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Abstract: Due to the lack of accurate labels for the airborne synthetic aperture radar altimeter
(SARAL), the use of deep learning methods is limited for estimating the above ground level (AGL) of
complicated landforms. In addition, the inherent additive and speckle noise definitely influences the
intended delay/Doppler map (DDM); accurate AGL estimation becomes more challenging when
using the feature extraction approach. In this paper, a generalized AGL estimation algorithm is
proposed, based on a fully supervised altimetry enhancement network (FuSAE-net), where accurate
labels are generated by a novel semi-analytical model. In such a case, there is no need to have a
fully analytical DDM model, and accurate labels are achieved without additive noises and speckles.
Therefore, deep learning supervision is easy and accurate. Next, to further decrease the computational
complexity for various landforms on the airborne platform, the network architecture is designed in a
lightweight manner. Knowledge distillation has proven to be an effective and intuitive lightweight
paradigm. To significantly improve the performance of the compact student network, both the
encoder and decoder of the teacher network are utilized during knowledge distillation under the
supervision of labels. In the experiments, airborne raw radar altimeter data were applied to examine
the performance of the proposed algorithm. Comparisons with conventional methods in terms of
both qualitative and quantitative aspects demonstrate the superiority of the proposed algorithm.

Keywords: airborne synthetic aperture radar altimeter (SARAL); deep learning; parameter estimation;
knowledge distillation

1. Introduction

The radar altimeter is an essential telemetry technology. Generally, in the remote
sensing community, radar altimeters can be divided into conventional altimeters (CAs)
and synthetic aperture radar altimeters (SARALs) [1], according to the working principle.
Firstly, the CA adopts the real aperture operating mode of a pulse limited system. Secondly,
the SARAL employs Doppler beam-sharpened (DBS), delay-compensation, and multi-look
processing to utilize the coherent correlation between pulses. Compared with the CA, the
SARAL owns higher along-track resolution and lower measurement noise. Consequently,
the SARAL has higher accuracy in height measurement than the CA. According to the
operating platform, there are spaceborne SARALs and airborne SARALs. The airborne
SARAL is flexible in design and convenient in application. Consequently, it has great
potential for practical altimetry applications. The key task of the radar altimeter is the
estimation of the above ground level (AGL), which is commonly obtained by radiating
pulses to the ground in a nearly vertical direction. Accurate AGL estimation is of great
significance for terrain detection and tracking. During conventional estimation, the input
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is the range-compressed waveform [2,3], and the output is the AGL estimate. According
to the principle of this paper, the AGL estimation is obtained through the delay/Doppler
map (DDM).

Accurate AGL estimation is achieved through retracking methods, i.e., parameter
estimation strategies [2]. According to whether a physical model is required during the
estimation, the retracking can be categorized into two classes: physics-driven approaches
and feature-driven approaches. Physics-driven approaches fit the input waveform using
analytical models [3,4] to figure out the estimated value of the parameter of interest. The
performance of the approach depends on two points: accommodation of the model and
the principle of the estimator. For SARAL, the power of each beam can be mathematically
expressed as the convolution of three terms based on the Brown model [5], which are
the flat surface impulse response (FSIR), the probability density function (PDF) of the sea
surface wave height, and the time/frequency point target response (PTR). Using the Brown
model to match the echoes, the parameter can be estimated based on the model template.
Currently, the majority of these models are designed for spaceborne SARAL when the
observation target is the sea or the coast [6–8]. Regarding the estimators, conventional
methods include the maximum likelihood (ML) algorithm [9] and the least square (LS)
algorithm [2]. When the echoes encounter additive noise, the estimators are prone to be
overfitted. To this end, statistics-based parameter estimation achieves the AGL estimations
by incorporating prior knowledge under Bayesian inference. When the prior and the
likelihood are not conjugate, hierarchical Bayesian algorithms are employed. Accordingly,
two solutions can be used, including Markov Chain Monte Carlo (MCMC) class sampling
methods [10] and variational inference methods [11,12]. These algorithms achieve the noise
reduction effect and successfully prevent overfitting by introducing the statistical priors of
the echo. The accuracy of physics-driven methods strongly depends on the adaptability
of the models. Due to the complicated fluctuations in various landforms, Brown models
may be unaccommodating. As a result, the absence of the corresponding models inevitably
leads to decreased accuracy.

