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Abstract: Internal Solitary Waves (ISWs) play a pivotal role in transporting energy and matter within
the ocean and also pose substantial risks to ocean engineering, navigation, and underwater commu-
nication systems. Consequently, measures need to be adopted to alleviate their negative effects and
minimize linked risks. An effective method entails extracting ISW positions from Synthetic Aper-
ture Radar (SAR) data for precise trajectory prediction and efficient avoidance strategies. However,
manual extraction of ISWs from SAR data is time-consuming and prone to inaccuracies. Hence, it
is imperative to develop a high-precision, rapid, and automated ISW-extraction algorithm. In this
paper, we introduce Middle Transformer U2-net (MTU2-net), an innovative model that integrates
a distinctive loss function and Transformer to improve the accuracy of ISWs’ extraction. The novel
loss function enhances the model’s capacity to extract bow waves, whereas the Transformer ensures
coherence in ISW’s patterns. By conducting experiments involving 762 image scenes, incorporating
ISWs, from the South China Sea, we established a standardized dataset. The Mean Intersection over
Union (MIoU) achieved on this dataset was 71.57%, surpassing the performance of other compared
methods. The experimental outcomes showcase the remarkable performance of our proposed model
in precisely extracting bow wave attributes from SAR data.

Keywords: internal solitary waves; SAR; deep learning; Transformer

1. Introduction

Internal Solitary Waves (ISWs) are captivating phenomena that manifest within strat-
ified fluids, like the ocean. Unlike surface waves, which propagate along the air–water
interface, internal solitary waves propagate within the water column, well beneath the
surface. ISWs display diverse features contingent upon specific conditions. One prevalent
type is recognized as the “mode-1” wave, usually characterized by a bell-shaped or hump-
backed profile, featuring a steep leading edge and a more-gradual trailing section. These
waves can span horizontally for tens to hundreds of kilometers and vertically for hundreds
of meters to several kilometers. Wave speeds typically range from a few centimeters to
several meters per second. The ISWs play a significant role not just in ocean circulation
and mixing, but also pose a substantial threat to ocean engineering and submarines. Firstly,
ISWs offer a multitude of advantages. These promote nutrient redistribution, enhancing
biological productivity and increasing fishery resources, influencing sediment dynamics
and sustaining submarine canyons and channels. Additionally, they offer invaluable in-
sights into ocean dynamics and ecosystems through scientific research [1]. Secondly, ISWs
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present notable risks in oceanic environments [2], encompassing potential ecological dis-
ruptions, navigational challenges, implications for offshore engineering, and the potential
hazards they introduce to coastal regions. In conclusion, precise extraction of ISWs from
the ocean is imperative, whether for capitalizing on their advantages or alleviating their
risks. Hence, this paper introduces an innovative deep learning approach for accurately
extracting high-precision ISWs from SAR images.

With the continuous advancement of remote sensing technology, the wealth of satellite
data has evolved into a valuable resource for observing ISWs in the ocean [3]. Currently,
two primary methods are employed for this purpose: satellite optical remote sensing and
Synthetic Aperture Radar (SAR). Each of these methods possesses distinct advantages and
disadvantages. Satellite optical remote sensing functions passively, capturing sunlight
reflected from the sea surface to acquire information about ISWs. This method offers high
temporal resolution and extensive coverage, presenting significant advantages for contin-
uous, large-scale ISW observation over extended periods. However, it is susceptible to
weather conditions and heavily relies on clear skies, rendering it ineffective during cloudy
intervals. In contrast, SAR, functioning as an active radar sensor, can penetrate clouds and
enables long-range, high-resolution detection in all weather conditions. Nevertheless, SAR
exhibits lower temporal resolution and a narrower swath width, potentially hindering com-
prehensive and sustained ISW observation. SAR detects ISWs by observing their influence
on the flow field of the sea surface, resulting in variations in the backscattering intensity of
SAR and the formation of clear patterns of light and dark stripes in SAR images. Several
factors, including other ocean phenomena like ship wakes, oil slicks, mesoscale eddies,
and inherent limitations of radar sensors, can interfere with the subsequent detection and
processing of ISWs. Furthermore, the intricate texture of SAR oceanic images presents
challenges in automatically detecting and extracting the features of ISWs.

Before the emergence of deep learning methods, researchers relied on traditional
approaches like Fourier analysis and wavelet transform to extract ISWs. Nevertheless,
it is crucial to highlight that these methods are heavily dependent on human-designed
feature extractors, necessitating specialized expertise and involving an intricate procedure.
Additionally, each technique is crafted to suit specific applications, which curtails their
capacity for generalization and resilience.

