is shown in Figure 2.
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2.3. Decoder with Decoder Block and Bilateral Feature Fusion Module

During the decoding stage, many networks perform direct upsampling to match the
original image size, which can result in information loss. Some networks address this by
using a single convolutional layer for decoding, preserving important local features but
lacking long-range feature connections. These networks are not as effective in recovering
the edges of the UGS areas. Therefore, we built a novel decoder module designed to
gradually recover essential information from deep features. Figure 3 shows the structure of
our proposed decoder module.
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In the upsampling process, high-level semantic and spatial information often results in
a rough final segmentation boundary, especially when dealing with arbitrary and irregular
UGS sizes and shapes, making UGS boundary segmentation challenging. Some existing
methods segment the boundaries very coarsely and lack detail. As shown in Figure 3a, this
paper uses two layers of 3 × 3 convolution, normalization, and activation functions to form
a DE module to enhance the ability to obtain information when extracting features. As
shown in Figure 3b, this article uses DWConv convolution [27] to form a BFF module, which
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can learn richer detailed features while reducing the amount of calculation parameters.
During the training phase, multiple DWConv convolution combinations can enhance the
representation of UGS information features. Maxpool is used to extract feature information.
We used three maxpool layers of 3 × 3, 5 × 5, 7 × 7, respectively, to achieve UGS feature
information extraction in parallel. To a certain extent, it can extract texture and edge
information in the image, reduce interference from non-green space areas in the HRS image,
and more effectively identify scattered multiscale objects, thereby reducing the risk of
missed segmentation and false segmentation. At the same time, we keep an input channel
in the side to preserve the integrity of the input information. The new decoder module has
the potential to promote MAFANet model segmentation of UGS.

2.4. Multiscale Pooling Attention Module

For DL networks, capturing long-range correlations is crucial. However, the con-
volution operation is used to process local areas, and its receptive field is limited, so it
cannot capture the correlation of long-distance UGS feature information. The pooling
operation of the large square kernel can enhance the sharing of global information. This
method works well when detecting large-scale objects, but it does not work well when
detecting scattered small-scale green spaces. This is because the large kernel extracts too
much information from irrelevant regions to adapt to multi-scale changing objects, which
can interfere with the final prediction of the model. Therefore, the model needs to have
convolutional kernels of multiple sizes to obtain a multi-scale detection field of view to
accommodate scale variations of UGS objects.

PyConv [28] can not only expand the receptive field of the input to capture sufficient
UGS contextual information by convolving 3 × 3, 5 × 5, 7 × 7, etc., but also process inputs
of incremental kernel sizes in parallel by using a pyramid structure. This helps the model
understand and represent UGS in images of different scales, and to obtain detailed multi-scale
information on UGS objects. Global attention mechanism (GAM) [29] preserves channel
(Figure 4) and spatial (Figure 5) aspects of information to enhance the importance of cross-
dimensional interactions, improving the perception performance of the deep neural network
on UGS objects by reducing object information dispersion. Inspired by PyConv and GAM,
the MSPA module is built to further enhance object information extraction. As depicted in
Figure 1, the MSPA module comes into play after the initial feature extraction phase using
ResNet50. Its primary objective is to extract multi-scale contextual information and depth
channel-specific information. The MSPA module’s capabilities are twofold. First, it leverages
contextual information to address objects with similar shapes, such as low vegetation and tree,
facilitating their classification. Moreover, it excels in processing and segmenting the intricate
edge details between objects. This contextual understanding enhances the model’s ability to
distinguish and categorize objects effectively. Secondly, the MSPA module extracts multi-scale
spatial and channel information concurrently. This parallel extraction approach ensures that
the model pays significant attention to both object category information and object location
details. This focus on multi-scale aspects allows the model to emphasize essential information
within the image, leading to a substantial improvement in segmentation accuracy. In general,
the MSPA module, inspired by the principles of PyConv and the Global Attention Mechanism,
plays a pivotal role in enhancing object information extraction. It effectively captures multi-
scale context and depth channel-specific information, ultimately bolstering the segmentation
quality and precision of the model.
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2.5. Data and Experiment Details
2.5.1. HRS Image Data

In order to effectively extract UGS, this experiment obtained high-resolution remote
sensing images (GF-2, 21 July 2022) from the China Resources Satellite Application Center
as the data source. The GF-2 PMS (panchromatic multispectral sensor) has a panchromatic
band with a spatial resolution of 1 m and four multispectral bands with a spatial resolution
of 4 m. The multispectral includes blue, green, red, and near-infrared bands. After ortho-
correction, the panchromatic and multispectral images were fused to obtain the GF-2 image
with a spatial resolution of 0.8 m. The image shearing operation was performed to obtain
the GF-2 image. Finally, the 0.8 m GF-2 image was subjected to image cropping operation
to obtain the object image of the study area.