Feature-driven approaches achieve waveform retracking by extracting parameters
from the echo based on experience. They are often applied to landscapes [13]. In [14], the
geometrical offset center of gravity (OCOG) algorithm is introduced. The OCOG finds the
center of gravity of each waveform through a rectangle with the same center of gravity
and area as the waveform itself. Then the amplitude of the waveform, the position of
the center of gravity and the width of the rectangle are obtained. Based on these three
parameters, the AGL estimate of the wavefront is determined. For waveforms over mixed
surfaces, the Davis threshold method [15] and its variants [16,17] were developed, which
obtain the AGL through the preset threshold level of the maximum echo power. Due
to the inherent additive noise and speckle noise, the extraction of the wavefront is often
heavily hampered. Consequently, a series of retracking approaches based on denoising
were developed [18–21]. However, these methods are only for the specified scenarios.
There is no specific feature-driven retracking approach for landforms. To enhance the
performance of the AGL estimation algorithm in complicated landscapes, it is necessary
for feature-driven methods to consider and accommodate additive and speckle noises.

Deep learning is capable of solving complicated nonlinear problems, and the general-
ization ability makes it possible to adapt to various scenarios. Following the development
of deep learning, convolutional neural networks (CNN) have been widely used in remote
sensing image processing, such as super-resolution [22], reconstruction [23], and SAR
image denoising [24–26]. Based on whether they have clean images as the labels during the
training stage, SAR image denoising approaches can be divided into supervised networks
and unsupervised networks. Supervised networks optimize the weights by minimizing
the Euclidean loss between the prior clean input and the noisy input [25], and there are
different SAR denoising approaches under the framework. Zhang et al. [26] devised the
SAR dilated residual network (SAR-DRN), which combines dilated convolutions with
residual learning. The encoder–decoder architecture is also applied to capture the statistical
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characteristics of the noise [27]. More recently, attention modules have been added to
the encoder–decoder CNN network for higher performance [28,29]. These supervised
denoising approaches realize supervision by resorting to synthetic optical images, which
exhibit a domain gap with true SAR images. The other way to obtain clean images for
supervision is through averaging multitemporal SAR images [30], which are difficult to
acquire. Therefore, the absence of clean SAR images leads to the unsatisfactory perfor-
mance of SAR image denoising for supervised networks. Unsupervised networks are
supposed to be trained with only raw images aiming to approach the effect close to fully
supervised networks [31,32]. Molini et al. [33] presented Speckle2Void (S2V) based on
the blind-spot CNN [34] architecture. The network achieves better performance on real
SAR images compared with the conventional supervised methods. In [35], an end-to-end
self-supervised SAR denoising network, entitled enhanced Noise2Noise (EN2N), restores
special details while denoising.

A fully supervised network avoids the divergence of training data from reality, and the
denoising performance of the network is superior. So far, the power of CNNs has been fully
proven. However, SAR denoising faces the challenge of realization of the fully supervised
networks. Unlike the holographic SAR image, a DDM is formed via the nonlinear mapping
of the targets. Fortunately, instead of the details of the objects on the surface which are
often included in SAR images, altimetry features are more focused on the structure in DDM.
This characteristic allows for the conceivable creation of completely clean DDMs containing
altimetry features without any domain gaps. Therefore, it is necessary to obtain accurate
DDM labels for fully supervised learning.

In this paper, in order to solve the problems of AGL estimation of the airborne SARAL
in complicated landforms, a lightweight fully supervised altimetry enhancement network
(FuSAE-net) is proposed. The inputs of the FuSAE-net are raw DDMs. By extracting features
from the enhanced and stable DDMs, the AGL estimates are obtained. The proposed
algorithm achieves both superior accuracy and computational efficiency compared with
conventional methods. With the aim of full supervision during the network training, a
novel label generation algorithm based on a semi-analytical model is suggested: airborne
SARAL encounters with dynamic detection scenarios. Therefore, the network must be
lightweight. The FuSAE-net is compressed by knowledge distillation to be sufficient for
the processing restrictions of the edge devices of airborne SARAL. Both the suggested
accurate labels and the middle layer information of the complicated teacher network are
used to guide the training of the lightweight student network. The main contributions of
this paper include:

1. The proposition of a novel label generation algorithm based on a semi-analytical
model to implement a fully supervised network for parameter estimation, so that
clean and accurate DDMs can be produced by discretizing landforms in the domain of
range and Doppler together with empirical scattering theory;

2. Accordingly, the estimation is designed by a novel, fully supervised network, which is
capable of accessing the AGL parameters for airborne SARAL on complicated landforms;

3. The raw data of landscapes are employed in this paper to validate the generalizability
and accuracy of the proposed approach.

