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Abstract: Change detection (CD), a crucial technique for observing ground-level changes over time,
is a challenging research area in the remote sensing field. Deep learning methods for CD have made
significant progress in remote sensing intelligent interpretation. However, with very high-resolution
(VHR) satellite imagery, technical challenges such as insufficient mining of shallow-level features,
complex transmission of deep-level features, and difficulties in identifying change information
features have led to severe fragmentation and low completeness issues of CD targets. To reduce
costs and enhance efficiency in monitoring tasks such as changes in national resources, it is crucial
to promote the practical implementation of automatic change detection technology. Therefore, we
propose a deep learning approach utilizing heterogeneity enhancement and homogeneity restraint
for CD. In addition to comprehensively extracting multilevel features from multitemporal images,
we introduce a cosine similarity-based module and a module for progressive fusion enhancement
of multilevel features to enhance deep feature extraction and the change information utilization
within feature associations. This ensures that the change target completeness and the independence
between change targets can be further improved. Comparative experiments with six CD models
on two benchmark datasets demonstrate that the proposed approach outperforms conventional CD
models in various metrics, including recall (0.6868, 0.6756), precision (0.7050, 0.7570), F1 score (0.6958,
0.7140), and MIoU (0.7013, 0.7000), on the SECOND and the HRSCD datasets, respectively. According
to the core principles of change detection, the proposed deep learning network effectively enhances
the completeness of target vectors and the separation of individual targets in change detection with
VHR remote sensing images, which has significant research and practical value.

Keywords: CNN; change detection; cosine similarity; very high-resolution image

1. Introduction

Accurate and dynamic surface spatial structure monitoring is particularly important
for urbanization management [1], ecological environment monitoring [2], and emergency
disaster relief [3]. Researchers are actively exploring and developing effective technical
methods in this field. Furthermore, very high-resolution (VHR) remote sensing imagery
has become crucial for dynamically observing the Earth, especially in urban areas, because
of its capacity to provide rich information for detailed feature characterization, spatial
structure analysis, and proximity relationship assessment [4]. This is significant for un-
derstanding the relationships and interactions between urban development and human
activities. However, the accelerated pace of urbanization and the increasing heterogeneity
in VHR images present challenges for change detection in practical applications. The
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observed heterogeneity in the images among the same class of targets at different times is a
significant challenge in automatically interpreting change information.

In general, traditional change detection methods extract features at the pixel level [5].
Change indicators are quantified based on well-defined units to determine the target
category. Although these methods are effective for change detection in low- and medium-
resolution remote sensing images, they are not suitable for VHR images. As the spatial
resolution of the remote sensing images increases, the dependence on neighboring units
becomes more pronounced [6]. Moreover, individual objects in VHR images usually contain
more pixels and show greater heterogeneity than objects in lower-resolution images, which
can lead to difficulties in completely identifying objects with pixel-based change detection
algorithms. Object-based change detection methods have been employed to classify spatial
correspondences in VHR images and analyze segmented objects at multiple scales for image
analysis rather than considering pixels at a single scale [7]. These methods mitigate the
salt-and-pepper effect associated with creating classification units that represent differences
and reduce false detections caused by spectral and spatial disparities [8]. Furthermore,
object-based methods analyze individual target units rather than individual target pixels,
which align more closely with the actual target characteristics [9,10]. However, object-
based change detection methods also encounter issues, such as addressing topological
relationships among different targets and capturing internal details of target objects [11].

In recent years, deep learning (DL) has become a highly representative and discrimina-
tive method known for its end-to-end, multidimensional, and multilevel feature extraction
capabilities in machine learning and pattern recognition [12,13]. Based on the statistical
features of the observed data, deep learning methods can automatically identify and ex-
tract complex features at various levels, enhancing image feature extraction performance.
As the extraction of changing targets can be represented hierarchically through features,
deep learning models have shown effective performance in extracting complex changing
targets. Among deep learning techniques, the convolutional neural network (CNN) [14]
has emerged as a mature and popular method. CNNs can learn high-level abstract features
from raw data through multiple convolutional layers and are commonly applied in tasks
such as visual recognition [15] and image classification [16]. Compared with traditional
methods, CNNs use more parameters and hyperparameters that can be customized for
specific tasks, resulting in increased efficiency and accuracy. Furthermore, the fully con-
volutional neural network (FCN) [17], in which fully connected layers are replaced with
deconvolutional layers, enables pixel-level image prediction and has become a popular
method in semantic segmentation tasks. Numerous FCN-like models, such as UNet [18],
SegNet [19], and PSPNet [20], have been created by scholars and widely employed in
applications, including land use classification [21], vehicle detection [22], and semantic
segmentation [23]. Studies have demonstrated the suitability of FCNs for change detection
tasks due to their ability to predict every pixel in an image. Typically, FCN-based change
detection models use two consecutive images as inputs, encode multitemporal features,
and fuse the features before generating change information. Depending on the timing of
feature stacking within the network, these approaches can be divided into two categories:
single-branch early-fusion (EF) change detection methods and two-branch late-fusion (LF)
change detection methods [24]. In EF change detection methods, raw remote sensing
images are directly input into the model. Deep neural networks have been employed
to construct and extract features and generate change detection patches. For instance,
Peng et al. [25] enhanced the UNet++ framework with a deep supervision strategy to
address error accumulation issues and improve small change detection performance with
complex scenes. Zheng et al. [26] introduced an end-to-end cross-layer network, CLNet,
that integrated multiscale features and multilevel contextual information, mitigating side
effects introduced by advanced features. However, this method does not perform feature
extraction separately for two time-phase images. Currently, in change detection with bitem-
poral high-resolution optical remote sensing images, the prevailing approach involves a
two-branch neural network with a late-fusion strategy. Here, the dual-branch approach
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involves two parallel subnetworks in the encoding phase, each processing one of the two
input images separately. Generally, Siamese structures with shared weights have been
employed to constrain feature learning and efficiently evaluate relative information [27].
For example, Daudt et al. [28] proposed FCLF-SIAM-CONC and FCLF-SIAM-DIFF based
on the UNet framework, which improves detection accuracy by splicing or differentiating
biphasic features. Li et al. [29] introduced a differential enhancement module based on
the features extracted by a transformer and UNet to achieve precise localization of chang-
ing targets. Consequently, effectively utilizing relevant information from multitemporal
images for change detection has become a prominent research focus in related fields. By
utilizing a similar Siamese structure with shared weights, researchers have attempted
to apply attention-based transformer models to change detection tasks [30,31]. Zhang
et al. [32] adopted a U-shaped structure and processed bitemporal phase images using a
pure transformer, effectively extracting features and performing change detection. Song
et al. [33] combined two branches with transformers and CNNs, fused local and global
information through an axial cross-attention mechanism and improved the accuracy of
change detection.

