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Abstract: Airborne light detection and ranging (LiDAR) data are increasingly used in various fields
such as topographic mapping, urban planning, and emergency management. A necessary processing
step in the application of airborne LiDAR data is the elimination of mismatch errors. This paper
proposes a new method for airborne LiDAR strip adjustment based on point clouds with planar
neighborhoods; this method is intended to eliminate errors in airborne LiDAR point clouds. Initially,
standard pre-processing tasks such as denoising, ground separation, and resampling are performed
on the airborne LiDAR point clouds. Subsequently, this paper introduces a unique approach to extract
point clouds with planar neighborhoods which is designed to enhance the registration accuracy
of the iterative closest point (ICP) algorithm within the context of airborne LiDAR point clouds.
Following the registration of the point clouds using the ICP algorithm, tie points are extracted via
a point-to-plane projection method. Finally, a strip adjustment calculation is executed using the
extracted tie points, in accordance with the strip adjustment equation for airborne LiDAR point
clouds that was derived in this study. Three sets of airborne LiDAR point cloud data were utilized in
the experiment outlined in this paper. The results indicate that the proposed strip adjustment method
can effectively eliminate mismatch errors in airborne LiDAR point clouds, achieving a registration
accuracy and absolute accuracy of 0.05 m. Furthermore, this method’s processing efficiency was more
than five times higher than that of traditional methods such as ICP and LS3D.

Keywords: airborne LiDAR; point clouds with planar neighborhoods; point cloud registration;
strip adjustment

1. Introduction

Airborne LiDAR systems are active space information acquisition technologies which
integrate global navigation satellite systems (GNSS), inertial navigation systems (INS), and
laser ranging technologies. The advantages of these systems include their minimal depen-
dence on control measurements, resistance to weather effects, high degree of automation,
and short mapping cycles. They have broad applications in terrain surveying and urban
3D modeling [1,2]. Each sensor in an airborne LiDAR system has the potential to generate
errors, e.g., ranging errors caused by the laser scanner, positioning errors caused by the
GPS, and 6-axis errors caused by the inertial measurement unit [3]. Typically, an airborne
LiDAR system is calibrated before flight operations to eliminate errors caused by individual
sensors or by system integration. However, since the calibration process is also subject to
certain errors, although most errors can be successfully eliminated after calibration, some
minor errors will still exist in the final acquired point cloud [4–6]. In airborne LiDAR point
cloud operations, if there are obvious mismatch errors between different flight strips, it is
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necessary to perform strip adjustment processing on the airborne LiDAR point cloud to
meet the requirements of actual operation results [7,8].

At present, many scholars have conducted research on the methods of airborne LiDAR
strip adjustment processing. These methods can be roughly divided into two categories:
one involves an adjustment algorithm based on feature matching, which first performs
segmentation processing, feature extraction, feature matching, and other preprocessing
on the target point cloud, and then performs strip adjustment calculations; the other
involves an overall adjustment algorithm, which does not require preprocessing and is
highly accuracy.

Lee et al. [9] proposed a strip adjustment algorithm based on line feature matching
which generates line features by extracting buildings with ridgelines in the overlapping area.
However, this method is more suitable for urban environments with dense buildings and
cannot be used in field environments. Habib et al. [10] proposed a strip adjustment method
based on point cloud intensity feature extraction. This method extracts linear features from
the intensity images generated from the point cloud, but it requires some auxiliary tools or
data, such as OpenStreetMap, and only specific structures, such as gable roofs or flat roofs,
can be accurately detected. Wu et al. [11] proposed a strip adjustment algorithm based on
building roof features. This method uses the OpenStreetMap auxiliary method to select
simple roof plane structures as corresponding features, calculates their normal vectors and
inputs them into a mathematical model, and then estimates the transformation parameters
through the given model. Liu et al. [7] proposed a strip adjustment method using planar
features obtained from the minimum Hausdorff distance (MHD). This method first extracts
buildings to generate two-dimensional images and then performs segmentation matching
on the building roof planes. Zhang et al. [12] proposed an aero triangulation-aided LiDAR
strip adjustment (AT-aided LSA) method. This method uses two types of conjugate features
as control elements, i.e., conjugate points matched between LiDAR intensity images and
aerial images, and conjugate corners matched between LiDAR point clouds and aerial
images. You et al. [6] proposed a new type of data called plane feature intensity data which
shows consistency on the roofs of buildings by using a partial least squares method for strip
adjustment calculations. Still, this process is very complex and relies on ideal buildings. In
summary, the related adjustment algorithms based on feature matching often require the
point cloud to have certain feature conditions, such as buildings, or they require related
image assistance, which limits the scenarios in which they can be used.