This paper is organized as follows: Section 2 presents the background, i.e., the ge-
ometry of airborne SARAL and the signal model. The proposed algorithm is thoroughly
introduced in Section 3, including the label-generation algorithm based on a semi-analytical
model and the designation of FuSAE-net. Section 4 shows the experiments and provides
raw data results to evaluate the performance of the proposed algorithm. The conclusions
are drawn in Section 5.

2. Airborne SARAL Geometry and Signal Model
2.1. Airborne SARAL Geometry

The airborne SARAL geometry is shown in Figure 1. SARAL is proposed to make use
of the Doppler beams to improve along-track resolution. As shown in Figure 1a, within the
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beam footprint, SARAL not only observes the target at position B, which is near vertical,
but also at a number of other points along its course, including positions A and C. Through
DBS, SARAL can fully utilize the along-track Doppler frequency and divide the footprint
of each beam. Figure 1b presents the concentric circle footprint from a moment in position
B, which is divided by the Doppler frequency. The red circle represents the footprint of the
latest arrival pulse, and the dark red portion means the footprint of the central beam. The
footprint of each beam represents a pulse signal. But only the signal of the nadir point can
be directly used for AGL estimation.
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Figure 1. Schematic diagrams of the working principle of SARAL: (a) airborne SARAL geometry;
(b) footprint of the pulse signals.

2.2. Airborne SARAL Signal Model

As shown in Figure 1a, the constant speed of airborne SARAL is Vs which is along the
X-axis at altitude hs, and the coordinate of target T is set as (x, y, z). The goal of airborne
SARAL is to obtain h = |hs − z|, i.e., the AGL between SARAL and the target. The airborne
SARAL transmits a signal when it is above the target T, then receives the echo after a
certain delay as

sr(t̂, ts) = A · exp(j2π fc
t̂− 2r(ts)

c
) · exp[jπKr(

t̂− 2r(ts)

c
)

2

] (1)

where t̂, ts are, respectively, range fast time and azimuth slow time; A is the constant in

the airborne SARAL system. In Equation (1), r =
√

h2
re f + (Vsts)

2 represents the distance
between SARAL and T, and hre f is the rough estimation of the AGL h. In addition, fc is the
carrier frequency, c is the speed of light, and Kr is the modulation frequency. The received
echo after the dechirp and decoupling process can be expressed as [4]

s(t̂, ts) = A · exp[−j
4π

c
Kr(r− hre f )t̂] · exp[j

4π

c
( fc + Kr t̂) · xVsts

r
] (2)

After along-track Fourier transform and approximation processing, the DDM after DBS
processing can be obtained as

s(t̂, fn) = A · exp[−j
4π

c
Kr(r− hre f )t̂] · sinc[Ts( fn −

2Vs

λ
· x

r
)] (3)

where fn means the n th Doppler frequency.
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In practical application, the m th raw DDM ym is corrupted by the multiplicative
speckle noise hm and the additive Gaussian noise nm as

ym(τ, fn) = sm(τ, fn)hm(τ, fn) + nm (4)

where sm(τ) represents the clean DDM, and τ is the parameter to be estimated. Under
the assumption that the speckle noise hm is element-wise independent and identically
distributed (i.i.d), it is complicated to introduce it as a priori in the hierarchical Bayesian
algorithms. For such a complicated nonlinear problem, a fully supervised deep learning
approach is proposed to obtain the AGL in this paper. The generation of clean labels is
tackled by a novel algorithm based on a semi-analytical model.

3. Methodology

Due to the influences of speckle noise and Gaussian noise, the feature-driven AGL
estimation for airborne SARAL in landscapes is always a significant challenge. Therefore,
the FuSAE-net was suggested to provide accurate altimetry for airborne SARAL at low
altitudes over complicated landforms. Furthermore, in order to achieve full supervision,
the generation of labels is an essential part of the proposed algorithm. Figure 2 illustrates
the processing flowchart in detail, which is divided into three parts: database, training
stage, and testing stage. The database consists of raw DDMs, clean DDMs, and the
corresponding AGL ground truth. The FuSAE-net consists of two modules: a lightweight
DDM enhancement module and an AGL estimation module. The accurate AGL estimation
is based on the feature enhancement, and it can be understood as a downstream application
of the enhancement module.
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In Figure 2, the entire process starts with the proposed label generation requiring the
input of data from the digital elevation model (DEM), the global positioning system (GPS),
and the inertial measurement unit (IMU). During the training stage, the performance of
the enhancement of DDMs is focused. The training process contains the pre-training of the
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complicated teacher network and the training of the compact student network through
knowledge distillation, which is represented by the dotted line between the teacher network
and the student network. LE and LD indicate that knowledge distillation is carried out
on the encoder and decoder simultaneously. After knowledge distillation, the trained
lightweight student network is applied as the enhancement module. In the tests, after
preprocessing of raw DDM, the data is enhanced by the enhancement module, and the
AGL estimate R̂ is ultimately achieved via the AGL estimation module.