2.5.2. False Color Data

A typical false color image using a 4-3-2 band blends to illustrate UGS characteristics.
Select three bands from the HRS data and put them into RGB color in the order of bands 4,
3, and 2, then finally, obtain a false color image.

2.5.3. Vegetation Index Data

In GF-2, the UGS area has lower reflectance in the visible and higher reflectance in
the near-infrared. This study combines GF-2 multi-temporal remote sensing images to
introduce urban green space vegetation characteristics. The vegetation characteristics were
selected as NDVI [30], which is an index widely used for plant growth assessment, as
shown in Figure 6, and its calculation formula is as follows:

NDVI =
NIR − R
NIR + R

(1)

where NIR is the value of the near-infrared band, and R is the value of the red band.
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2.5.4. Dataset Construction

Existing datasets are dominated by ISPRS-Vaihingen and Potsdam (https://www.
isprs.org/education/benchmarks/UrbanSemLab/semantic-labeling.aspx, accessed on
24 January 2023), mostly for land cover use. There are few datasets about UGS and most of
them are not publicly available for UGS related research. Meanwhile, most of the existing
studies use MODIS, Landsat, and other low- and medium-resolution remote sensing image
data, which have low precision in UGS exposure level evaluation and cannot express the
structure, quality, morphology, and other aspects of UGS characteristics. Therefore, we
selected an HRS image (GF-2) as the data to construct the UGS dataset. With the help of
Google Earth, all acquired images are marked at the pixel level, and the original image
pixels are divided into three categories: low vegetation, tree, and background. The RGB
values of the background, tree and low vegetation pixels are set to (0, 0, 0), (0, 255, 0) and
(0, 255, 255), respectively, as shown in Figure 7. Among them, low vegetation is dominated
by grass and shrub. In order to adapt to the limited computing resources, we adopt the
image cropping method to segment both the original image and the labeled image into
256 × 256-pixel images, and finally the UGS labeled dataset UGS-1 is obtained, including
the training, validation, and test set. UGS-1 is shown in the original bands (1-2-3) of the
GF-2 image. The sets are 1109, 336, and 336, respectively. At the same time, the origi-
nal bands (1-2-3) of UGS-1 are modified to display the false color image in the order of
4-3-2 bands sequentially. The same method as above is used to construct UGS-2 with false
color image, as shown in Figure 8, where the training, validation, and test set are 1109, 336,
and 336, respectively.
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2.5.5. Experimental Environment and Evaluation Metrics

The experimental operating system was Windows 10, the GPU was NVIDIA GeForce
RTX 3060 (NVIDIA, Santa Clara, CA, USA), the running memory was 12 G, and the deep
learning framework was Pytorch1.7.1 and Cuda11.6. During the model training process,
this article used the cosine annealing strategy to adjust the learning rate, and also used
the SGD optimizer, whose weight attenuation was set to 1 × 10−4. All networks were
optimized using the loss function of cross-entropy loss. In addition, the number of training
iterations was 300 and the batch_ size was set to 2. To further optimize the model learning,

https://www.isprs.org/education/benchmarks/UrbanSemLab/semantic-labeling.aspx
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the baseline learning rate was set to 0.001. The adjustment multiple was set to 0.98. The
adjustment interval was set to 3.