The iterative closest point (ICP) algorithm, which is based on the least squares method,
is the most widely used and popular overall adjustment algorithm for point cloud registra-
tion. Since Besl and others proposed the ICP algorithm [13], scholars have continuously
improved and refined it, resulting in the proliferation of improved ICP algorithms. In Besl’s
original work, the ICP algorithm minimized the spatial distance between points and their
matched points as a cost function to achieve point cloud registration. However, this method
has several shortcomings, including its high dependence on initial alignment, its sensitivity
to noise or local feature changes, the ease with which it falls into the local optimum, and
its high computational complexity. Andrew [14], Gelfand [15], and Pottmann [16] pro-
posed a point-to-plane matching method which minimizes the distance between points
and the plane where the matched points are located. This point-to-plane matching can
achieve faster convergence and higher accuracy, and it is not prone to being affected by
local extremes. Szymon [17] proposed a symmetrical version of the point-to-plane tar-
get used in the ICP (symmetrical iterative closest point, S_ICP) algorithm based on the
point-to-plane matching method. First, the minimum distance is calculated based on the
surface normals of the two points in the corresponding point pair, and then optimization is
performed in a fixed coordinate system, and the two meshes move in opposite directions.
These improvements greatly enhance the convergence performance and stability of the
ICP algorithm. However, compared with regular ICP algorithm sample datasets, airborne
LiDAR point cloud datasets have some unfavorable characteristics [18], such as low density,
uneven distribution, and non-rigid point clouds which may be affected by features that



Remote Sens. 2023, 15, 5447 3 of 18

sway due to airflow and wind, such as vegetation and power lines, all of which lead to
inconsistencies in the shapes of the point clouds captured through repeated scans. These
unfavorable characteristics mean that the ICP algorithm is less accurate when used for
airborne LiDAR point cloud registration. In addition, when performing ICP registration on
multiple continuous airborne strip point clouds, error accumulation will occur. The more
strips, the greater the accumulated errors [19].

In summary, the strip adjustment algorithm based on feature matching is highly
dependent on buildings and other auxiliary conditions, and its application scenarios are
relatively limited, while the ICP overall matching algorithm has no application scenario
restrictions, though it has some unfavorable characteristics in terms of how it adjusts
the processing of airborne LiDAR point clouds, and this leads to a lower registration
success rate.

This paper proposes a strip adjustment algorithm based on point clouds with planar
neighborhoods which differ from the feature planar point clouds outlined in the existing
literature. Point clouds with planar neighborhoods can exist in any scenario and thus
avoiding application scenarios limitations. The strip adjustment algorithm proposed in this
paper treats the single strip point cloud as a whole, merges all the tie point error equations
of each strip, and performs an overall least squares adjustment calculation, thus effectively
avoiding error propagation and improving overall accuracy.

2. Methods

This paper proposes a design for a new strip adjustment algorithm process for airborne
LIDAR point clouds (Figure 1). In the first step, the point clouds with planar neighborhoods
are extracted from the preprocessed airborne LiDAR point clouds to improve the success
rate and accuracy of the ICP algorithm in airborne LiDAR point cloud registration. In the
second step, after the registration of two-strip point clouds is completed, the tie points in the
overlap area of the strips are extracted, and an error equation is then established according
to the tie point and used to perform strip adjustment processing for all of the strips.
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2.1. Preprocessing

Airborne LiDAR point clouds often contains noise, non-ground points, and uneven
point cloud density which can affect the subsequent analysis and processing of point
cloud data. Therefore, the preprocessing of airborne LiDAR point clouds is essential,
and common preprocessing operations include denoising, ground extraction, and point
cloud resampling.

Denoising is a fundamental step in the preprocessing of airborne LiDAR point clouds;
the aim of denoising is to remove noise and improve data quality [20]. In this study, a
distance-based filtering method is used to denoise the point cloud. The method calculates
the average distances and standard deviations of the points within a certain range around
each point in the point cloud. If the distance from a point to the average exceeds a certain
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multiple of the standard deviation, that point is identified as noise. The rationale behind
this method is that noise points are often isolated or have a lower density, and thus are
farther away from surrounding points.

Ground extraction is a key preprocessing step for many applications, and cloth filtering
is a commonly used technique for extracting the ground from airborne LiDAR point
clouds [21]. Cloth filtering separates ground points from non-ground points based on
their height differences using a virtual cloth model and iteratively filters and refines the
classification of ground points for accurate extraction.

Point cloud resampling is a necessary step to achieve uniform point density and reduce
data volume for storage and processing [22]. Resampling techniques aim to maintain the
basic geometric features of the original point cloud while reducing the number of points.
Common resampling methods include uniform subsampling, adaptive sampling, and
surface-based resampling. In this paper, the uniform subsampling method is used to
resample the point cloud.

By preprocessing airborne LiDAR point clouds to remove noise, extract ground in-
formation, and achieve uniform point density, the quality of the point cloud is improved,
thus eliminating adverse effects on point cloud registration and laying the groundwork for
ICP registration.