However, existing DL-based methods suffer from some problems. (1) First, DL-
based models generate inadequate bitemporal semantic associations. The changed regions
often account for only a small portion of the data. Due to the unbalanced sample ratio,
it is difficult to learn crucial features that occupy a small proportion of the data [34].
Most existing methods analyze stacked features or use balanced contrast loss functions
to address data imbalance issues, with limited research on semantic correlations between
bitemporal features [35]. Nevertheless, considering the semantic association between
bitemporal features is crucial for effective change detection. (2) Second, DL-based models
have inadequate feature fusion at different levels during the decoding process. While many
works have explored the concatenation and fusion of low-level features in the encoding
stage through skip connections, only a limited number of studies have addressed the
incorporation of deep features in the decision-making layer [36]. However, low-level
features can introduce significant noise. Therefore, fusing depth features at different stages
in the upsampling process is important for change detection.

To overcome the limitations of existing change detection models and functions, this
paper presents innovative solutions. The primary contributions of our work can be summa-
rized as follows:

(1) Inspired by attention mechanisms [37], we introduce a cosine similarity (CS) mod-
ule for enhancing change detection performance by emphasizing change information.
Specifically, our approach involves correlating the two-phase deep features extracted by the
backbone network using the CS module during the upsampling recovery process. In our
approach, we emphasize capturing feature differences at various scales, enabling the con-
struction of a deep supervised network that enhances feature variability and, consequently,
improves change detection accuracy.

(2) We introduce the multilevel feature progressive fusion enhancement (MFPFE)
module to refine deep semantic features. Early features are susceptible to noise, which
can lead to error accumulation. Moreover, inadequate feature fusion leads to suboptimal
training effects with change detection methods. In this paper, we employ a fusion method
during the upsampling process. The MFPFE module effectively leverages information from
the multilevel upsampling process to recover local information around target boundaries
and mitigate global information loss. This approach enhances the consistency among
the pixel classes by incorporating spatial information at different resolutions through
progressive fusion steps.

The remainder of this study is organized as follows. Section 2 introduces the general
workflow and details of the proposed method. The experimental data, accuracy evaluation
methods, experimental details, results, and discussion are presented in Section 3. The
conclusions are presented in Section 4.
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2. Materials and Methods
2.1. Framework