To quantitatively evaluate the robustness and effectiveness of the model, this study
used four metrics, namely pixel accuracy (PA), mean pixel accuracy (MPA), and Intersection
over Union (IOU), and mean Intersection over Union (MIOU) and other evaluation indica-
tors to evaluate the model performance. The calculation formula for the above evaluation
indicators is as follows:

P =
pii

pii + pij
(2)

R =
pii

pii + pji
(3)

PA =
k

∑
i=0

Pii
k
∑

j=0
pij

(4)

MPA =
1

k + 1

k

∑
i=0

Pii
k
∑

j=0
pij

(5)

IOU =
pii

k
∑

j=0
pij +

k
∑

j=0
pji − pii

(6)

MIOU =
1

k + 1

k

∑
i=0

pii
k
∑

j=0
pij +

k
∑

j=0
pji − pii

(7)

where precision (P) denotes the probability that the object category is predicted correctly in
the prediction result; recall (R) denotes the probability that the object category is predicted
correctly in the true value; k denotes the number of object categories excluding background;
Pii and Pji denote the corresponding true and false positive; Pij and Pjj denote the corre-
sponding false and true negative. In semantic segmentation tasks, the Intersection over
Union (IOU) metric quantifies the degree of overlap between the predicted segmented im-
age and the actual ground truth image (labeled data). The mean IOU (MIOU) assesses the
likeness between the true green space pixels and the predicted ones. A higher MIOU value
indicates a stronger resemblance, making it a crucial measure of segmentation accuracy.

3. Results
3.1. Comparison Experiment
3.1.1. Comparison Experiment of the UGS-1 Dataset

To verify the effectiveness and rationality of MAFANet in UGS segmentation tasks,
we select some existing methods and conduct a set of comparative experiments on UGS-1.
This experimental method included UNet [18], FCN8s [19], SegNet [20], DeepLabv3+ [21],
DenseASPP [31], ShuffleNetV2 [32], PSPNet [33], DFANet [34], DABNet [35], ESPNetv2 [36],
ACFNet [37], ERFNet [38], HRNet [39], DensASPP (mobilenet), MFFTNet [40] and MAFANet.
Table 1 shows the specific comparison experimental results.

Table 1 shows the four score indicators of our selected methods on the UGS-1 dataset.
This paper uses PA, MPA, MIOU, and IOU to evaluate the effect of our selected methods.
As can be seen from the table, for the UGS segmentation task, the proposed MAFANet
has the highest segmentation accuracy, and all indicators are better than other networks.
The scores of the four indicators are: PA, 88.52%; MPA, 81.55%; MIOU, 72.15%; IOU (low
vegetation), 49.53%; IOU (tree), 81.64% (Table 1).
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Table 1. Results of comparison experiments on UGS-1.

Overall Results Class IOU

Method PA (%) MPA (%) MIOU (%) Low Vegetation (%) Tree (%)

DensASPP(mobilenet) 83.71 75.22 64.19 40.35 74.11
ESPNetv2 84.94 75.52 65.68 41.75 75.63
DensASPP 85.29 76.10 66.39 42.81 76.67
DFANet 85.18 76.40 66.44 43.56 75.29
ShuffleNetV2 86.22 77.73 68.22 45.74 77.68
DeepLabv3+ 86.31 78.12 68.38 45.66 78.08
FCN8s 87.01 79.49 69.71 47.35 79.11
SegNet 87.17 79.51 69.93 47.59 79.59
HRNet 87.53 78.96 69.97 46.40 79.92
ERFNet 87.47 79.22 70.06 46.95 79.92
DABNet 87.53 79.21 70.22 47.47 79.97
ACFNet 87.51 79.87 70.42 47.84 80.11
MFFTNet 87.97 79.29 70.55 46.73 80.54
PSPNet 87.84 79.99 70.93 48.66 80.16
ResNet50 88.03 80.06 71.11 48.44 80.64
UNet 88.25 80.51 71.53 48.94 81.12
MAFANet 88.52 81.55 72.15 49.53 81.64

