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Abstract: This study utilizes multi-sensor satellite images and machine learning methodology to
analyze urban impervious surfaces, with a particular focus on Nanchang, Jiangxi Province, China.
The results indicate that combining multiple optical satellite images (Landsat-8, CBERS-04) with a
Synthetic Aperture Radar (SAR) image (Sentinel-1) enhances detection accuracy. The overall accuracy
(OA) and kappa coefficients increased from 84.3% to 88.3% and from 89.21% to 92.55%, respectively,
compared to the exclusive use of the Landsat-8 image. Notably, the Random Forest algorithm, with
its unique dual-random sampling technique for fusing multi-sensor satellite data, outperforms other
machine learning methods like Artificial Neural Networks (ANNs), Support Vector Machines (SVMs),
Classification and Regression Trees (CARTs), Maximum Likelihood Classification (Max-Likelihood),
and Minimum Distance Classification (Min-Distance) in impervious surface extraction efficiency.
With additional satellite images from 2015, 2017, and 2020, the impervious surface changes are
tracked in the Nanchang metropolitan region. From 2015 to 2021, they record a notable increase in
impervious surfaces, signaling a quickened urban expansion. This study observes several impervious
surface growth patterns, such as a tendency to concentrate near rivers, and larger areas in the east of
Nanchang. While the expansion was mainly southward from 2015 to 2021, by 2021, the growth began
spreading northward around the Gan River basin.

Keywords: impervious surface; Landsat-8; Sentinel-1; CBERS-04; random forest; fusion; dual-polarized
SAR

1. Introduction

The accelerated pace of global urbanization in recent decades has noticeably increased
the presence of impervious surfaces, giving rise to a multitude of environmental concerns.
These include the urban heat island effect, subsidence, flooding, and the degradation
of water quality [1,2]. Alterations to impervious surfaces serve as a clear illustration of
urbanization’s distribution and scale [3]. As a result, the meticulous, accurate, and prompt
gathering of data regarding these surfaces is vital for the effective monitoring of urban
growth, and for analyzing the quality of the urban environment and its ecology.

Despite the availability of sub-meter resolution satellite imagery, medium-resolution
data (across approximately 10s of meters) are broadly employed due to their extensive
historical records and cost-effectiveness [4]. For comprehensive studies on urban imper-
vious surface detection, medium-resolution remote sensing images such as the Landsat
dataset [5,6] and the Moderate Resolution Imaging Spectroradiometer (MODIS) [7,8] serve
as significant data sources. These images provide vast spatial coverage and frequent data
collection. However, their relatively low resolution leads to numerous mixed pixels, under-
mining the accuracy of impervious surface detection, especially in densely populated cities
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and areas with intricate land cover. For example, these mixed pixels frequently cause an
overestimation of urban impervious layers.

The analysis and extraction of impervious surfaces can be conducted at varying
scales of sub-pixels, image elements, and features using methods such as object-oriented
classification [9] and linear spectral mixture analysis (LSMA) [10,11]. In most studies
focused on impervious surface detection, multispectral data from a single satellite sensor
have been utilized, such as those from the Operational Land Imager (OLI) onboard the
Landsat or the Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER). However, the dependence on spectral observations from a single sensor might
not accurately encapsulate the diverse spectral information of the ground surface, resulting
in potential errors in impervious surface classifications. To boost the accuracy of urban
impervious surface extraction, analysts have begun to incorporate multiple sources of
surface features in their satellite image analyses. These include night-light data [12], Light
Detection and Ranging (LiDAR) data [13], and Synthetic Aperture Radar (SAR) data [14].
Notably, SAR can observe ground surfaces across varying wavelengths and polarizations,
demonstrating high sensitivity to the structure of the target surface and thus providing
rich spatial characteristics of urban impervious surfaces [15]. Consequently, the fusion of
optical and SAR images has been utilized for detecting urban impervious surfaces [14].