In this paper, we propose a change detection model (HEHRNet). This method gen-
erates change maps based on VHR image data using an encoding–decoding structural
framework, as illustrated in Figure 1. To construct multilevel deep features, we employ
the HRNet network [38] during the downsampling stage. However, variations in imaging
conditions between multitemporal phase images result in differences in the feature distri-
butions of multitemporal images. To allow the network to effectively focus on genuine
changes and mitigate the influence of issues related to metamerism on the extraction of
change targets, we developed effective structures and methods to address these challenges.
These methods primarily involve enhancing the correlations among bitemporal features,
amplifying heterogeneous information that contributes to changes, and reducing attention
toward similar homogeneous information. By integrating deep-level abstract features, the
detected changes can be more effectively aligned with real surface data. More specifically,
in the change region extraction process, we introduce the CS module to calculate the corre-
lations among multiple time series images. Simultaneously, the MFPFE module is designed
to sequentially fuse the decoded features. Finally, we employ a standard sigmoid classifier
to generate the extraction results.
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In HEHRNet, we employ HRNet18 with multiple parallel branches as an encoder to
extract multilevel features within the backbone network. To mitigate parameter redun-
dancy and minimize the risk of overfitting during transitions, we utilize a weight-sharing
concatenated network strategy to extract image features. Specifically, we input precisely
georeferenced three-channel optical image pairs with dimensions (C × H × W), where
C, H, and W represent the number of channels, height, and width of the original image,
respectively. In the downsampling stage, we apply two convolutions with a step size of 2 to
the original image. This process increases the feature dimension to 64 channels while reduc-
ing the feature size to H/4 ×W/4. Subsequently, we utilize the four branches in HRNet18
to extract rich semantic information from images at various scales. The feature sizes of
these four branches are H/4 ×W/4, H/8 ×W/8, H/16 ×W/16, and H/32 ×W/32. We
employ a cross-fusion strategy between these branches to effectively condense information
at each scale. Then, we extend the multiscale features extracted from the same image to
the common dimensions of H/4 ×W/4 and stack the features to integrate the multiscale
information. This integration increases the feature depth and semantic expression. We then
reduce the dimensionality of these stacked features and fuse them using a convolution with
a step size of 2. These fused features serve as inputs in the decoding stage.
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The features from the encoding stage are passed to an upsampling network with
shared weights. The image size is restored, and the dimensionality is reduced using an
upsampling strategy with a ratio of 2, a ResBlock module with a step size of 1, and a constant
number of channels to distill the actual ground object information. The feature restoration
process includes 3 stages. With this approach, the deep semantic feature information in the
bitemporal phase remote sensing image is mined and utilized, and the model parameters
can closely represent the actual ground objects. In addition, in the decoding stage, to
enhance the inconsistencies in the changed region, the consistency of the unchanged region
is constrained so that the model can better detect the changed region. A well-designed
CS module is added in each stage to reconstruct the recovered features of different sizes.
The use of this module for different-sized bitemporal feature metrics coincides with the
number of upsampling processes, totaling three. The channel dimension of the features is
reduced, and the spatial resolution is increased by the upsampling process of the network.
The feature sizes are (512 × C) × H/8 ×W/8, (256 × C) × H/4 ×W/4, and (128 × C)
× H/2 ×W/2. These different feature scales contain interpretations of ground objects at
different levels, which are important for accurate identification and precise localization of
targets of different shapes and sizes. The multiscale features output by the CS module at
different stages are fused by the MFPFE module. Finally, the bitemporal phase features are
stacked and upsampled to the original image size, and the change location is detected by a
simple change detection predictor head.

2.2. Cosine Similarity Module

This module is designed to highlight potential change areas in bitemporal remote
sensing image pairs by grouping and calculating cosine correlations between channels
at different stages in the upsampling and feature reduction processes. As illustrated in
Figure 2a, the cosine similarity quantifies the semantic relationship between two entities by
measuring the cosine of the angle between their respective vectors. This value is determined
by the direction of the feature vectors and is independent of their magnitude. The cosine
similarity metric is commonly employed in various fields, including natural language
processing [39] and time series data analysis [40]. The cosine similarity formula for a
multidimensional vector is

cos θ =
∑N

i=1(Ai × Bi)√
∑N

i=1(Ai)
2 ×

√
∑N

i=1(Bi)
2
=

A·B
|A|×|B| (1)

where A and B are two eigenvectors, N is the dimension of the vector, and θ is the angle
between the vectors.

In the BCD task, it is essential to consider not only the features from both periods but
also their semantic relevance. Inspired by a study on joint multitask learning for semantic
change detection [41], we adopt a two-branch upsampling structure with shared weights.
We independently recover image features for each period before merging them to create
bitemporal features. This approach improves the parameter expressions for the different
period features without increasing parameter redundancy, which is important for the corre-
lation calculations. In this paper, based on previous research on group convolutions [42],
we group every 8 feature channels to compute the cosine similarity. The feature map is
organized into groups of 8 channels, with each pixel in each group representing a high-
dimensional vector composed of 8 feature values. Figure 2b illustrates the cosine distance
calculation at corresponding positions in two single-layer feature maps.

The overall structure of the module is illustrated in Figure 3a. I1 and I2 represent
features with identical numbers of channels, widths, and heights from two branches in the
same stage during the upsampling process. In each stage, I1 and I2 are initially grouped
into sets of 8 channels. The cosine similarity between the corresponding groups is then
calculated, resulting in the creation of a multilayer cosine similarity feature layer that
maintains the same dimensions as the original features. Following this, we apply the
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concept of residual networks [43] to combine the cosine similarity features with I1 and
I2, enhancing the original features. This approach ensures that feature correlations are
effectively leveraged from the original basis, emphasizing the expression of semantic
differences within the original features across time. Finally, the merged results are passed
through a convolutional layer with a kernel size of 3, producing feature maps at varying
scales and stages.
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2.3. Multilayer Feature Progressive Fusion Enhancement Module

In each stage of the upsampling process, pixels have varying receptive fields and
exhibit varying sensitivities to objects of different sizes. A larger resolution is advantageous
for precisely locating small change targets, whereas a smaller resolution is beneficial for
recognizing the overall change target orientation. The simplistic continuous upsampling
method used in existing approaches leads to issues such as the loss of change targets and
incomplete semantic information, ultimately resulting in leakage and misdetection. Hence,
features at different levels must be integrated for change entities of varying sizes in the
binary change detection task. To enhance the consistency in the semantic information at
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different scales and improve the change extraction localization accuracy, we introduce the
MFPFE module. Within the decoding process, a multilayer feature fusion approach is em-
ployed for feature information from adjacent stages. This approach enhances the semantic
information and mitigates the multiscale feature loss. By utilizing the features condensed
by the CS module at multiple stages, we achieve greater robustness and generalization,
enabling us to successfully perform the change detection task.