In recent times, deep learning has garnered substantial attention and has made re-
markable strides across various disciplines. More specifically, researchers have effectively
utilized deep learning methodologies to identify ISWs in the ocean. Convolutions have
arisen as the principal approach for feature extraction in these investigations, bearing a
pivotal role in the procedure. The implementation of deep learning technology has substan-
tially accelerated the advancement of ISW research in the ocean, primarily attributed to
the exceptional feature extraction capabilities demonstrated by Convolutional Neural Net-
works (CNNs). These methods have been pivotal in transitioning from manually crafted
features to autonomously acquired features, leading to enhanced performance and overall
task efficiency. In the realm of ISW research, noteworthy contributions have been made
through the utilization of CNN-based networks. For instance, Bao et al. [4] automated
the detection of ISWs in the South China Sea utilizing a Faster R-CNN network, while
Zheng et al. [5] employed a Mask R-CNN network to segment ISW bands. Nevertheless, it
is imperative to acknowledge that the aforementioned studies rely on conventional CNN
models, which possess constraints in learning global features. In contrast, our model
functions as a pixel-level classifier, enabling precise extraction of ISWs through pixel classi-
fication. This innovative approach significantly enhances the accuracy of ISW detection
when compared to traditional CNNs.

Extensive research and experimentation have demonstrated the significant advantages
of UNet’s pixel-level classification feature in ISW extraction. Previous research has profi-
ciently employed the UNet model for oceanic ISWs investigation. Ma et al. [6] introduced
the pixel attention UNet model, yielding positive results in ISW extraction. Building on the
foundational UNet framework, we introduce the Middle-Transformer U2-net (MTU2-net)
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model. It was explicitly designed to obtain accurate ISW extraction from SAR images.
Precise ISW extraction notably enhances prediction accuracy, enabling meticulous position-
ing and precise shape determination. However, within the context of SAR images, ISWs
frequently exhibit dense distributions, posing challenges to the practical implementation of
the extracted ISWs. Our proposed model revolves around accurately extracting the key
ISW features present in SAR images. This approach streamlines the derivation of vital
ISW parameters.

In our pursuit of enhancing the precision of ISWs’ extraction, we have integrated
Transformer into our model’s structural framework. Transformer incorporates an excep-
tional attention mechanism, enabling our network to pinpoint the distinctive features of
ISWs. The introduction of a local attention mechanism resulted in fewer artifacts and
enhanced continuity in the extracted ISWs’ stripes. To this end, we drew inspiration from
attention-based models within the realm of computer vision, such as the Visual Transformer
(ViT) [7]. Numerous researchers have proposed improved models for various tasks, all
based on the ViT architecture. These models encompass the “Tokens-To-Token Vision
Transformer (T2T-ViT)” [8], “Pyramid Vision Transformer (PVT)” [9], “Conformer Vision
Transformer (CvT)” [10], and “PiT Transform” [11]. Separately, there are also models such
as “LeViT” [12] and “LAD Transformer” [13], which are specifically designed for Synthetic
Aperture Radar (SAR) images. While these models modify the network structure, the scope
and nature of these modifications exhibit significant variability. Some models, like CaiT [14],
Diverse Patch [15], DeepViT [16], and Refiner [17], specifically address deep Transformer
issues. Additionally, certain techniques focus on enhancing the attention mechanism within
the Transformer through strategies like position encoding [18–20], MHSA [21], and MLP.

Recent developments in the field of Transformers show a strong trend towards em-
bracing a locality paradigm [22–25]. This paradigm involves intentionally integrating local
attention mechanisms into the framework. Supervised Transformers are currently explor-
ing structural combinations [26,27] and scaling laws [28,29]. Additionally, self-supervised
learning plays a significant role in ViT [30–35]. Our model further incorporates the self-
supervised Transformer to enhance the continuity of extracted ISWs, allowing for a clear
differentiation between bow waves (long and continuous ISWs in SAR) and coda waves
(relatively short and discontinuous, typically appearing after the bow wave in SAR). We
will elaborate on this advantage in detail in Section 4 of our experiments; please consult
that section for further information.