Remote sensing image fusion methods can be broadly categorized into three primary
categories: pixel-level, feature-level, and decision-level [16,17]. Of these, feature-level
fusion is particularly compatible with Synthetic Aperture Radar (SAR) data, as it is less in-
fluenced by scattering noise and does not necessitate the weighting of each component [18].
Commonly employed SAR features encompass backscatter coefficients, SAR texture fea-
tures, and polarization features. Among these, polarization features are notably critical as
they preserve sensitivity to a wide range of land covers and physical properties [19–25].
By considering these features, a more comprehensive and nuanced understanding of land
surfaces, particularly impervious ones, can be achieved, further enhancing the accuracy of
urban environment analyses and related decision-making processes.

In recent years, the use of advanced machine learning techniques has significantly
improved the detection of impervious surfaces from satellite imagery [26,27]. Techniques
such as Classification and Regression Trees (CARTs) [28–30], the Random Forest (RF)
method [31,32], Artificial Neural Networks (ANNs) [33–36], and Support Vector Machines
(SVMs) [37–40] are examples of these methodologies. For instance [41], Lodato et al. (2023)
employed RF classification on Landsat imagery and, through remote sensing techniques
and innovative cloud services, documented the transformation of the northern coastal
region of Rome, an important rural area, into new residential and commercial services [42].
Moreover, Dong et al. (2021) probed the spatial and temporal variations of impervious
surfaces within Beijing’s sixth-ring highway using Landsat imagery data from 1997 to 2017,
employing the RF method. The results showed a 16.23% improvement in classification
accuracy for highly reflective impervious surfaces, signifying the effectiveness of machine
learning techniques in enhancing the precision of impervious surface detection [43]. Tradi-
tional algorithms have been widely employed in previous research and are effective for
handling classification data. However, when confronted with the rich diversity of spectral
information, traditional algorithms may not fully leverage the classification advantages
offered by such rich spectral information. Therefore, this paper compares various classifica-
tion algorithms and identifies a more suitable approach. The classification based on the
Random Forest (RF) method is a form of ensemble learning belonging to the ‘bagging’ cate-
gory, which has unique advantages for handling high-dimensional data. When combined
with the fusion of multispectral and SAR data, it yields significantly improved results in
impervious surface extraction.

The amalgamation of multi-satellite data and the application of machine learning
techniques have both been proven to enhance the accuracy of impervious surface extrac-
tion. Yet, there have been limited attempts to merge these methods in order to optimize
impervious surface estimation via satellite observations. As such, the objective of this study
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is to meld machine learning technology with the fusion of data from multiple satellites
in order to elevate the techniques of impervious surface extraction. The incorporation of
Synthetic Aperture Radar (SAR) imagery has been validated as a beneficial component in
the detection of urban impervious surfaces [14]. Although this methodology has notably en-
hanced the extraction results of such surfaces, the existent literature still lacks comparative
analyses utilizing multiple optical datasets, particularly considering impervious surfaces’
pronounced reflectance in the thermal infrared band. Building on this foundation, our
study leverages the fusion of multiple distinct sets of optical data with SAR data. This
combination enriches the spectral characteristics of the optical imagery, amplifying the
accuracy of impervious surface extraction.

Our chosen research site is the Nanchang metropolitan area, an area marked by its
swift economic expansion in recent years. The main aim of this research is to assess the clas-
sification accuracy of diverse combinations of satellite data, with the goal of enhancing their
detection of changes in impervious surfaces. By exploring the capabilities and performance
of sets of data from different satellites, this study intends to identify the optimal combi-
nations or strategies for more accurate, efficient, and reliable monitoring of impervious
surface dynamics. In many previous studies on urban impervious surfaces, multispectral
data and SAR data have been fused together to extract urban targets, achieving improved
classification results. However, previous research has mainly focused on the fusion of
single optical data and SAR data, such as the fusion of Sentinel-2 MSI data with Sentinel-1
SAR data for impervious surface extraction [44,45], and the fusion of Landsat data with
Sentinel-1 SAR data for impervious surface extraction [46]. Few studies have used mul-
tispectral data. Based on the foundation of previous research, this paper introduces an
additional type of multispectral data, employing two types of multispectral data and SAR
data optimization methods, to explore the extraction of impervious surfaces in the city of
Nanchang. Against the backdrop of rapid urbanization, fully leveraging the advantages of
existing multi-source remote sensing data to improve the extraction of urban impervious
surfaces becomes particularly important for urban development.