2.2. Extracting Point Clouds with Planar Neighborhoods

In conventional strip adjustment methods grounded on feature matching, registration
typically relies on feature lines and planes such as building rooftops and ridges [9,10]. The
method for extracting point clouds with planar neighborhoods proposed in this study is not
restricted to specific scenarios like those involving buildings. In any scenario, as long as the
point cloud within a local range meets the conditions for plane fitting, it can be extracted
and utilized for strip point cloud registration. Such scenarios include but are not limited to
slopes, ditches, fields, highways, and so forth. The universality of this approach enables
effective registration in a wide array of environments and scenarios, thereby enhancing the
flexibility and applicability of the strip adjustment method.

In point-to-plane registration methods, the smoothness of the point cloud surface has
a significant impact on the registration accuracy. The smoother and flatter the surface of
the point cloud, the higher the registration accuracy. Conversely, if the surface of the point
cloud is scattered and uneven, the registration accuracy will be lower. During airborne
LiDAR scanning operations, repeated scans of the ground, buildings, and other objects
have positional invariance, making them ideal for point cloud registration algorithms.
These types of invariant objects can be considered as planar point clouds. Therefore,
airborne LiDAR point clouds can be classified into two categories: planar point clouds and
non-planar point clouds.

A single strip of an airborne LiDAR point cloud typically covers a range of several
hundred meters to over a kilometer, and this includes numerous planar point clouds such
as road surfaces and rooftops. It is challenging to perform overall plane extraction on the
entire point cloud. Therefore, the point cloud is segmented into 2D grids based on point
density, ensuring that each grid contains enough points to fit a plane. Assuming the point
density is nc and that fitting a plane requires at least 3 points, it is necessary that a single
grid contains at least 6 points. Therefore, the grid edge length can be calculated using the
formula below.

Lgrid =

{√
6/nc nc < 6
1.0 nc ≥ 6

(1)

A principal component analysis (PCA) [23,24] is then used to analyze and compute
the plane features. PCA is a widely used technique that analyzes the covariance matrix of
points within a point cloud, thereby extracting the primary directions of variation as the
plane normal vectors. Each point in the grid is used for PCA calculations. After extracting
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the grid containing the planar point cloud using the PCA method, the following formula is
used to fit the plane parameters of the point cloud:

Ax + By + Cz = D (2)

where (A, B, C) is the unit normal vector of the plane and D represents the distance from
the origin of the coordinate system to the plane.

After indexing the point cloud with grid cells, each grid cell is traversed. The PCA
method is used to filter out planar grid cells, and then the RANSAC method is used to fit
the plane. If more than half of the points in the grid cell fall within a range of 0.05 m above
or below the plane, the plane fitting is considered successful, and the points within the
plane are retained. Otherwise, the point cloud within the grid cell is discarded.

2.3. S_ICP Algorithm

The ICP algorithm is a commonly used algorithm for aligning 3D point cloud models.
The S_ICP algorithm, proposed by Szymon [17], improves the convergence speed and
stability of the ICP algorithm by introducing a symmetric objective function. The core
idea of the S_ICP algorithm is to modify the point-to-plane objective function to make
it a symmetric objective function. Specifically, the S_ICP algorithm uses the normals
corresponding to the points to define the plane for error minimization while applying
opposite transformations on both models. The advantage of this approach is that the S_ICP
algorithm minimizes errors when the point pairs are located on second-order surfaces, not
just on planes. This allows the S_ICP algorithm to better handle surface alignment problems.

In the point-to-plane ICP algorithm, the objective function’s error will only be zero
when the local surface is a perfect plane:

(p− q)·np (3)

After modifying the objective function to make it a symmetric function:

(p− q)·
(
np + nq

)
(4)

If the points p and q, along with their normals, are aligned with a cylindrical surface,
the calculation of the objective function (4) will result in 0. For any set of points

(
p, np

)
located on a cylindrical surface, there exists a corresponding set

(
q, nq

)
such that the local

second-order surfaces of p and q are consistent, and the objective function (4) holds true.
Xu et al. [25] conducted an evaluation of the ICP algorithm and its various variants,

and in three types of test data (unmanned aerial vehicles (UAVs), airborne laser scanning
(ALS), and satellite data) the S_ICP algorithm emerged as a relatively powerful method.
It achieved the best accuracy with one of the datasets and also obtained good suboptimal
results with the other two datasets. Additionally, it had the fastest convergence time, being
ten to a hundred times faster than other methods. Therefore, in this paper, we will use
the target function symmetric-based ICP algorithm proposed by Szymon (S_ICP) for point
cloud registration.

2.4. Extracting Tie Points

Following the completion of point cloud registration using the S_ICP algorithm, the
point clouds of adjacent flight lines (A/B) are well registered. Subsequently, the point
clouds within the overlapping region are subjected to a gridding process (as shown in
Figure 2a), whereby each grid contains two layers of point clouds belonging to the adjacent
flight lines (A/B).
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Initially, the two layers of point clouds within each grid are individually fitted to
planes (as shown in Figure 2b), and the distances of all points to their respective planes are
statistically analyzed to calculate their standard deviations. A smaller standard deviation
indicates a better distribution of the point cloud near the plane, signifying a smoother plane
surface. The smoothness of the point cloud plane is represented by the standard deviation,
and a smoothness threshold is set to filter the grids.