3.1. Clean Label Generation

The CNN-based networks have a strong ability to solve nonlinear problems, but their
effectiveness relies heavily on massive data during the supervised training, especially the
labels applied in full supervision. To achieve a fully supervised network, it is important
to obtain clean DDMs as accurate labels. Due to the non-homogeneous landforms and
the angle-dependent scatter coefficients, when the airborne SARAL is in land observation
mode, the majority of parametric echo models are insufficient. To this end, a novel approach
based on a semi-analytical model is proposed to generate clean DDMs for the training stage
of the FuSAE-net.

The label-generating procedure is described in Algorithm 1. The DEM with high
precision is the foundation for the AGL ground truth. According to DEM, the coordinates
p(i)S of each scatter are obtained. The data of the GPS and the IMU are used to identify the
current location p0 and velocity v0 of the platform. During echo generation, we concentrate
on the physical scattering mechanism; therefore, the algorithm is based on a semi-analytical
model. In [36], Moore and Williams point out that with occasional exceptions, radar return
from the ground is largely due to area scatter, even at angles of incidence near vertical.
Therefore, although SARAL observes the ground target located at the nadir point, the
power is still largely based on scattering. The Ulaby model [37] is an empirical model that
can describe the backscattering coefficient of common landform-covering media and is
widely used in radar altimeter research [38,39]. Consequently, the backscatter property of
each scatter is described as (8) using the Ulaby. During the calculation of the reflection of
individual scatter, the amplitude items do not contain the phase information according to
(5) and (9). Finally, the range–Doppler information of each scattering point is calculated
through its corresponding index in DDM using the geometric relationship as in (10). In this
way, a clean DDM without additive and speckle noises is obtained as the accurate label for
pre-training and training during knowledge distillation. Even though the label generation
algorithm proposed here ignores details about the objects on the surface, the main features
about altitude remain, which is adequate for the full supervision of FuSAE-net.

Algorithm 1: Generation process of the clean label.

Input: The coordinates of each scatter: p(i)S =
(

x(i), y(i), z(i)
)T

, i ∈ S , where S is the total set of

scatters. Current location and velocity of the platform: p0 = (x0, y0, z0)
T and v0 =

( .
x0,

.
y0,

.
z0
)T .

The wavelength of radar is λ. The resolution of range gates and Doppler channels as ∆r and ∆d,
respectively.

1. Substitute p(i)S , p0 and v0 into the following equations to calculate the relative ranges R(i),
location vectors r(i) and Doppler frequency D(i) of each scatter.

R(i) =
∥∥∥p(i)S − p0

∥∥∥
2

(5)

r(i) =
(

p(i)S − p0

)
/
∥∥∥p(i)S − p0

∥∥∥
2

(6)

D(i) = 2vT
0 r(i)/λ (7)
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Algorithm 1: Cont.

2. Compute the scatter coefficients as

σ(i) = p1 + p2 exp
(
−p3θ(i)

)
+ p4 cos

(
p5θ(i) + p6

)
(8)

where θ = arccos
(∣∣∣z(i) − z0

∣∣∣) and p1 ∼ p6 depend on the type of land cover medium.

3. Calculate the reflection of individual scatter as

s(i) =

√√√√√ λ2

(4π)3 σ(i) 1(
R(i)

)4 (9)

4. Accumulate each element of the DDM matrix according to the sets of range and Doppler
indexes as

Dmn =
∣∣∣∑i∈Rm∪Dn

s(i)
∣∣∣ (10)

whereRm and Dn are the index sets with respect to the mth range gate, and nth Doppler channels,
correspondingly.
Output: A clean DDM power matrix as D ∈ RM×N , where M is the number of pulses and N is
the number of range gates.

3.2. FuSAE-Net

To obtain an accurate AGL estimation of complicated landforms, a general method is
proposed for airborne SARAL. The FuSAE-net implements the estimation mainly via two
modules: the lightweight DDM enhancement module and the AGL estimation module.

3.2.1. A Lightweight DDM Enhancement Module

A. Architecture Designation

The basic framework of the DDM enhancement module derives from the encoder–
decoder architecture [40]. The encoder–decoder-like architecture has been extensively
employed in image processing and prediction [41,42]. The U-net encoder–decoder architec-
ture [35] is a successful symmetrical image generator because of its long-skip connections.
With the residual connections, some key properties that could be lost during encoding can
be retrieved by the decoder. It has demonstrated its ability to outperform with just a few
samples [42]. This structure can achieve a consistent size for input and output. The encoder
( fEN) extracts the feature maps E from the input DDM ym of size HM ×WM by a sequence
of convolutions and downsampling.