Recent developments in deep learning technology have opened up new avenues for
extracting features related to ISWs in SAR imagery [36]. While various ISW-detection
methods, such as those by Wang et al. [37] and Bao et al. [4], have achieved region-level
target detection, they lack detailed information regarding the precise location and shape
of ISWs. In 2020, Zhang et al. [38] successfully utilized a modified UNet to extract ISWs
from optical images. Similarly, in 2021, Zheng et al. [39] introduced a SegNet-based
algorithm for segmenting ISWs’ stripes in SAR data. However, it is important to note that
Zheng’s method focuses solely on a limited area within the overall SAR image, thus lacking
segmentation results for the entire image. Building on these advancements, Ma et al. [6]
proposed a two-stage oceanic ISW signature segmentation algorithm for SAR in 2023.
Despite these advancements, the application of deep learning for ISW extraction faces
several complex challenges. Notably, continuity issues in the extracted ISWs underscore
the need to enhance coherence in the results. Additionally, the presence of coda waves
introduces a significant challenge, contributing extraneous noise and disruptions to the
extracted primary ISWs strips. To address these challenges and enhance the accuracy
of ISW extraction, our approach incorporates Transformer into the model’s structural
framework. Transformer’s attention mechanism enables the network to focus on distinctive
ISW features, while a local attention mechanism reduces artifacts in the extracted ISW
stripes, thus enhancing continuity. This novel approach, along with the integration of self-
supervised learning, is designed to improve the precision of ISW extraction and address
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the unique challenges posed by SAR imagery. Further details on this methodology can be
found in the Experimental Section 4.

To address these significant challenges, a carefully crafted bespoke dataset was cre-
ated. This dataset was then employed to extensively train the proposed MTU2-net model,
specifically designed to work with this specialized dataset. The MTU2-net model, dis-
tinguished by its symmetrical architectural design, incorporates a Transformer within its
central segment. This integration is aimed at enhancing the continuity of the results it
produces. Additionally, a novel weighted loss function was introduced. This function
was specifically designed to counteract the influence of extraneous coda waves, ultimately
improving the accuracy of the extracted primary ISWs. The significant contributions of this
study encompass both the innovative model and the carefully assembled dataset.

Firstly, as the innovation in the model, we present an ISW stripe segmentation ap-
proach employing the MTU2-net architecture. This method enables the extraction of
continuous primary ISW strips from SAR images without interruption. By substituting
Residual units with Transformers and enhancing sensitivity to bow waves while filtering
out unnecessary coda waves, the model enhances the continuity in the results.

Secondly, as the innovation in the data, the scarcity of publicly accessible ISW datasets
necessitated the development of a proprietary dataset. This dataset encompasses 762 samples
showcasing distinct ISW stripes. Employing Photoshop software, we performed meticulous
one-to-one image–label annotations and, subsequently, partitioned the dataset into training
and test subsets, consisting of 682 and 80 samples, respectively.

The structure of the paper is as follows: Section 2 introduces the proposed method.
Section 3 encompasses the experimental facets, including the data sources, dataset descrip-
tion, experimental setup, and evaluation metrics. In Section 4, we analyze and discuss the
experimental results obtained from our dataset and the enhancements made to the model.
Lastly, Section 6 provides conclusions and outlines prospective avenues for future research.

2. Methods

In this section, we elucidate the network architecture of MTU2-net, meticulously
crafted for the precise extraction of ISWs from SAR images.

2.1. Network Architecture

The MTU2-net model, as shown in Figure 1, was purposefully designed for precise ISW
extraction from SAR images, boasting a specialized architecture. Following the Encoder–
Transformer–Decoder paradigm, we meticulously explore the structure of each module
in the upcoming sections, providing comprehensive insight into their components and
arrangement. MTU2-net employs a two-level nested U-structure, comprising an outer layer
with 11 stages. To enhance the extraction of multi-scale and multi-level features, the Resid-
ual U-block is incorporated into 10 of these stages. This architecture encompasses four
essential components: (1) Encoder, (2) Decoder, (3) Transformer module, and (4) Feature
Map Fusion module:

(1) Encoder module:

The Encoder stage comprises five individual stages, each constructed using a Residual
U-block (RSU), which is shown in Figure 2. In the initial four stages, RSUs with varying
depths are employed to enhance the model’s receptive field and provide access to a broader
range of local and global information. In the final stage, dilated convolutions are used
instead of pooling operations to expand the receptive field and retain contextual information
that might be lost during pooling. This design ensures a comprehensive integration of deep
and context-preserving features within the MTU2-net architecture.

(2) Decoder module:

The Decoder stage mirrors the structure of the Encoder stage, maintaining a parallel
framework. In each iteration of the Decoder stage, a concatenation process is executed,
merging the upsampled feature maps from the preceding stage with those originating from
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its symmetrical Encoder stage. This amalgamated set of feature maps subsequently serves
as the input for the subsequent operations. This design ensures the effective integration of
feature information and contributes to the overall flow of the MTU2-net architecture.

(3) Transformer module:

Illustrated in Figure 3, the Transformer module adheres to the identical input–output
pattern. The input comprises a one-dimensional sequence of embedding features Z ∈ RL×C,
where L signifies the sequence length and C represents the size of the hidden channel.
Accordingly, serialization of the input image is necessary, involving the transformation of
x ∈ RH×W×3 into Z. Notably, the output requires conversion from a vector to a 2D format,
accomplished through a basic upsampling technique. For further insights, please refer
to Section 2.3.