The structure of this module is depicted in Figure 3b. Throughout the upsampling
process, we map the change detection features of adjacent stages as Fi and Fi + 1, where
the dimensions (height, width) of the latter are twice those of the former. To facilitate the
integration of feature representations from different stages, we first upsample Fi by a scale
of 2 and apply a convolution with a kernel size of 3. Subsequently, we concatenate Fi with
Fi + 1 and perform a simple convolution to fuse the features. This operation is carried
out with a layer-by-layer approach across multiple feature layers, allowing us to combine
global information from the low-resolution feature map with detailed information from the
high-resolution feature map. As the high-level features obtained during the upsampling
process include fully extracted semantic information regarding the ground features, the
underlying noise is not propagated during this process. This provides valuable insights
into the integrity and separability of change instance boundaries. Consequently, distinct
features at different scales can be fully utilized for change detection during the upsampling
process.

3. Experiments and Results
3.1. Dataset

To achieve the objectives of this study, we utilized two datasets to assess the perfor-
mance and feasibility of our methodology. Figure 4 illustrates various scenarios from both
datasets. In these figures, the white pixels represent the target regions that have undergone
changes, while the black areas depict the background regions that remain unchanged.
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The first dataset [44] includes data from major cities, including Hangzhou, Shanghai,
and Chengdu in China. This dataset was provided by the Computational and Photogram-
metric Vision team at Wuhan University and is available online as an open benchmark
dataset. Additionally, the SEmantic Change detectiON Data (SECOND) dataset provides se-
mantic labels for changed regions, classifying them into six common land cover categories:
non-vegetated ground surfaces, trees, low vegetation, water, buildings, and playgrounds.
These areas are typically susceptible to human disturbance in large urban areas. We adapted
the SECOND dataset for our binary change detection task, preserving only the label values
of 0 and 1. A label value of 0 indicates no change, while a value of 1 indicates a change.
The dataset consists of 2968 tiles, each measuring 512 × 512 pixels, with ground resolutions
from 0.5 m to 3 m. The tiles are composed of red–green–blue three-channel images.

The second dataset [45] was obtained in northern France, encompassing the areas
around the city of Rennes in Brittany and the Caen district in Lower Normandy. The images
in this dataset were acquired from 2005 to 2012, with a high spatial resolution of 0.5 m. The
images include six types of feature changes: no information, artificial surfaces, agricultural
areas, forests, wetlands, and water. Due to its larger coverage area, the images capture not
only changes in densely populated urban regions but also complex changes in suburban
and rural landscapes, including farmland. The High-Resolution Semantic Change Detection
(HRSCD) dataset includes 291 tiles, each measuring 10,000 × 10,000 pixels, with mainly
three-channel RGB images. To alleviate the computational demands on the hardware device,
we cropped the images to a size of 512 × 512 pixels while maintaining their compatibility.
Furthermore, we selected image pairs in which more than 20% of the pixels were labeled as
changed, resulting in a total of 2607 tiles as samples.

In our study, we preprocessed the data to ensure that the model has an adequate
amount of data for feature learning during training and sufficient samples to accurately
evaluate model performance during testing. To align with the requirements of the change
detection task and the dataset sizes, the SECOND dataset and HRSCD dataset were divided
into training and testing sets at an 8:2 ratio. This resulted in 2374 tiles and 594 tiles allocated
for training and testing in the SECOND dataset and 2086 tiles and 521 tiles for training
and testing in the HRSCD dataset, respectively. Before feeding the data into the model,
we applied data augmentation techniques during the training stage, primarily employing
random flipping and rotating methods when loading image pairs. Additionally, to enhance
the model’s generalizability, we calculated the mean and standard deviation of each dataset
and utilized these statistics to standardize each image before inputting the images into the
model.

3.2. Experimental Settings

The proposed model and comparison methods in this study were implemented using
the PyTorch-1.8.1 framework within a Python 3.7 environment. All experiments were
conducted on a workstation equipped with an NVIDIA Quadro P5000 GPU. Consistent
hyperparameters were applied across all experiments during the training process, including
the number of training epochs (set to 60), batch size (set to 4), and initial learning rate
(set to 0.1). Additionally, the stochastic gradient descent (SGD) optimizer in PyTorch
was employed to optimize the model parameters. Specifically, the momentum parameter
(Momentum) was set to 0.9 to expedite model convergence and ensure the model did not
fall into local optima. The weight decay was set to 0.00001 to mitigate model overfitting.