E = fEN(ym, Label; θEN), E ∈ RCE×HE×WE
(11)

where the Label has HM ×WM cells, θEN means the parameters of the encoder, the size of
E is CE × HE ×WE, and CE represents the number of channels. During the encoding, the
receptive field is increased by downsampling, so that convolutions of the same size can
perform feature extraction on a larger range than before.

The decoder is used to reconstruct a DDM that is the same size as the input. The
feature maps E are extended by upsampling. The decoder ( fDE) upsamples the feature
maps symmetrically to obtain the reconstructed DDM ŝm as follows:

ŝm = fDE(E; θDE), ŝm ∈ RHM×WM
(12)

where θDE represents the decoder parameters.
For the airborne SARAL, the network should have both high efficiency and minimal

storage requirements. In such a case, the network should work in a light manner. Knowl-
edge distillation is a well-known training paradigm to achieve a lightweight structure
without modifications to existing networks [43]. The conventional model of knowledge
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distillation can be divided into two parts: an effective teacher network and a compact stu-
dent network. Under the guidance of the teacher network through knowledge distillation,
the computation of the student network can be efficient without a significant performance
decrease. To overcome the performance limitations of conventional knowledge distillation
which only utilizes the output of the teacher network to guide the student network, the
proposed approach makes use of both encoder and decoder, i.e., the reconstructed DDM
ŝm and the feature maps E of the teacher network. During knowledge distillation, the
clean DDM label plays the role of full supervision. Figure 3 depicts the framework of the
proposed knowledge distillation. The top network in the figure is the architecture of the
teacher network, the bottom represents the student network. In Figure 3, the number under
each input/output indicates the numbers of its channels. The raw DDM as the initial input
of the network, the DDM of the final output, and the label have been annotated in the
figure as each having one channel. The blue cuboid represents the feature map output
after convolution, the dark blue cuboid is the feature map after downsampling, and the
purple cuboid is the feature map after upsampling. LE and LD are defined in (17) and (20),
respectively. The downsampling operation consists of a 2*2 convolution with stride 2 and
the ReLU. Accordingly, the upsampling operation consists of a 2*2 deconvolution with
stride 2 and the ReLU. The skip connection means

El
DE = El

EN ⊕Upsample(El−1
DE ) (13)

where EEN and EDE represent the feature maps of the encoder and decoder, respectively. l
and l − 1 are the indexes of the layers, and ⊕ is the connection operator.
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Commonly, in knowledge distillation, the performance upper bound of the teacher
network typically determines the performance upper bound of the student network. There-
fore, the architectural design of the effective teacher network is important. What is more,
the training process of the teacher network is carried out under the supervision of the
accurate label. It has been proven that the depth of the network is related to the final
performance [44]. Since the input of raw DDM is impaired by additive and speckle noises,
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the teacher network is designed with three downsampling layers considering the size
of input DDM after preprocessing. The teacher’s encoder compresses the information
at different scales by downsampling, thus providing feature maps at different levels of
abstraction. The shallow feature maps concentrate on the texture features, whereas the
deep feature maps reflect the essential features. To ensure that the size of the output is
the same as the input, three upsampling layers are set. The features of different layers are
fused at multiple scales by skip connections so that they can extract useful information
and prevent the loss of accurate echo edges simultaneously. To reflect the computational
complexity of the network in terms of its spatial complexity, the total number of trainable
parameters in the teacher network is 2,890,625.

To achieve low computational complexity, the student network only uses one down-
sampling layer and one upsampling layer. The feature map from the initial downsampling
of the teacher network serves as the encoder’s guide for the student network. The output
of the teacher network and the accurate labels are used to guide the decoder as the soft
labels and hard labels, respectively. Additionally, the student network has 11,665 trainable
parameters in total, which is around 0.4% of the instructor network.