The remainder of this paper is organized as follows: Section 2 presents the study area,
outlines the datasets used, and describes the process of data preprocessing. In Section 3,
we explore the methodologies employed for data fusion, classification, and validation.
Section 4 highlights the detection of impervious surfaces and the corresponding accuracy
assessments. In Section 5, we provide analyses and discussions on the observed changes in
impervious surfaces and the effectiveness of machine learning methods. Lastly, Section 6
concludes the study and encapsulates its key findings.

2. Study Area and Dataset
2.1. Study Area

This study is centered on the Nanchang metropolitan area, which is the capital city of
Jiangxi Province, China. Located in the northern part of the province (28◦10′N–29◦11′N;
115◦27′E–116◦35′E) and within the middle reach of the Yangtze River, this area spans
7402 km2, making up 4.43% of the total area of Jiangxi Province (Figure 1). The location of
the city of Nanchang within Jiangxi Province and the boundary of Nanchang are shown in
Figure 1a,c, respectively. Figure 1c–e display the remote sensing images of Nanchang from
CBERS-04, Landsat-8, and Sentinel-1, respectively.

Nanchang holds a critical position in the Yangtze River Economic Belt and serves as a
nodal city in the “One Belt, One Road” initiative. Furthermore, it forms a key transportation
corridor that links China’s southeastern coastal area with its central region. Additionally, it
is situated within the ecological protection zone of Poyang Lake, thereby making its urban
development and ecological conservation a delicate balance to maintain.

From 1995 to 2015, the growth pattern of impervious surfaces in the city of Nanchang
transitioned from a “point + line” configuration to a more expansive “point + surface”
layout. The main catalysts for this growth were road construction and urban planning
initiatives. During this period, the rate of impervious surface coverage escalated to levels
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of concern [47]. Over recent decades, Nanchang’s urban area has undergone substantial
expansion, driven by rapid economic development. New urban zones, including the towns
of Honggutan, Yaohu, and Jiulonghu, have been established since 2000. These develop-
ments have led to a population surge of 24.93% in these areas, resulting in a continuous
expansion of urban impervious surfaces. Looking forward, an urban construction program
centered around a general layout of one river and its two banks is set to be implemented in
the Nanchang metropolitan area. This development will further increase the prevalence of
impervious surfaces, potentially leading to significant alterations in the area’s impervious
surface patterns. Therefore, this area provides an important case study for examining the
effects of rapid urban development on impervious surface coverage.

1 
 

 
Figure 1. An overview of the study area in various geographic contexts. This figure illustrates the
location of Nanchang within Jiangxi Province (a); the location of Jiangxi Province within China (b);
and remote sensing images of Nanchang as captured with the CBERS-04 satellite (c), Landsat-8
satellite (d), and Sentinel-1 satellite (e).

2.2. Sets of Data

This study employs multi-sensor satellite images sourced from the Landsat-8, CBERS-
04, and Sentinel-1 satellites. Optical satellite images are procured from the Landsat-8 and
CBERS-04 sensors, while a Synthetic Aperture Radar (SAR) image is derived from the
Sentinel-1 SAR dataset. The Landsat-8 satellite is furnished with a push-and-sweep sensor
that operates in-flight along the orbital direction without a scan line corrector. It leverages
the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) payloads, which
possess unique bands that set them apart from other remote sensing images. On the other
hand, the CBERS-04 is equipped with specialized multiplexer (MUX) and infrared sensor
(IRS) payloads. The band details of these two optical sensors are presented in Table 1. In
addition to the TIRS band, the Landsat-8 includes band nine, which has a spectral range
near the absorption valley of clay minerals. This allows it to highlight soil characteristics,
aiding in the differentiation of soil and impervious surface information [48]. The IRS
sensor on the CBERS-04 complements the Landsat-8, further enhancing the advantages of
multispectral data in impervious surface extraction.
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Table 1. Landsat-8 and CBERS-04 parameters.