There are objects of different sizes, shapes, and widespread distribution in the HRS
images, and the training and predicting results of different DL models are different. In
order to intuitively show the effectiveness of the MAFANet model in the UGS segmenta-
tion task from the HRS images, this paper selected several representative remote sensing
images on the UGS-1 dataset for experiments. The visual segmentation results are shown
in Figure 9. We can observe that the MAFANet network can effectively detect the vast
majority of objects. It can be seen closely from the first line of Figure 9, although DensASPP
uses a dense pyramid and a large field of view structure, the classification results obtained
ignore a large number of low vegetation parts, and the classification results are poor. The
classification results of DeepLabv3+ show that the edges of the target are relatively smooth,
but the building area next to the low vegetation cannot be correctly identified and is mis-
takenly detected as low vegetation (third row d in Figure 9); at the same time, the low
vegetation area next to the trees cannot be effectively identified. UNet classification results
have improved, but this method mistakenly identified some barren wastelands as green
spaces (Figure 9). We can see from the figure that the segmentation effect of MAFANet
is better than that of UNet and DenseASPP, and the edge of MAFANet segmentation is
more consistent with the actual edge characteristics of UGS area. The MIOU scores of
the MAFANet network are 6.47%, 2.22%, 2.18%, 1.73%, and 1.22% higher than those of
ESPNetv2, SegNet, HRNet, ACFNet, and PSPNet, respectively. The IOU (low vegetation)
scores of the MAFANet network are 7.78%, 1.94%, 3.13%, 1.69%, and 0.87% higher than
those of ESPNetv2, SegNet, HRNet, ACFNet, and PSPNet, respectively. The scores of IOU
(tree) are 6.01%, 2.05%, 1.72%, 1.53%, and 1.48% higher than ESPNetv2, SegNet, HRNet,
ACFNet, and PSPNet, respectively. Experiments have shown that this model has certain
advantages in UGS segmentation from HRS images. At the same time, compared with
most existing networks, such as DenseASPP, DensASPP (mobilenet), SegNet, DeepLabv3+,
and UNet, MAFANet effectively identifies most UGS and is close to the real surface condi-
tions. Accurate green space segmentation faces considerable challenges, especially in urban
environments characterized by intricate surfaces from the HRS images. The presence of
building shadows, a multitude of imaging conditions, and the spectral similarities between
green spaces and other features significantly impede precise green space extraction. This
complexity necessitates innovative approaches to overcome these hurdles and enhance the
accuracy of green space segmentation in HRS images. Performance of UGS recognition near
buildings by Deeplabv3+ and DenseASPP decline; UNet incorrectly extracts green space
parts near buildings, and the overall performance is poor. By optimizing the network, the
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MAFANet network performs multi-scale attention aggregation and dual-channel informa-
tion fusion; effectively realizing green space classification in complex urban environments
and having strong robustness.
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3.1.2. Comparison Experiment of the UGS-2 Dataset

To further test the generalization performance of MAFANet in the UGS segmentation
task, we select the existing DL methods to conduct a set of comparative experiments on
UGS-2. Table 2 shows the specific comparison experimental results.

Table 2. Results of comparison experiments on UGS-2.

Overall Results Class IOU

Method PA (%) MPA (%) MIOU (%) Low Vegetation (%) Tree (%)

DensASPP (mobilenet) 84.73 75.48 64.89 38.62 73.85
DFANet 87.30 77.48 68.37 41.05 78.29
ESPNetv2 88.07 77.67 69.43 42.40 80.08
DensASPP 88.45 78.73 70.58 45.00 80.80
DeepLabv3+ 88.53 79.63 70.88 44.94 81.06
ShuffleNetV2 88.26 80.53 71.43 48.45 80.43
FCN8s 88.87 79.87 71.58 46.57 81.27
HRNet 89.21 80.41 72.24 47.45 81.92
ERFNet 89.42 80.81 72.71 48.25 82.11
DABNet 89.34 81.18 72.97 49.71 81.73
ACFNet 89.47 81.81 73.35 50.29 82.06
PSPNet 89.61 81.48 73.37 49.87 82.61
SegNet 89.59 81.49 73.40 50.17 82.49
ResNet50 89.84 81.70 73.82 50.71 82.68
MFFTNet 89.82 82.27 74.01 51.24 82.63
UNet 89.97 82.29 74.09 50.71 83.28
MAFANet 90.19 83.10 74.64 51.43 83.72