3.3. Evaluation Measures

The four most common evaluation metrics were employed to evaluate the performance
of our proposed method: precision (Pr), recall (completeness), F1 score (correctness), and
mean intersection over union (MIoU). The recall represents the proportion of correct pixels
in the detected classified pixels and is calculated as follows:

Recall =
TP

TP + FN
(2)
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Here, TP and FN are the numbers of true positives and false negatives, respectively. The
precision is often used to measure the proportion of true classified pixels among the
detected classified pixels and is calculated as

Precision =
TP

TP + FP
(3)

where FP is the number of false positives. The F1 score is a powerful evaluation metric that
represents the harmonic mean of the precision and recall and is calculated as

F1 =
2× Pr× Re

Pr + Re
(4)

The MIoU is used to measure the overlap between the detected changes and labeled changes
and is defined as

MIoU =
1
k

k

∑
i=0

TP
FN + TP + FP

(5)

where k and FN are the number of change categories and false negatives, respectively.

3.4. Experimental Results

The qualitative and quantitative metrics of HEHRNet based on the two datasets
are presented in Figure 5 and Table 1, respectively. The detection results based on the
SECOND dataset demonstrate the effectiveness of our proposed method in identifying
dense and intricate urban surface changes. HEHRNet achieved precision, recall, F1, and
MIoU scores of 0.7050, 0.6868, 0.6958, and 0.7013, respectively. When detecting changes in
large areas with bare soil and buildings, HEHRNet successfully identified change locations
and distinguished individual targets with a significant degree of separation, as shown
in Figure 5(1d–3d). Additionally, HEHRNet accurately detected changes in small areas
with landscapes and buildings, as depicted in Figure 5(4d,5d). These achievements are
attributed to the capabilities of the MFPFE module, which effectively fuses multiscale
features and discriminates between objects of varying scales and shapes. Furthermore, the
CS module models feature associations differentially, enabling the identification of subtle
change targets.

Table 1. The evaluation metric results of HEHRNet based on the SECOND and HRSCD datasets.

Dataset Precision Recall F1 Score MIoU

SECOND 0.7050 0.6868 0.6958 0.7013
HRSCD 0.7570 0.6756 0.7140 0.7000

The results based on the HRSCD dataset demonstrate the proficiency of the proposed
model in recognizing various changes between farmland and human-created features, as
well as changes between bare soil and forested land. The proposed model achieved notable
precision, recall, F1, and MIoU values of 0.7570, 0.6756, 0.7140, and 0.7000, respectively.
Notably, HEHRNet excels at distinguishing different objects among neighboring changing
targets, as illustrated in Figure 5(4h). This indicates that the designed auxiliary structure
effectively leverages the deep semantic information extracted during the encoding stage to
enhance heterogeneous change information and restrict similar homogeneous information.
Furthermore, our model exhibits strong detection capabilities across multiple change cat-
egories. For instance, the model accurately detects changes between roads and grass, as
depicted in Figure 5(1h,2h). Additionally, the model demonstrates sensitivity to changes
between buildings and grass, as observed in Figure 5(3h). This proficiency is a result of the
deep feature extraction process, as the CS module analyzes semantic correlations, empha-
sizing the network’s focus on distinctive areas. This approach ensures that comprehensive
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internal information about change objects can be extracted while enabling fine separation
of neighboring change objects.
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and HRSCD datasets, respectively.

Overall, the detection results based on different datasets demonstrate the good target
separation and complete target extraction capabilities of HEHRNet. However, the edge
regularization and fine object detection performance can be improved when compared to
the ground-truth labels of actual surface changes. This limitation can be attributed to the
fact that these fine objects occupy a very small portion of the VHR images and are no longer
of sufficient size to be detected as distinct object-level entities following the downsampling
phase of feature extraction, making them challenging to detect. In conclusion, our proposed
method demonstrates robust performance across change detection datasets with various
regions, types, and levels.

4. Discussion and Analysis
4.1. Comparative Experimental Results Analysis

To assess the effectiveness of our proposed deep learning method, we conducted
comparisons with other typical deep learning algorithms, including a fully convolutional
Siamese concatenation model (FC-Siam-Conc), a fully convolutional Siamese difference
model (FC-Siam-Diff), Unet, SSCDL [24], BIT-CD [31], and ChangeFormer [46]. These
typical detection algorithms have the same encoder–decoder structure as the method
proposed in this paper. In the comparison experiments, we designed the UNet-based
method as an early-fusion structure, utilizing stacked bitemporal phase images as the
network input. UNet incorporates skip connections to capture rich information across
different feature levels, enabling precise segmentation of remote sensing images for more
accurate change detection. Furthermore, the FC-Siam-Conc and FC-Siam-Diff networks
employ concatenated strategies to separately input images from two different periods,
resulting in enhanced effectiveness. Although both models are considered late-fusion
structures, their skip connections are considerably different. The former transmits feature
concatenations in the two temporal images according to their corresponding upsampling
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stages, while the latter transmits difference maps computed based on the two temporal
images. In addition, SSCDL is a novel model originally designed for multiclass change
detection. It employs deep change detection units to infer semantic associations across
temporal states, identifying both the locations and specific feature class changes. We
retained the change detection branch of SSCDL and adapted it for binary change detection
in our experiments. BIT-CD is a novel approach that integrates convolution and transformer
techniques. Initially, it leverages a fully convolutional network for image feature extraction
and subsequently employs a bitemporal image transformer (BIT) to capture change-related
information within the images. ChangeFormer adopts a Siamese network architecture
that combines transformers and multilayer perceptrons (MLPs). This model is particularly
effective at capturing multiscale, long-range details with improved efficiency. We compared
the performance of the proposed network (HEHRNet) with that of six conventional change
detection models.