B. Training

During knowledge distillation, the training of the student network is carried out under
the guidance of the pre-trained teacher. For the pre-training of the teacher network, the
loss function is the root mean square error (RMSE) between the accurate label HL

i and the
enhanced DDM HP

i , which is obtained from the output of the teacher network. The RMSE
is defined as

LT =

√
1
m

m

∑
i=1

(HL
i − HP

i )
2 (14)

where m is the total number of the outputs.
The training of the student network is achieved by simultaneous knowledge distil-

lation at the encoder and decoder. For the encoder, the norm distance loss function is
replaced with a structural loss [43] to capture the additional spatial features of the student
and teacher networks. Assume CT × H ×W feature maps FT as the output from the first
downsampling in the teacher network, and DT is the distillation feature map of FT whose
size is H ×W. The features from the first downsampling in the student network are FS of
size CS × H ×W. DS is the distillation feature map of FS with H ×W cells. DT and DS are
operated as

DT
i,j =

∑CT

k=1 FT
k,i,j

CT (15)

DS
i,j =

∑CS

k=1 FS
k,i,j

CS (16)

Based on Equations (15) and (16), the loss function of the encoder of the student network is

LE =
H

∑
i=1

W

∑
j=1

DT
i,j log

DT
i,j

DS
i,j

(17)

For the knowledge distillation of the decoder, assuming that the output of the teacher
network is PT of size HM ×WM, the output of the student network is PS of size HM ×WM,
and the accurate label is Label. The supervision of the student decoder consists of two
components: First, it should be near the accurate label which is produced by our label
generation algorithm, and this part of the loss is recorded as Lhard. Second, due to the
limited layers of the student network, it frequently cannot be optimized to a location that is
extremely close to the label, hence the necessity for teacher network supervision. The loss



Remote Sens. 2023, 15, 5404 10 of 19

between PT and PS is recorded as Lso f t. The loss LD of the decoder of the student network
is obtained as follows:

Lhard =

(
HM

∑
p=1

WM

∑
q=1

(
PS

p,q − Labelp,q

)2
) 1

2

(18)

Lso f t =
HM

∑
p=1

WM

∑
q=1

PT
p,q log

PT
p,q

PS
p,q

(19)

LD = ω ∗ Lhard + (1−ω) ∗ Lso f t (20)

where Lhard is the mean square error loss function, Lso f t is the Kullback–Leibler divergence
between PT and PS, and ω means the weight.

The Adam is used as the optimizer during pretraining and training, where lr = 0.001,
beta_1 = 0.9, beta_2 = 0.999, and weight_decay = 1 × 10−4. The lr means learning rate.
The network was developed using Python 3.9, and the network was tested and trained
using Pytorch.

3.2.2. AGL Estimation Module

The FuSAE-net derives the AGL estimates from the DDM in contrast to conventional
estimation methods, which are based on the one-dimensional waveform. During the
estimation, the AGL is determined by the point that scatters the most strongly in the
vertical direction. The IMU is used to gather information about the flying attitude of
the SARAL.

With a flat trajectory, the desired point from the enhanced DDM is the one that has the
maximum value when the Doppler dimension equals zero. When the angle between the
flight speed and the ground is θ, the offset of the target point in the Doppler dimension is

∆ = [H(1− cos θ)] (21)

where [·] means the rounding operation, H represents the size of the Doppler dimension of
DDM. The predicted AGL R̂ is calculated as follows:

R̂ =
(l − 1)TSc

2
(22)

where l is the distance dimension index of the obtained points and TS is the sampling
interval. It can be noted from (22) that the AGL is obtained from R̂.

4. Experiments

In order to verify the effectiveness of the proposed method in practical application, the
raw data of an airborne SARAL over complicated landforms were applied. To evaluate the
superiority of FuSAE-net, comparative experiments with conventional methods, including
the LS algorithm, the smooth MAP estimation [11], and the mutant MAP estimation [12],
were designed. To demonstrate the repeatability of the results, several experiments were
conducted, where the training set and testing set for each experiment were random.

4.1. Data Set Description
4.1.1. Flight Route

The experiments were carried out in a region of Hubei Province, China. The flight
route is shown in both the satellite image and the DEM in Figure 4. The track of the
airborne SARAL was from position 1 to position 2, whose total length is around 2.1 km.
The locations of the origin and the destination are (32◦46′33.48′′N, 110◦51′01.64′′E) and
(32◦47′37.16′′N, 110◦50′55.47′′E). During the flight, various landforms were observed.



Remote Sens. 2023, 15, 5404 11 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 12 of 20 
 

 

  
(a) (b) 

Figure 4. The route of airborne SARAL: (a) satellite image, (b) DEM. 

 
  

river coast 

 
 

  

field forest 

Figure 4. The route of airborne SARAL: (a) satellite image, (b) DEM.