In the UGS-2 dataset, the four score indicators of the proposed MAFANet network
are: PA, 90.19%; MPA, 83.10%; MIOU, 74.64%; IOU (low vegetation), 51.43%; IOU (tree),
83.72% (Table 2). Comparing the segmentation accuracy of the MAFANet on UGS-1, the
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MIOU on UGS-2 data set reached 74.64%, an increase of 2.49%. Experiments have shown
that using standard false color images to extract urban green spaces can better express
the characteristics of UGS. It can be observed that the MAFANet network can effectively
detect the vast majority of objects. From the third row of Figure 10, both DensASPP
and DeepLabv3+ use dense connection structures, but the classification results obtained
ignore a large number of low vegetation parts, and the classification results are poor; in
comparison, MAFANet and UNet can effectively identify low vegetation and tree areas, The
segmentation edges of MAFANet network are smoother than UNet. DensASPP mistakenly
detects some roads between green spaces as green spaces (second row in Figure 10). We
can see that MAFANet outperforms DeepLabv3+, DensASPP, and UNet in classifying low
vegetation and tree. The MIOU scores of the MAFANet network are 5.21%, 2.4%, 1.29%,
1.27%, and 1.24% higher than those of ESPNetv2, HRNet, ACFNet, PSPNet, and SegNet,
respectively. The IOU (low vegetation) scores the MAFANet network are 9.03%, 3.98%,
1.14%, 1.56%, and 1.26% higher than those of ESPNetv2, HRNet, ACFNet, PSPNet, and
SegNet, respectively. The scores of IOU (tree) are 3.64%, 1.8%, 1.66%, 1.11%, and 1.23%
higher than ESPNetv2, HRNet, ACFNet, PSPNet, and SegNet, respectively. For the surface
information of the first row of building attachments, MAFANet recognizes better, captures
more complete information, and excels closely approximating real surface conditions.
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3.2. Ablation Experiments
3.2.1. Ablation Experiment on UGS-1 and UGS-2

To verify the effectiveness of the ResNet50, MSPA, BFF, and DE modules, ablation
experiments are performed on UGS-1 dataset (Table 3) and UGS-2 dataset (Table 4), re-
spectively. We start with the first line for feature extraction using the baseline, and then
the upsampling operation is directly performed to output the extraction results. From the
second line to the last line, this article adds DE, BFF, Pyconv, GAM, and MSPA modules
in sequence.
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Table 3. Results of UGS-1 ablation experiments. DE denotes decoder block, BFF denotes bilateral
feature fusion module, Pyconv denotes Pyramidal Convolution, GAM denotes Global attention
mechanism, MSPA denotes multiscale pooling attention.

Class IOU

Method MIOU (%) Low Vegetation (%) Tree (%)

baseline 71.11 48.44 80.64
baseline+ DE 71.44 48.85 80.76
baseline+ DE+ BFF 71.98 49.22 81.60
baseline+ DE+ BFF+ Pyconv 71.80 49.14 81.34
baseline+ DE+ BFF+ GAM 71.76 48.69 81.53
baseline+ DE+ BFF+ MSPA 72.15 49.53 81.64

Table 4. Results of UGS-2 ablation experiments. DE denotes decoder block, BFF denotes bilateral
feature fusion module, Pyconv denotes Pyramidal Convolution, GAM denotes Global attention
mechanism, MSPA denotes multiscale pooling attention.

Class IOU

Method MIOU (%) Low Vegetation (%) Tree (%)

baseline 73.82 50.71 82.68
baseline+ DE 74.15 50.97 83.00
baseline+ DE+ BFF 74.21 51.23 83.24
baseline+ DE+ BFF+ Pyconv 74.46 51.24 83.43
baseline+ DE+ BFF+ GAM 74.48 51.11 83.71
baseline+ DE+ BFF+ MSPA 74.64 51.43 83.72

Compared with the base network, the model feature extraction performance can
be improved by using the new decoder module (Table 3, Figure 11). The DE module
protects the integrity of the information when extracting UGS features, resulting in a
0.33% improvement in MIOU, a 0.41% improvement in IOU (low vegetation), and a 0.12%
improvement in IOU (tree). The BFF module enhances the dual-channel communication
capability, so that the two neighboring layers of ResNet50 network can guide each other
in feature mining and improve the anti-interference capability of the MAFANet model,
resulting in a 0.54% improvement in MIOU, a 0.37% improvement in IOU (low vegetation),
and a 0.84% improvement in IOU (tree). Using the MSPA module, MIOU is significantly
improved by 0.43%. In addition, a comparison was made between Pyconv and the GAM
module, both of them showed a decrease in performance. The optimized MSPA module has
better performance, with MIOU, IOU (low vegetation) and IOU (tree) all improved. The
reason is that the MSPA module takes into account the multi-scale information extraction
of the Pyconv module and the GAM module. The MSPA effectively utilizes the global
attention field, which in turn improves the segmentation accuracy of the MAFANet model.
Using the above improvement strategy finally brings a gain of 1.04 percentage points
compared with the baseline, thus proving the effectiveness of the MAFANet network.