The quantitative results for the SECOND dataset are presented in Table 2. HEHRNet
achieves the best results and the best overall performance when comparing the quantitative
evaluation metrics with those of the other models. More specifically, compared to the UNET,
FC-LF-CONC, and FC-LF-DIFF methods, which do not consider the semantic or temporal
correlations of features, there are at least 1.83%, 2.89%, and 2.56% enhancements in the
precision, F1 score, and MIoU metrics, respectively, with the proposed model. Compared
to the SSCDL network, which considers biphasic semantic segmentation information, the
precision, recall, F1 score, and MIoU are improved by 3.87%, 0.8%, 2.37%, and 2.02% with
the proposed model. While the two transformer-based methods obtain good precision
and MIoU values, importantly, HEHRNet still obtains the best MIoU value, surpassing the
MioU values of these models by at least 2.97%. When analyzed from a network perspective,
SSCDL, which optimizes the two-branch parameters using feature semantic information,
performs significantly better than the other four comparison networks with feature stacking
only. In addition, the two-branch late-fusion change detection methods FC-Siam-Conc and
FC-Siam-Diff performed significantly better than the UNet-based early single-branch fusion
model according to the performance metrics. BIT-CD and ChangeFormer outperformed the
other models in terms of precision, indicating that they are less likely to classify positive
samples as negative. Overall, our methods yielded better results than the comparison
models. Therefore, the dual-branch structure and the deep semantic information of the
bitemporal phase images can be considered beneficial for change detection information.

Table 2. Comparison between the proposed approach and the six typical methods for the SECOND
and HRSCD datasets.

Dataset Models Precision Recall F1 Score MIoU

SECOND

FC-LF-CONC 0.6867 0.6398 0.6624 0.6713
FC-LF-DIFF 0.6505 0.6841 0.6669 0.6757

UNET 0.6260 0.5702 0.5968 0.6308
SSCDL 0.6663 0.6780 0.6721 0.6811
BIT-CD 0.6999 0.6090 0.6513 0.6716

ChangeFormer 0.6690 0.6030 0.6343 0.6578
HEHRNet 0.7050 0.6868 0.6958 0.7013

HRSCD

FC-LF-CONC 0.7448 0.6544 0.6967 0.6861
FC-LF-DIFF 0.6752 0.6885 0.6818 0.6662

UNET 0.6961 0.6919 0.6940 0.6778
SSCDL 0.7092 0.6862 0.6975 0.6822
BIT-CD 0.7777 0.6545 0.7108 0.6998

ChangeFormer 0.7945 0.6170 0.6946 0.6896
HEHRNet 0.7570 0.6756 0.7140 0.7000

Figure 6 illustrates the qualitative results for several scenes from the SECOND dataset.
The SECOND dataset contains mainly changes in human-created objects in large cities.
Therefore, most of the change targets shown in these scenes are changes between buildings
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and bare soil or buildings and vegetation. The existing conventional models, which can
identify the change location well, can be applied to detect multicategory changes. However,
HEHRNet can extract fine-grained changes more accurately than these models without
a significant increase in noise, as shown in Figure 6(1j,4j). UNet, FC-SIAM-CONC, and
FC-SIAM-DIFF have many false detections in the detection results. Although SSCDL
performs well in changing the contours of objects, there are still missed detections and
considerable noise. BIT-CD relies on its nonlocal self-attention mechanism to enhance its
ability to focus on finer details. However, it may encounter challenges when dealing with
scenarios involving voids within the change target. On the other hand, ChangeFormer
overlooks the differences among individual changes. However, HEHRNet accounts for the
correlations between temporal sequences and recovers more accurate semantic features. In
addition, HEHRNet’s detection results are more complete in complex scenarios, as shown in
Figure 6(2j–4j). For the changes occurring in the green vegetation on both sides of the road
and between the roads, only HEHRNet extracted complete results. This may be because
the proposed model utilizes the MFPFE module to consider multiple feature levels, which
allows for a more complete recovery of changes in complex features. However, as observed
in Figure 6(5i), only the ChangeFormer method does not misidentify changes between
human-created features. This could be attributed to its robust capability to effectively
capture the global context, resulting in more efficient representations of image features.
As the results in Figure 6(5j,6j) show, HEHRNet maintains the separability between the
changing targets. This is because HEHRNet focuses on the utilization of deep features
better than the conventional algorithms. The CS module is utilized to enhance the changes
in the heterogeneous regions and focus the network’s attention on such changing regions.
A comprehensive comparison shows that HEHRNet has better detection results than the
other models based on the SECOND dataset.
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Figure 6. Visualization results of several CD methods based on the SECOND detection dataset.
(a) Pretemporal images. (b) Posttemporal images. (c) Ground-truth images. (d) Results of UNet.
(e) Results of FC-SIAM-CONC and (f) results of FC-SIAM-DIFF. (g) Results of SSCDL. (h) Results of
BIT. (i) Results of ChangeFormer. (j) Results of the proposed model.