Satellite
Sensor Band Wavelength

(um)
Resolution

(m)
Satellite
Sensor Band Wavelength

(um)
Resolution

(m)

Landsat-8
OLI\TIRS

1 (Coastal) 0.43–0.45 30

CBERS-04
MUX\IRS

5 0.45–0.52 20
2 (Blue) 0.45–0.52 30 6 0.52–0.59 20

3 (Green) 0.53–0.60 30 7 0.63–0.69 20
4 (Red) 0.63–0.68 30 8 0.77–0.89 20
5 (NIR) 0.85–0.89 30 9 0.50–0.90 20

6 (SWIR-1) 1.56–1.66 30 10 1.55–1.75 40
7 (SWIR-2) 2.10–2.30 30 11 2.08–2.35 40

8 (PAN) 0.50–0.68 15
9 1.36–1.39 30

10 10.6–11.2 100
11 11.5–12.5 100

Meanwhile, the Sentinel-1 SAR operates in the C-band and supports dual-polarization
(VV + VH) modes. Unlike optical images, SAR images can carry both phase and polarization
information, a key trait that widens their range of applications.

In this research, we employ satellite images captured by the Landsat-8 and CBERS-04
during November and December 2021, alongside a Sentinel-1 SAR image obtained on
30 November 2021. The brief interval (within two months) between these selected images
helps to ensure consistency in ground target features among them. Landsat-8 images
were sourced from the official website of the United States Geological Survey (USGS)
(https://earthexplorer.usgs.gov/, accessed on 2 November 2022). Two images meeting the
quality standards for time and cloud cover were selected, cropped, and stitched together
to form a single image encapsulating the entire Nanchang study area. Images from the
CBERS-04 were procured from the data service platform of the China Center for Resource
Satellite Applications (CASC) (https://data.cresda.cn/, accessed on 22 November 2022).
These images were also stitched together to yield a single image covering the complete
study area. The specific parameters of the image data are outlined in Table 2. SAR data were
acquired from the Sentinel Science Data Center (https://scihub.copernicus.eu/, accessed
on 2 November 2022). For this study, Sentinel-1 satellite L1-level SLC data featuring VV
and VH polarization and an Interferometric Wide-Swath (IW) imaging mode were selected.
The IW imaging mode comprises IW1, IW2, and IW3 sub-bands, and the classification
image is generated by merging and cropping these sub-bands. Afterward, we applied band
superposition, stitching, cropping, and mosaicking techniques to these images to obtain
comprehensive satellite scenes of the study area.

Table 2. Parameters of the used satellite images.

Satellite Sensor Scene Identifier Scene Center
Latitude

Scene Center
Longitude Date Acquired Cloud Cover

Landsat-8
OLI\TIRS

LC81220402021339LGN00 28.86948 114.99909 5 December 2021 0.03
LC81210402021316LGN00 28.86947 116.54733 12 November 2021 2.16

CBERS-04
MUX\IRS

4415895 28.672667 116.43454 14 November 2021 0
4413650 28.674706 115.46811 11 November 2021 0
240308 28.352079 115.574059 10 November 2021 5
242281 29.095696 116.547527 15 November 2021 5
242282 28.352067 116.362970 15 November 2021 5
240307 29.095547 115.758536 10 November 2021 5

https://earthexplorer.usgs.gov/
https://data.cresda.cn/
https://scihub.copernicus.eu/


Remote Sens. 2023, 15, 5387 6 of 20

3. Methodology
3.1. Image Processing

Data preprocessing includes geometric correction, radiometric correction, atmospheric
correction, and image registration for remote sensing imagery. Geometric correction is
primarily used to rectify distortions and deformations in the image acquisition process,
ensuring that it has accurate geographical location information. Radiometric correction is
mainly employed to eliminate distortions in radiance values and spectral reflectance in
the image [49]. Atmospheric correction is used to remove the impact of the atmosphere
on the spectral reflectance values of various land features. Landsat-8 remote sensing
images are recorded as grayscale values of features, or digital number values (DN), which
need to be converted into well-defined absolute radiometric brightness values using the
following formula:

L = Gain× DN + bias (1)

where L represents the image radiance value, Gain refers to the gain coefficient of the image
sensor, and bias denotes the offset coefficient of the image sensor. After this conversion,
atmospheric correction is applied to the satellite images. In this study, the FLAASH (Fast
Line-of-Sight Atmospheric Analysis of Spectral Hypercubes) method [50,51] is used to
perform atmospheric correction.