(4) Feature Map Fusion module:

As the final step, the Feature Map Fusion module employs a deep supervision strategy to
generate a probability map. Generating five side outputs, the model subsequently upsamples
them to align with the input image’s size and fuses them using concatenation operations.

Input

Output

Figure 1. Architecture of Middle Transformer U2-net (MTU2-net). The network exhibits a symmetrical
structure as a whole, with Residual U-blocks (RSU) as the fundamental unit. Each Decoder generates
a side output, which is merged along the channel direction and, subsequently, processed through a
convolutional layer to generate the fused output result.

2.2. Residual U-Blocks

Differing from the preceding Plain Convolution block (PLN), Residual-like block
(RES), Inception-like block (INC), and Dense-like block (DSE), the RSU serves as a Residual
module within a U-shaped structure, designed to capture multi-scale features. Figure 2
illustrates the structure of RSU-L, where L denotes the number of Encoder layers. Here,
Stage X (X = 1, 2, 3) and Stage Y (Y = 1d, 2d, 3d) correspond to the downsampling modules
and upsampling modules, respectively, while Middle-Z Image (Z = 1, 2, 3, 4, 4d, 3d, 2d, 1d)
signifies the images generated during the process.

Initially, the RSU-L block converts the input feature map x ∈ RH×W×Cin into an
intermediate map F1(x) containing Cout channels. Subsequently, a symmetrical Encoder–
Decoder structure with a height of L is employed, where the intermediate feature map x
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functions as the input and acquires the ability to extract and encode contextual information
across various scales. Elevating the value of L yields a deeper RSU, thus engendering
a greater number of pooling operations, an expanded array of receptive fields, and a
heightened quantity of both local and global information. The RSU integrates the concept
of UNet, thereby fusing local and global information via Residual connections. This
process effectively alleviates the loss of detail that can result from direct upsampling, thus
safeguarding more-intricate features.
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Figure 2. Residual U-blocks (L = 4).

2.3. Middle-Transformer

The Middle-Transformer functions as a local attention mechanism that enhances the
ISWs’ continuity by effectively extracting global semantic information and minimizing
resolution loss. The process unfolds in the subsequent steps. Initially, an image of H×W× 3
dimensions is transformed into 256 patches, each measuring H

16 ×
W
16 × 3. This results in

an input sequence length of H
16 ×

W
16 for the Transformer. Subsequently, the patches are

converted into vectors, represented as pi, and then, subjected to the Linear Projection
function, producing the vector ei. This provides the input for the initial Transformer layer,
expressed as E = (e1 + p1, e2 + p2, . . . , eL + pL), with ei symbolizing the patch embedding
and pi denoting the position embedding, as depicted in Figure 3.

Every layer of the Transformer model includes three crucial elements: Multi-Head
Attention, Layer Normalization, and Multi-Linear Project. Within the Multi-Head Attention
layer, the Query (Q), Key (K), and Value (V) are calculated using the subsequent equations:

Query = EWQ, Key = EWK, Value = EWV . (1)

To derive the Self-Attention mechanism’s output, we utilize the subsequent formula:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V. (2)

In this context, the parameter dk signifies the vector’s dimensionality, aligning with
the matrix’s column count. As a result, the Multi-Head Attention’s output is determined
by the subsequent expression:
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Multi-Head Attention(Z) = Linear(Concat(
n

∑
i=1

Zi)). (3)

At this stage, we acquire the input for the Multi-Layer Perceptron (MLP), comprising
the input, output, and hidden layers.

Patch Embedding

Position Embedding

Q K V

Figure 3. Middle-Transformer. It consists of two parts: image serialization and eight Transformer lay-
ers. After serializing the image sequence and obtaining the patch embedding and position embedding,
they are fed into the Transformer layers for calculation, resulting in the output feature map.

2.4. Loss

Our model generates five saliency probability maps as side outputs: Sup1, Sup2, Sup3,
Sup4, and Sup5. These maps undergo concatenation, followed by a 1 × 1 convolutional
layer and a sigmoid function. This process yields the ultimate saliency probability map,
Sup6 (refer to Figure 1). To account for ISWs’ characteristics, we introduce a novel loss
function that efficiently mitigates interference and aids in crest lines’ and wave packets’
extraction. The defined training loss is:

L =
M

∑
m=1

w(m)
sidel(m)

side + w f usel f use, (4)
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where l(m)
side (where M = 5, corresponding to Sup1, Sup2, Sup3, Sup4, and Sup5 in Figure 1)

indicates the loss of the side output saliency map Sm
side and l f use (corresponding to Sup6

in Figure 1) signifies the loss of the final fusion output saliency map S f use. Here, we

assigned weights, w(m)
side and w f use, to each loss term (in this experiment, we assigned equal

weights of 1 to each loss term). Each loss term l ∈ l(m)
side , l f use is a combination of the Binary