The quantitative results for the HRSCD dataset are presented in Table 2. Despite not
achieving the best results on all metrics, HEHRNet obtained the best F1 score and MIoU.
Compared to the other methods, HEHRNet achieved up to 3.22% and 3.38% increases in
these two metrics. The SSCDL, which accounts for the semantic information of biphasic
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features, outperformed the other methods, and the two-branch late-fusion models out-
performed the single-branch early-fusion models. This confirms the importance of deep
semantic features and temporal associations for change detection tasks.

The qualitative comparison of the seven deep learning-based change detection meth-
ods based on the HRSCD dataset is shown in Figure 7. The change scenarios in the HRSCD
dataset are complex and diverse, including changes between vegetation and bare soil and
changes between human-created objects (buildings, roads) and other features. Although
other methods can also identify the locations and boundaries of changes well, HEHRNet
detects changes between complex ground objects better according to the above visualiza-
tion results. As shown in Figure 7(1j,2j), HEHRNet obtained the most complete detection
results. This is because HEHRNet considers correlation features at multiple stages and
different scales. In addition, in agreement with the results based on the SECOND dataset,
as shown in Figure 7(3j,5j), HEHRNet exhibits less noise and false detections in the results
than the other models. Moreover, as shown in Figure 7(4j,6j), our method performs the
best in terms of the separability of the results, although all the methods show irregularities
in the detected boundaries. This is especially true when we compare HEHRNet with
the BIT-CD and ChangeFormer methods. As illustrated in Figure 5h,i and Figure 6h,i,
while both methods excel at detecting the change locations, irregular jaggedness along the
edges can clearly be observed. This is because the upsampling structure of HEHRNet with
shared weights in the upsampling process can optimize the semantic information for the
parameters in the two periods, which also constrains the interference of similar information
on the variation results to some extent. Overall, our method is equally good at fitting the
HRSCD dataset with different annotation levels than the SECOND dataset.
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(a) Pretemporal images. (b) Posttemporal images. (c) Ground-truth images. (d) Results of Unet.
(e) Results of FC-SIAM-CONC and (f) results of FC-SIAM-DIFF. (g) Results of SSCDL. (h) Results of
BIT. (i) Results of ChangeFormer. (j) Results of the proposed model.

Deep learning-based models have demonstrated remarkable performance in detecting
changes in various features, including buildings and vegetation. Whether dealing with
urban area change scenarios with the SECOND dataset or suburban changes with the
HRSCD dataset, these models excel at identifying change targets. However, existing
methods continue to face challenges related to the recognition of small changes and the
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preservation of the target area, primarily due to their inability to account for semantic
associations between temporal features. In our experiments using the SECOND and
HRSCD datasets, HEHRNet consistently outperforms conventional models in terms of both
visual display and quantitative evaluation metrics for change detection. HEHRNet offers
innovative solutions to these persistent challenges by exhibiting heightened sensitivity to
changes in fine ground features and effectively mitigating issues related to “metamerism”
interference. Furthermore, HEHRNet accurately identifies changing target locations and
delineates smooth boundaries, significantly reducing false detections resulting from salt-
and-pepper noise. These advantages can be attributed to the incorporation of the CS
module in HEHRNet, which accounts for the differential relationships between changing
regions in the temporal image data. Furthermore, the MFPFE module considers multilevel
features, resulting in more comprehensive recognition results. Finally, we illustrate the
efficiency of each model by providing details regarding the number of parameters in each
model and the training time under the same configuration, as shown in Table 3. In the
table, the unit “M” represents one million parameters, and “s” represents seconds. The
primary distinction among the models is in the training phase. Despite its time-efficiency
advantages, the transformer-based approach does not perform consistently on datasets with
a limited number of samples. Because it is more difficult to focus on the local information
of the image, it often requires more data for training. In contrast, our proposed method,
based on homogeneity enhancement and heterogeneity constraints, is better able to extract
complete change patches, which is in line with its application to the change scenarios of
real projects. In practical applications, there is minimal variation in the time needed to
generate change detection results when utilizing pretrained models for predicting changes
in bitemporal images.

Table 3. The parameters and training time for different models.

Models UNet FC-LF-DIFF FC-LF-CONC SSCDL BIT-CD ChangeFormer Ours

Parameters (M) 1.239 1.350 1.546 2.535 5.106 5.727 11.000
Time (s/epoch) 111 121 140 228 460 516 991

4.2. Ablation Study and Analysis

The results of extensive comparative experiments confirm the excellent performance
of the proposed HEHRNet model. Furthermore, we provide experimental evidence to
demonstrate that the inclusion of auxiliary modules enhances the model’s performance. To
assess the effectiveness and efficiency of these modules, we conducted ablation experiments
using the detailed annotations available in the SECOND dataset. The quantitative results
are presented in Table 4, while the qualitative results are visualized in Figure 8. We denote
the basic model without the proposed auxiliary modules as ‘Base’. Specifically, we directly
concatenated the final feature maps from the two branches for change detection. The MIoU,
recall, and F1 scores for this base model are 67.59%, 66.65%, and 67.89%, respectively,
serving as the benchmark for subsequent evaluations.