Subsequently, the average coordinates of the point cloud from flight line A within the
grid are calculated using Equation (5) to determine the key point PA (as shown in Figure 2b)
of flight line A. The distance dA−B from the key point of flight line A to the point cloud
plane (a, b, c, d)B of flight line B is then computed. Based on Equation (6), the key point PB
(as shown in Figure 2b), which is the projection of the key point PA onto the point cloud
plane of flight line B, is calculated.

PA = ∑
Plane−A

Pi (5)

PB = PA − dA−B ×

a
b
c


B

(6)

Finally, the key points PA/PB extracted from each grid are considered as temporary tie
points. The coordinates of all the tie points are then differenced and the error distribution is
analyzed. The standard deviation of the error distribution is calculated and temporary tie
points exceeding three times the standard deviation are excluded. The remaining temporary
tie points are deemed the final tie points.

2.5. Strip Adjustment

Traditional aerial photogrammetric strip adjustment [26] combines the error equations
of the image tie points from multiple flight strips and performs a global least squares
adjustment to effectively avoid error propagation and improve overall accuracy. In airborne
LiDAR data, the acquired data unit is the entire flight strip, and this shares similarities with
the strip adjustment characteristics of aerial photogrammetry. Therefore, this paper adopts
the method of aerial photogrammetric strip adjustment and proposes a design for a strip
adjustment algorithm for airborne LiDAR point clouds.

By using the S_ICP matching algorithm, adjacent flight strip point clouds are accurately
registered together. In the overlapping areas, key points are uniformly selected from the
reference point cloud based on the point-to-plane projection method [27]. The projection
points of these key points in the registered point cloud are then calculated, forming a set
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of tie points. After extracting the tie points from all of the flight strip point clouds, the
strip adjustment equations established in this paper are used to perform a least squares
adjustment of all the strip parameters.

As is shown in Figure 3, the coordinate system of a single flight strip is established
with the centroid as the origin and the ENU (east, north, up) directions as the XYZ axes. In
this coordinate system, the coordinates of the point cloud can be represented as follows:

Pi = Ri·pi + ti (7)

where Pi represents the original point cloud coordinates, pi represents the point cloud
coordinates in the strip coordinate system, Ri is the rotation matrix of the strip, and ti is
the translation parameter. Multiple flight strips exist within the same projection zone
coordinate system, and the XYZ axes of each flight strip coordinate system are aligned.
Therefore, the initial values for the attitude angles of the strip’s exterior orientation elements
are set to 0, and the position is set to the centroid coordinates.
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Assuming that the exterior orientation elements for each flight strip are (a(r, p, y)i, t(x, y, z)i),
the error equation for the tie points between adjacent overlapping flight strips is as follows:

vij = Pi − Pj = (Ri·pi + ti)− (Rj·pj + tj) (8)

In Equation (8), pi and pj represent the tie points of the point clouds, Ri and Rj are the
attitude matrices of the i-th and j-th flight strip point clouds, and ti and tj are the coordinates
of the strip centroids. The rotation matrix Ri is obtained from the attitude angles a(r, p, y)i,
so there are 12 parameters in total, including 3 attitude angles and 3 translation parameters
for each flight strip.

By combining the error equations for the tie points of multiple flight strips, we can
use the Levenberg–Marquardt method to obtain the flight strip parameters. We can then
use the flight strip parameters to transform the point cloud data, thereby obtaining the
adjusted point cloud data after strip adjustment.

The above adjustment process effectively avoids error propagation in the consecutive
registration of flight strip point clouds and ensures the accurate registration of each flight
strip point cloud. However, due to the lack of control point constraints, there may be overall
translation and rotation in the registered flight strip point cloud, and thus the absolute
accuracy of the point cloud cannot be guaranteed. Therefore, it is necessary to introduce
control point constraints to the adjustment process outlined above.
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Assuming the control point coordinates are Pc and the corresponding point cloud in
the i-th flight strip is Pi, the error equation for the control points is as follows:

vi = Pi − Pc = (Ri·pi + ti)− Pc (9)

By merging the above parameter matrices into the overall flight strip adjustment
equation, we can ensure the overall accuracy of the point cloud.

To address the lack of control points, we can select three points which form an equi-
lateral triangle at the center of the measurement area as control points to be used in the
overall flight strip adjustment solution. This approach ensures that the absolute accuracy of
the point cloud after adjustment and without control points is comparable to the absolute
accuracy of the original point cloud. It also prevents error propagation in the consecutive
ICP registration process of each flight strip.

3. Experimental Results

In this paper, three sets of typical UAV-borne point cloud data (as shown in Figure 4)
are selected for the experimental verification of the proposed method.
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The first set consists of point cloud data from flat terrain which includes buildings,
roads, and vegetation. It consists of four flight strips. The second set consists of point cloud
data from a mining area, with mostly exposed rocks, some vegetation, and power lines. It
also includes continuous slopes. This set consists of five flight strips. The third set consists
of point cloud data from a generally mountainous area, with vegetation covering parts of
the mountains. It consists of four flight strips.