Cross-Entropy (BCE) and the absolute Dice losses:

l = αLossBCE + βLossAbs-Dice, (5)

where α and β represent weighting coefficients. After empirical testing, we fixed α = 0.6
and β = 0.4. The definition of LossBCE is given by Equation (6):

LossBCE = − 1
N

(H,W)

∑
(x,y)

PG(x,y) ln PS(x,y) + (1− PG(x,y)) ln (1− PS(x,y)), (6)

where (x, y) denotes the pixel coordinates and (H, W) represents the image size. PG(x,y) and
PS(x,y) stand for the pixel values of the ground truth and the predicted saliency probability
map, respectively.

For capturing the primary ISWs, we introduced the Abs-Dice loss, enabling us to filter
out insignificant information. The Abs-Dice loss is formulated in Equation (7):

LossAbs-Dice = φ(
(1− (2I + εE))

(U + εE)
), φ(x) =

{
0 if x 6= 1
1 if x = 1

. (7)

In this context,I = ∑N
1 tiyi, U = ∑N

1 (ti + yi), yi stands for the network’s predicted
values, and ti corresponds to the network’s target values, where 0 and 1 indicate distinct
categories. We fixed the smoothing coefficient as ε = 1.

ISWs in SAR images exhibit a non-uniform distribution. In regions with dense stripes,
the presence of numerous discontinuous and incomplete coda waves leads to substantial in-
terference in the extraction of ISWs, thereby limiting their practical applications. The novel
loss function proposed in this study offers an effective solution to address these challenges.
The merits of our loss function are comprehensively discussed in the Experimental Results
Section (Section 4).

3. Experimental Section

We implemented our model using the PyTorch 1.12.1 machine learning library along
with the CUDA toolkit 9.1.85. To evaluate the effectiveness of our model, we conducted
experiments focused on ISW extraction and compared the outcomes with those of semantic
segmentation models. This section offers a comprehensive overview of the data source,
dataset, experimental setup, and evaluation criteria.

3.1. Data Source

The South China Sea, located in the Western Pacific Ocean, witnesses the occurrence
of ISWs throughout the entire year. As shown in Figure 4 [40], the ISWs occurring in the
South China Sea showcase significant large-scale structures. Most ISWs in the northern
part of the South China Sea propagate in a westward direction. The bow wave, which can
extend up to 200 km with an amplitude of 100 m, is readily observable in SAR imagery.
This characteristic led us to choose the South China Sea as our primary research area.



Remote Sens. 2023, 15, 5441 9 of 19

Figure 4. Monthly distribution of ISWs in the northern part of the South China Sea.

3.2. Dataset

In 2022, Tao M.and colleagues released an ISW dataset for object detection [41], but as
of now, there is no publicly available ISW dataset specifically designed for semantic seg-
mentation, Consequently, we needed to create our dataset independently. In this study,
we collected a total of 762 ISW images captured by the Environmental Satellite Advanced
Synthetic Aperture Radar (ENVISAT ASAR) from the South China Sea region acquired
from 2003 to 2012. ENVISAT ASAR operated within the C-band at a wavelength of 5.6 cm
and employed the Wide Swath Mode (WSM) with a spatial resolution of 150 m, utilizing
VV/HH polarization. The swath width was approximately 400 km. We created our dataset
by manually drawing isolated internal wave patterns using the Adobe Photoshop software
22.2.0 to generate the training labels required for our task. Therefore, our dataset differs in
structure from the aforementioned dataset. In the initial experimental phase, we employed
the Photoshop software to create one-to-one image–label annotations corresponding to the
ground truth. While we resized and normalized the images during data augmentation, our
experiments demonstrated that techniques like flipping and rotating, which often enhance
dataset quality, did not notably enhance the ISW extraction in the South China Sea. This
outcome can be attributed to the distinct origin and westward propagation of ISWs from the
Luzon Strait, resulting in clear formation and propagation patterns. Flipping and rotating
images would compromise the distinctive features of South China Sea ISWs. The dataset
includes 762 samples, each featuring distinct and well-visible ISW stripes, meticulously
selected from the original samples. Subsequently, we divided the dataset into a training
subset (90%) and a test subset (10%) through random sampling, which included 682 and
80 samples, respectively.