Table 4. The evaluation metric results of ablation experiments. And × indicates that the module in
the corresponding column is not added, and

√
indicates that it is added.

Models CS MFPFE Precision Recall F1 Score MIoU

Base × × 0.6936 0.6665 0.6798 0.6759
Base + CS

√
× 0.6748 0.6852 0.6800 0.6926

Base + MFPFE ×
√

0.6817 0.6785 0.6801 0.6866
HEHRNet

√ √
0.6780 0.6958 0.6868 0.7013
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Figure 8. Visualization results of ablation experiments based on the SECOND detection dataset.
(a) Pretemporal images. (b) Posttemporal images. (c) Ground-truth images. (d) Results of the
benchmark model. (e) Results of the benchmark model with the CS module. (f) Results of the
benchmark model with the MFPFE module. (g) Results of the proposed model (HEHRNet).

Subsequently, each module was incrementally incorporated into the HEHRNet struc-
ture at specific locations. Initially, we introduced the CS module in the final stage of the
upsampling process to assess the effectiveness of this module. The inclusion of the CS
module led to a notable increase in accuracy, with a 1.67% improvement in the MIoU and
a 1.87% enhancement in the recall score. Moreover, the addition of the MFPFE module,
designed to enhance the fusion of multistage features, yielded improvements of 1.07% in
the MIoU and 1.2% in the recall score. These results demonstrate that the CS and MFPFE
modules both enhance the network’s sensitivity to changing regions. Finally, we evaluated
the quantitative results of the benchmark model and HEHRNet. HEHRNet achieved the
highest values in terms of the MIoU (70.13%), recall (69.58%), and F1 score (68.68%), with
improvements of 2.54%, 2.93%, and 0.70% over the baseline model, respectively. These find-
ings demonstrate that HEHRNet, incorporating all additional design elements, enhances
the change recognition accuracy.

Figure 8 displays some qualitative results obtained from testing based on the SEC-
OND dataset. Comparing these results to those of the base model, we observe gradual
improvements with the introduction of the CS and MFPFE modules. These improvements
are most evident in terms of the completeness and independence of the change targets.
For example, in Figure 8(1d), the base model works well in the overall identification of
changing targets. However, it struggles with recognizing multiple independent change
targets and occasionally misidentifies nonchanging building class differences as changes.
This limitation may occur due to the model’s focus on the semantic difference correlations
among time series features, which may lead to the model overlooking the segmentation of
change targets at different scales. The addition of the CS module mitigates these misiden-
tifications to some extent. Notably, in Figure 8(1e), the misidentification of shadows as
changes among unchanged buildings no longer occurs. Similarly, the issue of recognizing
two changing buildings as a single entity is alleviated to some extent. Further improvement
is achieved with the inclusion of the MFPFE module. However, due to the multilevel
feature approach, noise is transmitted through the different model layers, resulting in
some artifacts, as shown in Figure 8(1f). This is attributed to the neglect of the semantic
information reinforced by the CS module. When both auxiliary modules are combined,
the optimal outcome is obtained, as shown in Figure 8(1g), with minimal noise and clear
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separation of different objects. Similar challenges are evident in Figure 8(2d–4d), as the
models without the auxiliary modules exhibit more recognition errors and noise than
the overall model, as shown in Figure 8e,f. Figure 8g shows the results when combining
neighboring temporal semantic information connections and multilevel features to achieve
the best results. Through these ablation experiments, we observed that the inclusion of
these auxiliary modules significantly improved the change detection accuracy, as evidenced
by the various evaluation metrics.

5. Conclusions

In this study, we introduced a deep learning model for the automatic extraction of
comprehensive change targets within high-resolution remote sensing imagery. To enhance
the model’s semantic-level change recognition performance, we devised two auxiliary
modules to effectively use deep nonlinear information. The CS module primarily cap-
tures temporal difference information, reinforces heterogeneous variations, suppresses
homogeneous invariances, and directs the network’s attention toward the change regions.
Furthermore, as the network’s depth increases, the MFPFE module considers more multi-
scale spatial information, preserving fine details. This addresses the issue of underutilized
semantic information, mitigating misidentification problems in change detection tasks
to a certain extent. Our experimental results, with experiments conducted based on two
high-resolution datasets with resolutions ranging from 0.5 m to 2 m, unequivocally demon-
strate the effectiveness of our proposed approach. While it is worth noting that some very
small change targets may not be detected due to minor information loss during the feature
extraction process within the deep learning framework, our method preserves the overall
contours and separability of the change targets. This good performance can be attributed
to the model’s increased attention toward change regions. Given the challenges associated
with acquiring homologous biphasic optical remote sensing images, many works have
utilized heterologous data, such as optical and radar images of the same region at different
times, for detection tasks. Additionally, our future work will focus on optimizing the
contouring issues observed with deep learning frameworks and addressing the challenges
of detecting very small targets.
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