Some typical landforms and their corresponding enlarged raw DDMs are both shown
in Figure 5. Through Figure 5, the characteristics of DDM in different landforms are
visually displayed. Compared with inland, the echo of the river was less impaired by
speckle noise, and the target was distinguishable. The shape of the raw DDM from the
coast was obviously discontinuous because of the small fluctuation between the bank and
the river. The location of forest is close to the mountain (see Figure 4). Thus, it is not as
flat as the field. Consequently, the shape of its DDM was different from that of the field.
The DDM of the building was distinctive, with a cluster of individual scattering points
detached from the main part.
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4.1.2. Data Collection and Preprocessing

In this paper, we mainly consider DDMs for AGL estimation. Compared with the con-
ventional preprocessing of the echoes, delay correction and multi-look are not performed.
Therefore, the time spent in prepossessing received signals is reduced. In the experiments,
the preprocessing time by conventional methods of each echo is 4.0279 s, while the time
spent in preprocessing each echo by the proposed method is 3.7098 s. The parameters of
the airborne SARAL during the experiments are shown in Table 1.

Table 1. Parameters of the airborne SARAL.

Parameter Value Parameter Value

Altitude 2.06 km Bandwidth 20 MHz
Speed 20 m/s PRT 200 µs
Band X Pulses of each burst 125

There were 2400 raw DDMs, each with a corresponding clean DDM and AGL ground
truth, which were divided into 24 groups, each containing 100 pairs. The index range was
from group 0 to group 23, specifically indicated in Figure 4b. After the labels were obtained,
the data needed preprocessing. The preprocessing step involves two tasks. The first is the
alignment of raw DDMs and labels; the second is data cropping. The alignment is achieved
by utilizing the velocity and position coordinates of the airborne SARAL. Two typical pairs
of aligned DDMs with 125*624 cells are shown in Figure 6. Figure 6a shows paired DDMs
of flat terrain with smooth upper forms. In contrast, the upper shapes of DDMs in Figure 6b
are unsmooth. To improve the efficiency of the network, the raw DDMs and the label are
processed as 125*50 cells, which contain the important parts of the DDMs. After random
shuffle, the dataset was divided into training and testing sets in 2:1.
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4.2. Evaluation Indicators

The performance of the proposed approach was assessed using the MAE, RMSE, and
the processing time of each echo. The MAE and RMSE are defined as

MAE =
1
N

N

∑
i=1

∣∣R̂i − Ri
∣∣ (23)
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RMSE =

√√√√ 1
N

N

∑
i=1

(R̂i − Ri)
2 (24)

where the R̂ means the predicted AGL and the R is the AGL ground truth. N represents the
number of samples. To illustrate the low computational complexity of the proposed method,
the processing time is for each single echo. The time complexity of the LS algorithm, the
smooth MAP estimation, the teacher network, and the student network are 62.400 billion
FLOPs, 17.232 billion FLOPs, 1.036 billion FLOPs, and 46.166 million FLOPs, respectively.
Among them, the time complexity of the LS algorithm is the mean value under specified
parameter settings when calling the lsqnonlin function in MATLAB.

4.3. Performance Analysis and Discussion

The ablation experiments were performed to assess the role of the components of
FuSAE-net and the impact of knowledge distillation. To evaluate the denoising capability
of the enhancement module in FuSAE-net, the peak signal to noise ratio (PSNR) was used,
which is a quantitative evaluation metric of the degree of noise corruption. Table 2 shows
the results of the comparison. In Table 2, the AGL-E-M means the results obtained via
the AGL estimation module. Teacher represents the raw DDMs enhanced by the teacher
network. KD means the raw DDMs enhanced by the lightweight student network through
knowledge distillation. Figure 7 shows several images that were chosen at random to
represent the differences between raw DDMs, accurate labels, and the outputs under
full supervision. Combining the images and the PSNR in Table 2, it is obvious that the
capability of the enhancement of the teacher network is strong under the full supervision
of clean DDMs. What’s more, due to knowledge distillation, the proposed approach only
takes 52% of the processing time of the teacher network to achieve a nearly identical
outcome in the testing stage. Therefore, with the guidance of the encoder and decoder
of the teacher network, the student network can effectively suppress the noise and keep
the echo information for different landforms with only one downsampling layer and one
upsampling layer.

Table 2. Results of the ablation experiments.