Traditional image-processing methods have exhibited comparatively limited success
in extracting ISWs from this dataset. In contrast, the deep learning approach introduced
in this paper yielded impressive outcomes in ISW extraction using a modest SAR dataset,
underscoring the model’s exceptional capacity for generalization. As depicted in Figure 5,
the deep learning model adeptly extracted ISWs from mixed SAR images containing
both oceanic and terrestrial regions. Conversely, conventional methods like Canny not
only delineate ISW curves, but also recognize land-based features like coastlines, rivers,
and roads, as well as non-ISW curves on the sea surface.
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Figure 5. The remote sensing map of the northern South China Sea, mostly consisting of oceanic
plates and the results of ISW extraction with deep learning and Canny. (a) is the result of deep
learning; (b) is the result of Canny; (c) is the result of Canny without the land plate.

3.3. Experimental Setup

Owing to the infrequent occurrence of ISWs, our dataset was comparatively small.
Consequently, we introduced a model tailored for small datasets named MTU2-net, built
upon the UNet architecture. In order to substantiate the efficacy of our model, we conducted
comparisons with several alternative models. Given that the core of a semantic segmenta-
tion model revolves around pixel-level prediction, it is imperative to juxtapose our model
with contemporary preeminent semantic segmentation approaches like Transfuse [42],
Polyp-PVT [43], Swin-UNet [44], and U2-net [45].

The model was implemented and evaluated on a 64-bit Ubuntu 18.04.6 system, uti-
lizing PyTorch and an NVIDIA A100 GPU. For optimization, the model employed the
Adam optimizer with a learning rate of 0.001, a β1 value of 0.9, and an epsilon set at 10−8.
As previously mentioned, the model underwent training from scratch, abstaining from the
utilization of pre-trained weights. Following each upsampling stage, the feature map was
expanded to match the original image dimensions via bilinear interpolation, generating a
collection of five side outputs. Ultimately, a 1× 1 convolution operation was implemented
to generate the fusion outcomes. The loss computation was based on the labels of the
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six output results, encompassing Sup1, Sup2, Sup3, Sup4, Sup5, and Sup6, as detailed in
Equation (4).

3.4. Evaluation Metrics

In order to comprehensively assess our model’s performance, we employed three
widely recognized metrics in the field of semantic segmentation: the F1-score, Mean
Accuracy (MACC), and Mean Intersection over Union (MIoU). The F1-score is a metric
that quantifies the precision of binary classification models by simultaneously taking into
account the accuracy and recall of the classification models (Equation (10)). Precision
signifies the proportion of accurately identified “edge” pixels in relation to the ground truth
(Equation (8)), while recall quantifies the number of “edge” pixels present in the ground
truth that are correctly predicted (Equation (9)). MACC represents the average accuracy
encompassing all classes (Equation (11)). The MIoU stands as a widely adopted measure in
the domain of semantic segmentation. It computes the ratio of the intersection and union
for each class, followed by an average calculation (Equation (12)).

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1 = 2× Precision× Recall
Precision + Recall

, (10)

MACC =
1
2
(

TP
TP + FN

+
TN

TN + FP
), (11)

MIoU =
1
2
(

TP
TP + FP + FN

+
TN

TN + FN + FP
). (12)

True Positive (TP)signifies the count of pixels accurately identified as “edge”; False
Negative (FN) indicates the number of pixels mistakenly not identified as “edge”; False
Positive (FP) represents the quantity of “non-edge” pixels in the ground truth dataset
erroneously labeled as “edge” by the model; True Negative (TN) reflects the number of
pixels correctly identified as “non-edge”.

4. Experimental Results
4.1. Comparison with Traditional Methods

Prior to the advent of deep learning, the mainstream approach for extracting ISWs relied
on traditional edge-detection algorithms and manual extraction. This paper presents the
results of several traditional edge-detection algorithms, including Canny [46], Laplacian [47],
Marr–Hildreth [48], Scharr, and Sobel [49], as shown in Figure 6. It was evident that
these conventional algorithms could rapidly and relatively accurately extract ISWs when
faced with relatively simple scenes, as seen in the first and third rows of the SAR images.
However, their performance deteriorated when dealing with slightly more-complex scenes,
as observed in the second and fourth rows of the SAR images. Moreover, most traditional
edge-detection methods require manual threshold tuning, which consumes a significant
amount of human effort and time, contradicting the goal of reducing the human and
time costs pursued by this study. Consequently, we employed deep learning techniques,
as described in the following section, to conduct our experiments.
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Image Canny Laplacian Marr-Hildreth Scharr Sobel Ours

Figure 6. Experimental comparison of different traditional methods.