Compared with the base network, the model feature extraction performance can be
improved by using the new decoder module (Table 4, Figure 12). Building the DE module
and the BFF module effectively guides the learning of adjacent two layers of ResNet50
network and can carry out feature mining at the same time, increasing MIOU by 0.39%,
IOU (low vegetation) by 0.52%, and IOU (tree) by 0.56%. Using the MSPA module, MIOU
is significantly improved by 0.43%. In addition, comparing the Pyconv and GAM modules,
the optimized MSPA module has better performance, with the MIOU, IOU (low vegetation)
and IOU (tree) all improved. The reason is that the MSPA module takes into account the
multi-scale information extraction of the Pyconv module and the GAM module. As a
result, the MSPA module effectively improves segmentation accuracy. Using the above
improvement strategy finally brings a gain of 0.82 percentage points to the model, proving
the effectiveness of the MAFANet network.
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Compared with the base network, the model feature extraction performance can be 
improved by using the new decoder module (Table 4, Figure 12). Building the DE module 
and the BFF module effectively guides the learning of adjacent two layers of ResNet50 net-
work and can carry out feature mining at the same time, increasing MIOU by 0.39%, IOU 
(low vegetation) by 0.52%, and IOU (tree) by 0.56%. Using the MSPA module, MIOU is sig-
nificantly improved by 0.43%. In addition, comparing the Pyconv and GAM modules, the 
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3.2.2. Ablation Experiment of the Feature Engineering

To verify the effectiveness of feature engineering, we use UNet and MAFANet to
conduct ablation experiments in different feature engineering (Table 5). We performed
ablation experiments on the image of NDVI, the UGS-1 image, the image of fused NDVI in
UGS-1, the UGS-2 image, and the image of fused NDVI in UGS-2 to test accordingly.

When the NDVI feature was incorporated into UGS-1 data, the MIOU of UNet and
MAFANet increased by 1.95% and 1.94%, the IOU (low vegetation) increased by 0.67%
and 1.14%, and the IOU (tree) increased by 1.59% and 1.70%, respectively. When the false
color image features were incorporated into UGS-1 data, the MIOU of UNet and MAFANet
increased by 2.56% and 2.49%, the IOU (low vegetation) increased by 1.77% and 1.90%,
and the IOU (tree) increased by 2.16% and 2.08%, respectively. The integration of false
color image and the NDVI index into UGS-1 data can further improve the accuracy of UGS
segmentation by MAFANet from 72.15% to 74.73%.
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Table 5. Results of the feature engineering ablation experiments. UGS-1+NDVI indicates that NDVI
is superimposed onto the UGS-1 data, and UGS-2+NDVI indicates that NDVI is superimposed onto
the UGS-2 data.

Class IOU

Data Method MIOU (%) Low Vegetation (%) Tree (%)

NDVI
UNet 69.58 41.84 79.83

MAFANet 71.10 46.26 80.38

UGS-1
UNet 71.53 48.94 81.12

MAFANet 72.15 49.53 81.64

UGS-1+NDVI
UNet 73.48 49.61 82.71

MAFANet 74.09 50.67 83.34

UGS-2
UNet 74.09 50.71 83.28

MAFANet 74.64 51.43 83.72

UGS-2+NDVI
UNet 74.11 50.89 83.26

MAFANet 74.73 50.96 84.05

In general, the fusion feature engineering can effectively improve the segmentation
accuracy, and the above improvement strategy proves the effectiveness of the fusion
feature engineering method. At the same time, several representative remote sensing
images are selected for visual analysis, and the results are shown in Figure 13. After
blending false color and NDVI feature engineering, the boundary of UGS is further distin-
guished. MAFANet’s UGS segmentation is more accurate and is close to the real situation of
the surface.
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4. Discussion