3.1. Extraction of Point Clouds with Planar Neighborhoods

First, the point cloud data from the three sets of UAV-borne data are processed to
extract point clouds with planar neighborhoods. This enables the visual observation of
these planar points.

As is illustrated in Figure 5, within mountainous point cloud data, there are virtually
no buildings. Nevertheless, the method based on point clouds with planar neighborhoods
can still extract sufficient planar point clouds for registration from slopes and gullies.
Evidently, traditional registration algorithms based on plane features are not suitable for
such scenarios.

As is illustrated in Figure 6, point clouds with planar neighborhoods were extracted
from a set of point cloud data in a plain area. The extracted point clouds still cover the
entire survey area, and the point clouds of buildings can also be largely preserved. If a
method based on plane features is used to extract feature point clouds, only the point
clouds of buildings in the local area on the right can be extracted. Using local point clouds
for point cloud registration may result in a locally optimal result.



Remote Sens. 2023, 15, 5447 9 of 18Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

  
(a) (b) 

Figure 5. point clouds with planar neighborhood extraction for mountainous point cloud data: (a) 
original point clouds; (b) extracted point clouds with planar neighborhoods. 

As is illustrated in Figure 6, point clouds with planar neighborhoods were extracted 
from a set of point cloud data in a plain area. The extracted point clouds still cover the 
entire survey area, and the point clouds of buildings can also be largely preserved. If a 
method based on plane features is used to extract feature point clouds, only the point 
clouds of buildings in the local area on the right can be extracted. Using local point clouds 
for point cloud registration may result in a locally optimal result. 

  
(a) (b) 

Figure 6. Comparison of point clouds with planar neighborhood extraction for flat terrain point 
cloud data: (a) original point clouds; (b) extracted point clouds with planar neighborhoods. 

After extracting the point clouds with planar neighborhoods, the non-rigid point 
clouds, such as those representing power lines, vegetation, and shrubs are successfully 
removed from the original point cloud data. The extracted planar point clouds are 
smoother and organized, and the data volume of the point cloud is reduced by more than 
half. 

Next, the planar point cloud data extracted from the three sets are registered using 
the S_ICP algorithm, and the registration results are compared with the S_ICP registration 
results of the original point cloud data to evaluate their accuracy. After registration, the 
corresponding point pairs of the two registered point clouds are calculated using the 
point-to-plane projection method, and the registration accuracy of the registered point 
cloud is evaluated using Equation (10). 

𝛔𝐦𝐞𝐚𝐧 = ඨ∑ 𝐝𝐤𝐓 ∙ 𝐝𝐤nమ
 (10) 

Figure 5. Point clouds with planar neighborhood extraction for mountainous point cloud data:
(a) original point clouds; (b) extracted point clouds with planar neighborhoods.

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

  
(a) (b) 

Figure 5. point clouds with planar neighborhood extraction for mountainous point cloud data: (a) 
original point clouds; (b) extracted point clouds with planar neighborhoods. 

As is illustrated in Figure 6, point clouds with planar neighborhoods were extracted 
from a set of point cloud data in a plain area. The extracted point clouds still cover the 
entire survey area, and the point clouds of buildings can also be largely preserved. If a 
method based on plane features is used to extract feature point clouds, only the point 
clouds of buildings in the local area on the right can be extracted. Using local point clouds 
for point cloud registration may result in a locally optimal result. 

  
(a) (b) 

Figure 6. Comparison of point clouds with planar neighborhood extraction for flat terrain point 
cloud data: (a) original point clouds; (b) extracted point clouds with planar neighborhoods. 

After extracting the point clouds with planar neighborhoods, the non-rigid point 
clouds, such as those representing power lines, vegetation, and shrubs are successfully 
removed from the original point cloud data. The extracted planar point clouds are 
smoother and organized, and the data volume of the point cloud is reduced by more than 
half. 

Next, the planar point cloud data extracted from the three sets are registered using 
the S_ICP algorithm, and the registration results are compared with the S_ICP registration 
results of the original point cloud data to evaluate their accuracy. After registration, the 
corresponding point pairs of the two registered point clouds are calculated using the 
point-to-plane projection method, and the registration accuracy of the registered point 
cloud is evaluated using Equation (10). 

𝛔𝐦𝐞𝐚𝐧 = ඨ∑ 𝐝𝐤𝐓 ∙ 𝐝𝐤nమ
 (10) 
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After extracting the point clouds with planar neighborhoods, the non-rigid point
clouds, such as those representing power lines, vegetation, and shrubs are successfully
removed from the original point cloud data. The extracted planar point clouds are smoother
and organized, and the data volume of the point cloud is reduced by more than half.