4.2. Comparison with Methods of Deep Learning

To assess our model’s performance, we trained three deep learning networks: Swin-
UNet [44], Transfuse [42], and Polyp-PVT [43] by using the same dataset constructed in
this study and conducted the comparative analysis. The experimental outcomes for our
model, along with those of the other models, are displayed in Table 1. The table furnishes
compelling evidence of our model’s modest enhancement of the F1-score compared to
the other models. Moreover, it showcases a notably greater advantage in terms of MACC
and the MIoU. In order to enhance the clarity of the experimental outcomes, we diligently
curated a set of representative SAR image examples for testing. The comparative analysis of
the semantic segmentation models revealed suboptimal outcomes, attributed to the absence
of a mechanism capable of capturing the global feature distribution. As a consequence,
there was a notable breakdown in sustaining the continuity of the ISWs. In response to
these limitations, our model innovatively introduced a novel loss function and seamlessly
integrated a Transformer The results of the numerical experiments are visually depicted in
Figure 7.

Table 1. The results of the experiment on our datasets with segmentation models.

F1-Score MACC MIoU

Swin-UNet 53.32 62.33 55.93
Transfuse 51.64 51.91 49.15

Polyp-PVT 55.93 58.94 53.19
U2-Net 52.33 61.30 52.38

Multi-loss U2-Net 53.48 62.51 53.96
Transformer U2-Net 54.39 66.23 63.83

Ours 56.03 75.20 71.57

We carefully selected a set of five representative ISWs for the test dataset, encompass-
ing both bright and dark stripes, along with mode-2 ISWs, as detailed in [50]. The ground
truth was established by manually identifying the bow waves present in the SAR images.
The extraction capabilities of the methods of deep learning are demonstrated in Figure 7.
Nevertheless, when faced with intricate scenarios, as illustrated in Figure 5, the traditional
methods fell short in their ability to effectively extract the ISWs. Furthermore, Swin-UNet
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also struggled to perform well in the task of extracting ISWs. Similarly, Transfuse demon-
strated insufficient continuity in extracting the ISWs, and it even struggled to capture
complete ISWs. While Polyp-PVT could extract the expected ISWs partially, it was plagued
by problems such as excessively wide stripes and discontinuities in the ISWs. In sharp con-
trast, our model, as presented in the final column, demonstrated outstanding performance
in extracting the ISWs across diverse situations. Not only did it accurately extract the
anticipated ISWs, but it also ensured their continuity. These convincing findings robustly
underscore the efficacy of our proposed methodology.

Image GroundTruth Swin-Unet TransFuse Polyp-PVT Ours

Figure 7. Experimental comparison of different semantic segmentation models.

4.3. Ablation Experiment

In the process of model modification, we conducted ablation experiments, with evalu-
ation indicators, as depicted in Table 2. The experiments encompassed three models: the
original U2-net model, the U2-net model augmented with the multi-loss function, the U2-net
model with a Transformer, and our model featuring a Transformer and a novel loss func-
tion. The results shown in Figure 8 suggest that the original U2-net model demonstrated
a certain degree of capability in extracting ISWs, albeit not comprehensively. However,
the incorporation of the multi-loss function into U2-net led to enhanced results for the
majority of the dataset. This enhancement can be ascribed to our loss function, which
assigns priority to the predominant ISWs. The inclusion of the Transformer-based U2-net
network demonstrated a commendable capability in the extraction of the ISWs. This can
be attributed to the attention mechanism we incorporated, which differed somewhat from
previous attention mechanisms. We fine-tuned the algorithms governing its attention and
introduced certain small modules, enhancing its adaptability to our dataset. Ultimately, our
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model showcased superior capabilities in extraction and generalization when contrasted
with the other two approaches.

Table 2. The recognition accuracy changes with the increase in modules in our dataset.

Different Variants

U2-Net X X X X
Multi-loss X X

Transformer X X
MIoU (%) 52.38 53.96 63.83 71.57

Image GroundTruth U2-Net Multi-loss Transformer Ours

Figure 8. Experimental comparison figure during the process of improving the model.

To evaluate the rationality and effectiveness of the recently incorporated functional
modules in our model, we exhibit the detailed prediction results of the model incorporating
different functional modules, as shown in Figure 9. Figure 9A illustrates continuous ISWs,
while Figure 9B displays two distinct, non-connected ISWs. Figure 9(a1,b1) show the ISW
extraction outcomes using the U2-net model. Figure 9(a2,b2) display the outcomes of the
loss function for the respective modified models. Through our modified loss function,
the coda wave was effectively ignored, leading to an enhanced integrity of the predicted
ISWs. Figure 9(a3,b3) illustrate the incorporation of the Transformer following the preced-
ing step. This integration enhanced the result continuity and facilitated the differentiation
of two distinct ISWs within a single image.
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Figure 9. Comparative experiments using different functional modules. (A,B) are the original images.
(a1,b1) are the predictions of the U2-net model augmented with multiple loss functions. (a2,b2) are
the results of the U2-net model with the Transformer. (a3,b3) are the results of our model.