Among the existing studies on UGS extraction based on HRS images, our study
further realizes the classification of tree and low vegetation compared to the study by
Cheng et al. [40]. Compared to Yang et al. [41], we segment tree with higher accu-
racy when considering multi-scale object feature information in UGS. Compared with
Shao et al. [42] and Shi et al. [43], we further integrate feature engineering to improve the
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UGS segmentation accuracy. In view of the problem that the current DL methods for UGS
segmentation are too focused on improving the model structure but ignore the spectral
information of HRS images, we proposed and verified a novel MAFANet. The MAFANet
achieved UGS segmentation from high-resolution GF-2 satellite images by incorporating
feature engineering and DL technology. We built UGS labeled datasets UGS-1 and UGS-2
based on GF-2 images to test the applicability of DL in UGS segmentation. At the same
time, we conducted ablation experiments on the datasets UGS-1 and UGS-2 to verify the
effectiveness of each module of the MAFANet network. In addition, deep learning net-
works such as FCN8s, UNet, SegNet, DeepLabv3+, DenseASPP, ShuffleNetV2, PSPNet,
DFANet, DABNet, ESPNetv2, ACFNet, ERFNet, HRNet, DensASPP (mobilenet), MFFTNet
were selected for comparative experiments. Experimental results on UGS-1 and UGS-2
data set show that our MAFANet model exhibits good robustness. In addition, we found
that the MFFTNet network performed erratically. In the UGS-1 dataset, MFFTNet had
a higher IOU for segmenting tree and a lower IOU for segmenting low vegetation than
PSPNet. In the UGS-2 dataset, MFFTNet had a higher IOU for segmenting low vegetation
and a lower IOU for segmenting tree than UNet. Both UNet and MAFANet performed
well, with a good MIOU in both the UGS-1 and UGS-2 datasets, segmenting the tree
and low vegetation very steadily. To this extent, we performed ablation experiments for
feature engineering in the UNet and MAFANet networks. In particular, by using false
color synthesis and vegetation feature (NDVI) feature engineering, our MAFANet network
improved the MIOU by 2.58% over the baseline network, thus, further demonstrating the
effectiveness of our approach. In particular, the use of false color compositing was better for
UGS segmentation, with a significant increase of 2.49% for MAFANet. In contrast, NDVI
was less effective, and incorporating NDVI into MAFANet resulted in a MIOU increase of
1.94%. Overall, results showed that the MIOU of UGS segmentation can be significantly
improved by incorporating false color synthesis and the vegetation index (NDVI) into our
MAFANet model.

However, although our MAFANet model showed excellent performance in experi-
ments, we also recognize that the training of DL models still requires a large amount of
labeled data, which may limit its generalizability in practical applications. Therefore, future
research may need to explore some semi-supervised or unsupervised DL methods to allevi-
ate the need for annotated data [44,45]. In addition, we will also explore how to incorporate
features such as vegetation parameters and phenological changes into our MAFANet model
to further improve the richness of the model and its ability to UGS segmentation [46].

5. Conclusions

In this study, we developed a new hybrid method (MAFANet) combined with feature
engineering (false color and NDVI) for UGS segmentation in HRS images. Our method
improves the segmentation accuracy by 3.62% compared to the baseline. Our approach
utilizes a DE module, a BFF module, and a MSPA module to enhance the complement of
green space context information and a multi-scale segmentation view of urban green space.
Our method combines false color image and the NDVI to highlight vegetation information
and effectively distinguishes green space boundaries. Experiments on the UGS-1 and
UGS-2 datasets show that MAFANet performs well in terms of accuracy and generalization.
In particular, we found that incorporating false color and NDVI improved the accuracy of
UGS segmentation. Therefore, the seasonal variation characteristics of vegetation (such as
phenological characteristics) should also be considered in the future to further identify the
boundaries of the UGS and improve the segmentation accuracy of the UGS by providing
the changes of vegetation under different seasons. Meanwhile, this experimental area is
limited, and subsequent studies can consider testing in areas with more complex land use
and richer vegetation types to further improve the model generalization and the related
research on UGS.
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Abbreviations
Since some parts of this article are abbreviated, a table explaining what each abbreviation means

has been inserted to further enhance the readability of the article.

Name Abbreviation
high-resolution remote sensing HRS
deep learning DL
urban green space UGS
GaoFen-2 GF-2
Multiscale Attention Feature Aggregation Network MAFANet
Normalized Difference Vegetation Index NDVI
state-of- the-art SOTA
multiscale pooling attention MSPA
decoder block DE
bilateral feature fusion BFF
Global attention mechanism GAM
Pyramidal convolution Pyconv
Batch Normalization BN
Multi-Layer Perceptron MLP
convolution conv
Precision P
Recall R
Pixel Accuracy PA
Mean Pixel Accuracy MPA
Intersection over Union IOU
Mean Intersection over Union MIOU
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