Next, the planar point cloud data extracted from the three sets are registered using
the S_ICP algorithm, and the registration results are compared with the S_ICP registration
results of the original point cloud data to evaluate their accuracy. After registration, the
corresponding point pairs of the two registered point clouds are calculated using the point-
to-plane projection method, and the registration accuracy of the registered point cloud is
evaluated using Equation (10).

σmean =
2

√
∑ dT

k ·dk
n

(10)

In this equation, n represents the number of corresponding point pairs and
dk = pk

i − pk
j represents the coordinate difference of the k-th corresponding point pair in

the overlapping region between the i-th strip and the j-th strip.
From the results in Table 1, it can be observed that for point cloud data A, which

includes buildings, roads, and vegetation, whether or not the point clouds are extracted
with planar neighborhoods has a minor impact on the registration results. For point cloud
data B, which contains some vegetation and power lines, pre-extracting point clouds with
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planar neighborhoods significantly improves the registration accuracy of the point clouds.
Similarly, for point cloud data C, which includes mountainous areas covered by vegetation,
the registration accuracy is also significantly improved. Overall, extracting point clouds
with planar neighborhoods for S_ICP registration can effectively enhance the registration
accuracy of the point clouds.

Table 1. Comparison of registration accuracy of point clouds extracted with planar neighborhoods
and point clouds registered using the entire point cloud with S_ICP. Bold numbers indicates better
one.

Item
Planar Points All Points

dx/m dy/m dz/m dx/m dy/m dz/m

A 0.020 0.015 0.039 0.021 0.026 0.052
B 0.020 0.011 0.035 0.052 0.063 0.093
C 0.024 0.021 0.041 0.044 0.020 0.101

As Table 2 shows, using point clouds extracted with planar neighborhoods for registra-
tion not only improves the registration accuracy of the point clouds, but it also reduces the
point cloud data volume by more than half. Moreover, the registration speed is increased
by more than 5 times.

Table 2. Comparison of registration time and point count between point clouds with planar neigh-
borhoods and full point clouds. Bold numbers indicates better one.

Item
Planar Points All Points

Time/s Count Time/s Count

A 4.98 1,224,150 86.57 7,251,324
B 75.02 5,537,234 351.91 13,252,298
C 20.75 2,512,288 123.26 11,059,385

3.2. Strip Adjustment

In the previous experiment, we completed the S_ICP registration of each strip of the
three sets of data. We then extracted the tie points in the overlapping areas of the strips by
projecting from point to plane. After restoring the coordinates of the points of registration
to the original point cloud coordinates, we obtained the tie points between adjacent strips.
As Figure 7 shows, after S_ICP registration, the point cloud registration in the overlapping
area was good. According to the established grid index, we fitted the grid point cloud
data in the reference point cloud to obtain a local plane. The averaged coordinates of the
planar point cloud data in the corresponding grid of the registered point cloud were then
projected onto this local plane, yielding the projected points on the local plane, which form
a pair of tie points. We then restored these tie points to their original point cloud data to
obtain the tie points in the original data.

As Figure 8 shows, although the extracted tie points do not have obvious features, the
shape of the point cloud can be used to judge whether the extracted tie points are correct
(Figure 8a–c). This also indicates that the method for extracting tie points used in this
paper does not depend on point cloud features (Figure 8d). In addition, in the original
point cloud data, the tie points are not point-to-plane projection points or plane-to-plane
nearest distance points. Therefore, the tie points extracted via point-to-plane projection or
plane-to-plane nearest distance methods may have mismatch errors.

Utilizing the extracted tie points, strip adjustment computations for all strip point
cloud data can be performed through the application of the Levenberg–Marquardt algo-
rithm in conjunction with Equation (8). As can be seen from Figure 9, before the strip
adjustment, there are obvious mismatch errors in the overlapping area of the point cloud;
after the strip adjustment, the point cloud in the overlapping area matches well.
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Within the experimental data area B, we collected a total of 10 check points on flat and
visible ground using RTK equipment. Two of these points were used as control points in
the strip adjustment computation, while the remaining points were used to validate the
absolute accuracy of the point cloud after strip adjustment.

From the results in Figure 10, it can be observed that after strip adjustment, the
elevation accuracy of most of the point cloud data is within a range of 5 cm, which is
generally considered as the optimal accuracy standard for airborne LiDAR point clouds at
an operational altitude of 500 m [28].
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In order to more intuitively evaluate the absolute accuracy of the point cloud data
after strip adjustment, we overlapped the check points with the point cloud data and cut
out a cross-sectional view (Figure 11).
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The point cloud data that are transformed after strip adjustment with control points
can be used as a reference for the true value point cloud, and they can be used to evaluate the
accuracy of the point cloud obtained after continuous S_ICP registration. Similarly, using
the point-to-plane projection method, corresponding points of the point cloud obtained
after S_ICP registration can be found in the point cloud obtained after strip adjustment.
The differences in the coordinates of the corresponding point pairs can then be calculated
to evaluate the accuracy of the continuous S_ICP registration.