4.4. Performance on Another Dataset

To verify the generalization and robustness of the model, we utilized the ISWs’ dataset
for testing, as released by Tao M. and colleagues [41], which was not used during the
training and testing of our model. The predicted results of our model are shown in Figure 10.
The image in the first row was captured by Sentinel-1 in the Andaman Sea, starting at
23:19:33 on 31 August 2020, and ending at 23:19:58 on 31 August 2020. The specific
coordinates of this scene are 6–8° N and 95–98° E. The image in the second row was
collected by Sentinel-1 in the Sulu Sea and Celebes Sea, starting at 21:42:10 on 17 December
2020 and ending at 21:42:35 on 17 December 2020. The specific coordinates of this scene are
1–3° N and 119–121° E. “Image” is the original image to be detected; “Extracted ISW” is the
result of model prediction; “Image and ISW” is when we placed the prediction result in
the form of green lines on the image. The results indicated the effectiveness of our model
across different satellites and maritime regions.

Image Extracted ISW Image and ISW

Figure 10. Model performance on other data.

5. Discussion

Based on the above experimental results and analyses, it was shown that the proposed
method can obtain more-accurately extracted ISWs of SAR images than other methods.
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As is well known, one of the key factors affecting the accuracy of image segmentation
based on deep learning is the quantity of training samples. When there is an insufficient
number of training samples, overfitting may pose a significant challenge. Owing to the
restricted availability of training data solely from the South China Sea, the generalization
prowess of our model was not exceptionally distinguished. Furthermore, we acknowledge
the potential for enhancing the precision of the model discussed herein.

Furthermore, due to the uneven distribution of the dataset’s feature characteristics,
the MTU2-net method achieved a higher segmentation accuracy. This study underscored
the limitations of existing semantic segmentation methods and emphasized the significance
of attention mechanisms in improving accuracy. The results demonstrated the capability of
MTU2-net to extract ISWs in SAR images.

Additionally, Our approach provides researchers with a potential avenue for investi-
gation, namely leveraging the structural characteristics of ISWs in the South China Sea to
the design of a targeted attention mechanism for improved accuracy. Alternatively, the col-
lection of additional data to build a more-extensive dataset may also enhance the accuracy.

In conclusion, the results of this study hold significant implications for the development of
deep-learning-based methods for extracting ISWs. This research underscored the importance
of ongoing investigation in this field to enhance accuracy and address challenges related to
small-sample segmentation, imbalanced sample distribution, and overfitting.

6. Conclusions

Internal Solitary Waves (ISWs) can induce water mixing, thereby facilitating the trans-
port of substances and heat. These waves exert a significant influence on various factors,
encompassing phytoplankton and zooplankton populations, maritime navigation, sub-
marines, and offshore structures, including oil drilling platforms. Whether assessing their
advantageous effects or seeking to mitigate potential risks, the precise determination of
internal wave positions is of paramount importance. Hence, the extraction of ISWs necessi-
tates a high-precision model. This paper introduced an innovative method for the stripe
segmentation of ISWs, utilizing the MTU2-net framework. The method integrates local
attention mechanisms and a distinctive loss function, enabling precise focus on primary
ISWs within the South China Sea, as observed through SAR imagery. To achieve this
objective, a pivotal alteration was introduced to the MTU2-net architecture. Specifically,
the original Residual unit in the center was replaced with a Middle-Transformer unit.
This adaptation empowered the model to effectively prioritize the preservation of ISWs’
integrity. Furthermore, we employed a carefully designed loss function that combines the
binary cross-entropy loss and Dice loss components. This enhancement augmented the
model’s sensitivity to the bow wave, a pivotal characteristic of ISWs. Extensive experi-
mentation unequivocally showcased that the proposed MTU2-net, incorporating these two
modifications, adeptly extracted the primary ISWs signatures from our dataset.

Moving forward, our future endeavors entail harnessing the most-recent advance-
ments in semantic segmentation techniques to amplify the precision and computational
efficiency of our proposed model. Additionally, by utilizing the extracted internal wave
crest lines, we aspire to construct scenario generators for internal wave remote sensing
images, thus bolstering our capacity to predict internal wave propagation. Aligned with
our dedication to advancement, we will persist in enhancing the marine internal wave
remote sensing image dataset, thus progressively tackling the challenge posed by restricted
data resources.
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Abbreviations
The following abbreviations are used in this manuscript:

BCE Binary Cross-Entropy
ENVISAT ASAR Environmental Satellite Advanced Synthetic Aperture Radar
ISW Internal Solitary Wave
MACC Mean Accuracy
MIoU Mean Intersection over Union
MTU2-net Middle-Transformer U2-net
RSU Residual U-block
RSU-L Residual U-block, where L denotes the number of Encoder layers
SAR Synthetic Aperture Radar
WSM Wide Swath Mode
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