Component PSNR (dB) MAE (m) RMSE (m) Time (ms)

AGL-E-M (Raw data) 12.7356 30.1383 25.7765 0.4883
Teacher + AGL-E-M 24.3585 6.6338 9.2215 11.4566

KD + AGL-E-M
(Proposed method) 21.8368 6.9163 10.3378 6.0065

Figure 8 visually shows the AGL estimates from the 2400 raw DDMs via the estimation
module, which directly represents the severe decrease in the estimation accuracy under
the influence of additive and speckle noises. Figure 9 displays the AGL estimates by the
proposed method from one of the experiments at random. There were 800 echoes in the
test, and the indexes of the 8 groups of AGL estimates in Figure 9 were: group 7, group
20, group 15, group 0, group 22, group 3, group 16, and group 2. The data of group 0
corresponded to the river, and the AGL estimates were the highest (echo 301 to 400) in
Figure 9. Group 22 corresponded to the high terrain in Figure 4b. Consequently, the AGL
estimates were lower (echo 401 to 500) compared to the previous group, resulting in a
sudden relief in Figure 9. Due to the random shuffle, the terrain of testing sets in Figure 9
was not as smooth as the original data in Figure 8, which may prove the robustness of
FuSAE-net. The MAE and RMSE of the proposed method in Figure 9 were 6.2300 m and
8.1308 m, which verifies the effectiveness of the proposed approach.
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The performance comparison between the proposed estimation approach and con-
ventional methods is shown in Table 3. The values in Table 3 are the average results of all
conducted experiments. Comparing the results of LS and the results in the second line of
Table 2, it is clear that the AGL estimation module is available even for raw DDMs, and
it is equally effective with the LS algorithm. This indicates that the parameter estimation
approach based on DDM is feasible. In Table 3, the MAE and RMSE of the FuSAE-net
were the lowest, which demonstrates the superiority of the proposed estimation approach
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in accuracy. Additionally, it is clear from the table that the proposed approach is more
computationally efficient than the three conventional methods with the minimum process-
ing time. Due to the necessity to regenerate a new waveform based on the convolution of
three terms for each iteration, the computational complexity of conventional methods is
high. Furthermore, the proposed method is designed for GPU and multithread running.
Figure 10 shows the AGL estimation results of another one of the experiments, chosen at
random, and the testing data contained are: group 11, group 15, group 10, group 5, group 9,
group 21, group 1, and group 19. In Figure 10, the RMSE of LS, smooth MAP, and mutant
MAP were 29.9736, 24.5521, and 25.3475 m, respectively. The MAE of the three conventional
methods were 21.4457, 13.7643, and 13.3706 m, in order, while the MAE and RMSE of the
proposed method were 7.7025 and 11.7328 m, respectively. It was found that neither the LS
nor the smooth MAP could adequately describe the abrupt changes in the terrain for raw
echoes. Due to the influence of various noises, the LS algorithm overfits, and the smooth
MAP estimation smooths the terrain changes by its assigned priors. Furthermore, because
of the additive and speckle noises, the mutant MAP may be ineffective for the mutants and
less effective than smooth MAP in non-mutated regions. Since the enhancement module
excludes the effect of the noises and no model fitting is required during the AGL estimation,
the proposed approach was able to adjust to the given circumstances.
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Table 3. Comparison of altimetry results of different methods.

Method MAE (m) RMSE (m) Time (ms)

LS 23.3591 29.3692 56,968.2
MAP-smooth 12.5811 23.2932 37,782.0
MAP-mutant 11.0306 21.8112 36,144.3

Proposed method 6.9163 10.3378 6.0065

With the comparison of the three conventional methods, the results revealed that the
FuSAE-net performs better in complicated landforms than the conventional parameter
estimation methods. Whether the terrain is flat or has sudden mutants, it has a strong
ability to adapt. Currently, altimetry algorithms for airborne SARAL with high accuracy
are mostly physics-driven approaches. However the provided parametric model limits
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this class of algorithms, and there are no models for complicated terrestrial environments.
The FuSAE-net achieves both superior accuracy and computational efficiency. Finally, our
experiments focused on the influence of surface media on different landforms. Although
some terrain cases involving small fluctuations were resolved, the mountainous areas with
large fluctuations have not been validated.
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5. Conclusions

In this paper, a novel approach for airborne SARAL altimetry in complicated land-
forms is presented. We believe this is the first instance in which deep learning has been
used to obtain an airborne SARAL parameter from DDMs. A novel algorithm based on
a semi-analytical model was proposed to generate clean DDMs as accurate labels for ef-
fective supervision during pre-training and training. Additionally, in order to improve
the efficiency of knowledge distillation, the information of the encoder and decoder was
distilled simultaneously. The FuSAE-net eliminated the parametric model’s limitations and
the influence of different noises via a fully supervised lightweight altimetry enhancement
network. We believe the proposed algorithm can provide a reference in airborne SARAL
parameter estimation with deep learning. We aim to deepen our understanding of these
parameter estimation techniques based on DDMs and better integrate them with deep
learning in future research of airborne SARAL in land altimetry missions.
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