From Figure 12, it can be observed that when performing S_ICP iterative registration
between multiple parallel strips, the error of the point cloud increases continuously. This is
because the registration error accumulates during the iterative S_ICP process. Since the
direction of the registration error has a certain randomness, the registration error of the first
strip occurs in the direction opposite to that of the error of the second strip. When accumu-
lated, the overall error decreases slightly. However, the registration errors of the third and
fourth strips significantly increase. This demonstrates that when registering multiple strip
point cloud data, performing only ICP registration will result in error accumulation. On
the other hand, by obtaining tie points from the strip point cloud after ICP registration and
performing regional strip adjustments for each strip, the problem of error accumulation
during the registration process can be effectively solved.
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3.3. Comparison with Alternative Methods

In this section of the experiment, the method proposed in this article is subjected to
comparative tests against three other popular strip adjustment methods. These methods
are as follows: (1) a feature-plane-based strip adjustment method [7] which segments and
matches building rooftop planes to obtain observations and estimates strip transformation
parameters; (2) a feature-line-based strip adjustment method [8] which utilizes linear
features such as gable roofs and ditches to estimate strip parameters; and (3) a traditional
least squares 3D surface matching (LS3D) method [29], primarily used in 3D modeling
for surface and curve matching, which has been adapted by some scholars for the strip
adjustment processing of airborne LiDAR point clouds [18].

In Sections 3.1 and 3.2, we validated the method introduced in this paper using
three typical sets of unmanned aerial vehicle (UAV) airborne data, demonstrating its
capability to accurately register airborne LiDAR point cloud data even in the absence of
distinctive features such as buildings. Since the methods used for comparative testing are
only applicable to point cloud data that included abundant architectural features, three
additional sets of data rich in buildings were selected for comparative testing. The first two
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datasets consist of UAV airborne point cloud data obtained at a flight altitude of 300 m
with high point density. The third dataset comprises classical airborne point cloud data
obtained at a flight altitude of 500 m with lower point density.

As can be seen from Figure 13, the feature-plane-based method exhibited the highest
accuracy; this was followed by the method proposed in this paper, which was the second
best. Both methods achieved excellent results using all three datasets, with post-strip
adjustment point cloud registration accuracy within 5 cm. Although the feature-line-based
and LS3D methods were less effective than the other two methods, they still optimized the
original point clouds to a certain extent. Despite the superior accuracy of the feature-plane-
based method, it is heavily reliant on planes with distinct features, such as building rooftops,
and this limits its application scenarios. In contrast, the method proposed in this paper
does not depend on specific feature planes, and hence it has broader practical applicability.
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In the comparative tests, the feature-line-based strip adjustment algorithm performed
poorly, likely due to the low point density of the airborne LiDAR point clouds, which
prevented the precise extraction of ideal line features. The traditional LS3D method also
showed subpar performance, likely due to errors inherent in the original point clouds and
the high roughness of the point cloud data surfaces, which would have led to significant
matching errors.

To provide a more direct assessment of the precision of the point clouds obtained
following strip adjustment, we selected six sets of profile diagrams from the point cloud
data before and after strip adjustment using various methods. For each dataset, both
transverse and longitudinal profiles were chosen, as is illustrated in the Table 3.
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Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data
processed using four methods.

Initial Point Cloud Proposed Method Feature-Plane-Based Feature-Line-Based LS3D Method

data-1
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4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

data-2

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

data-3

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

Remote Sens. 2023, 15, x FOR PEER REVIEW 15 of 18 
 

 

Figure 13. Accuracy evaluation of three sets of airborne LiDAR data obtained after strip adjustment 
using four different methods. 

In the comparative tests, the feature-line-based strip adjustment algorithm per-
formed poorly, likely due to the low point density of the airborne LiDAR point clouds, 
which prevented the precise extraction of ideal line features. The traditional LS3D method 
also showed subpar performance, likely due to errors inherent in the original point clouds 
and the high roughness of the point cloud data surfaces, which would have led to signif-
icant matching errors. 

To provide a more direct assessment of the precision of the point clouds obtained 
following strip adjustment, we selected six sets of profile diagrams from the point cloud 
data before and after strip adjustment using various methods. For each dataset, both trans-
verse and longitudinal profiles were chosen, as is illustrated in the Table 3. 

Table 3. Cross-sectional and longitudinal profiles of three sets of airborne LiDAR point cloud data 
processed using four methods. 

 Initial Point Cloud Proposed 
Method 

Feature-Plane-Based Feature-Line-Based LS3D Method 

data-1 

     
     

      
data-2 

     
     

     
      

data-3 

     
     

     
      

4. Discussion 
Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamen-

tal task in the application of airborne LiDAR data, and considerable research has been 
devoted to airborne LiDAR point cloud data processing. In research on strip adjustment 
algorithms based on feature matching [6,9–12], the most commonly used plane feature is 
the roof of a building [30]. However, when airborne LiDAR operations are carried out in 

4. Discussion

Eliminating the mismatch errors in airborne LiDAR point cloud data is a fundamental
task in the application of airborne LiDAR data, and considerable research has been devoted
to airborne LiDAR point cloud data processing. In research on strip adjustment algorithms
based on feature matching [6,9–12], the most commonly used plane feature is the roof of a
building [30]. However, when airborne LiDAR operations are carried out in the field, if
there is no building point cloud data, such algorithms will be ineffective. Traditional strip
adjustment methods such as least squares 3D surface matching (LS3D) [29] and the least
Z-difference (LZD) algorithm [31], shown in Figures 6 and 7, may also produce mismatch
errors between the established tie points due to the mismatch errors in the original point
cloud data, and this may lead to strip adjustment failure. From the comparative test results
(Figure 13), it can be seen that the accuracy of the LS3D method is the poorest among the
various strip adjustment methods.

In response to the shortcomings of previous related research, this paper proposes a
strip adjustment algorithm based on point clouds with planar neighborhoods. First, taking
advantage of the fact that point clouds with planar neighborhoods can exist in any scene,
we extract point clouds with planar neighborhoods from airborne LiDAR point cloud
data without relying on any relatively fixed point cloud features, thereby avoiding any
restrictions on the operation scene. Second, by extracting tie points from well-registered
strip point clouds using S_ICP, we can avoid mismatch errors between the extracted tie
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points. Lastly, treating each strip point cloud as an individual unit, we establish a strip
coordinate system and derive a strip adjustment equation to perform an overall adjustment
calculation on each strip, thus preventing the error accumulation caused by the use of the
ICP algorithm for continuous registration.

The experimental results show that in the presence of non-rigid point clouds such as
those representing vegetation, the extraction of point clouds with planar neighborhoods
for S_ICP registration can help improve the success rate and accuracy of registration. In
the case of multi-strip point cloud registration, using the ICP algorithm for continuous
registration between pairs of strips will cause error accumulation, and the further the
strip is from the first one, the greater the registration error will be. The strip adjustment
processing of multi-strip point cloud data can effectively eliminate point cloud mismatch
errors, and when control points are involved in the adjustment calculation, the point cloud
can achieve an absolute accuracy of 0.05 m. In comparative tests with other mainstream
methods, the method proposed in this paper achieved commendable results, exhibiting
accuracy comparable to that of the feature-plane-based method. However, the algorithm
proposed in this paper does not rely on specific feature planes like building rooftops, and it
thus offers a wider range of applicability.

In this study, it was found that for registration methods based on point-to-plane
distance, the smoother and flatter the point cloud surface used for registration, the more
accurate the calculation of point-to-plane distance. However, airborne LiDAR point clouds
contain a large number of non-planar point clouds, such as those representing power
lines, vegetation, and farmland. Because the point-to-plane distance cannot be accurately
calculated, the registration accuracy is affected. Therefore, the main purpose of extracting
point clouds with planar neighborhoods is to extract planar rigid point clouds that are
more conducive to point-to-plane registration methods, and to exclude point clouds that
are not conducive to registration, thus improving the accuracy of point cloud registration
while also reducing the data volume of point clouds and improving the efficiency of point
cloud registration.

The shortcomings of this study mainly lie in the simplicity of the algorithm used to
extract point clouds with planar neighborhoods. Its simplicity means that some planar
point clouds in complex scenes may be missed, such as those representing the ground
under low shrubs, roofs with chimneys and skylights, etc. However, since most of the point
clouds with planar neighborhoods can be accurately extracted, the omission of some planar
point clouds in complex scenes will not affect the accuracy of point cloud registration.

5. Conclusions

To eliminate mismatch errors in airborne LiDAR point clouds, this paper proposes a
new strip adjustment method which primarily comprises two parts: (1) extracting point
clouds with planar neighborhoods from strip point cloud data for S_ICP registration and
extracting tie points from the registered point cloud data; (2) establishing the coordinate
systems of airborne LiDAR point cloud strips and deriving a strip adjustment equation. Ex-
perimental data demonstrate that after extracting point clouds with planar neighborhoods,
the registration accuracy of airborne LiDAR point clouds is effectively improved, and the
registration speed is significantly increased. Unlike the S_ICP method for multi-strip point
cloud registration, the strip adjustment method can effectively avoid error accumulation
during the registration process, and in the presence of control points, the absolute accuracy
of the point cloud obtained after strip adjustment can reach within 0.05 m. By comparing it
with other mainstream methods, we demonstrated that the method proposed in this paper
can effectively enhance the registration accuracy of airborne LiDAR point clouds.

At present, in the absence of control points, the method proposed in this paper can not
only eliminate mismatch errors in point clouds in the overlapping area of the strips, but it
can also be used to obtain point clouds after strip adjustment whose accuracy is equivalent
to that of the original point clouds, though it cannot further improve the absolute accuracy



Remote Sens. 2023, 15, 5447 17 of 18

of the point clouds. Future work will focus on strip adjustment without control points and
enhancing the absolute accuracy of point clouds.
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