For the SAR image, radiometric calibration is implemented to convert the image pixel
values into backscatter coefficients using [52],

σ0
i =
dDNie
A2

dnK
(2)

where DNi is the digital number value of SAR image pixel i, A2
dn denotes the pixel scaling,

K is the absolute calibration factor, and σ0
i represents the radar backscatter coefficient at

pixel i.
Subsequently, all image data are resampled onto a uniform grid with a 30 m spa-

tial resolution using the Nearest Neighbor method to enable effective fusion of disparate
satellite image data. The SAR images are geocoded utilizing a Digital Elevation Model
(DEM) that aligns with the coordinate system of the satellite images, specifically the WGS
1984 coordinate system in the UTM 50N projection. For the alignment of optical remote
sensing data with SAR data, the Landsat image is chosen as the reference image during the
co-registration due to the superior visual clarity of this optical image. A semi-automatic co-
registration method is utilized, involving a manual selection of control points. Ultimately,
all co-registrations are finalized with a Root Mean Square Error (RMSE) calculation that
represents the cumulative differences from established control points during our georefer-
encing process, which was found to be less than one pixel. These errors meet the accuracy
requirements stipulated for this study. The workflow of this study is shown in Figure 2.

3.2. Feature Extraction and Fusion

In this study, optical and SAR data features were used for pixel-level, feature-level, and
decision-level fusion. The emphasis was not on feature selection and extraction techniques.
Therefore, during the feature extraction process, we selected spectral features from optical
images and polarization features from SAR data for the fusion of various satellite images.
The feature-level fusion extraction scheme is graphically illustrated in Figure 3. Fusion
refers to the extraction of raw information from each sensor, followed by the integration of
this information. During information extraction, each piece of information extracted from
image data corresponds to a separate layer. The data that need to be fused are combined
as layers through layer stacking. It is important to note that stacking layers together is
not a fusion method but rather a way of organizing the data into a composite dataset.
Subsequently, different classifiers are applied as fusion methods for these data, with each
fusion level typically following definitions from classical data fusion methods [53,54]. The
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fusion process is embedded within the classification process of different machine learning
methods, each of which combines optical and SAR data in distinct ways.
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3.3. Machine Learning Methodology

In this study, we use Random Forest (RF), Neural Network Classification (ANN),
Support Vector Machine (SVM), Classification and Regression Tree (CART), Maximum
Likelihood Classification (Max-Likelihood), and Minimum Distance Classification (Min-
Distance) machine learning methods to extract impervious surfaces from multi-satellite
images, with the goal of enhancing the accuracy of impervious surface detection. Given the
complex urban surface composition and resolution constraints of remote sensing images,
this study, based on the original classification principle and combined with the actual
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surface cover feature categories in Nanchang, classifies each feature type in Nanchang
into one of three categories: pervious surface, impervious surface, and body of water. The
pervious surfaces primarily include parks, green belts, vegetation-covered hills, and urban
construction sites; the impervious surfaces mainly comprise hardened roads, parking lots,
and buildings; and the bodies of water include rivers, lakes, and some small artificial
water surfaces.
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As an ensemble machine learning method, Random Forest uses a series of diverse
regression trees to improve information extraction accuracy, without the need to reduce
dimensionality, in high-dimensional feature data. It offers strong resistance to noise compo-
nents and helps avoid overfitting [55–59]. Inspired by the structure of the human brain,
ANNs consist of interconnected nodes or “neurons” that process input data, including an
input layer, two hidden layers, and an output layer. The input layer is composed of neu-
rons representing features extracted from satellite images. These features are fed forward
through the network, and each layer of the hidden layers applies a weighted sum to its in-
puts. The result is then passed through an activation function, and the output is forwarded
to the next layer. Ultimately, the output layer produces classification results, indicating the
probability that each pixel belongs to the impervious surface category. These networks can
adapt to the data they are fed by adjusting their weights and biases through a process called
backpropagation. They are the backbone of deep learning and are highly suited for complex
tasks like image recognition, natural language processing, and more [60]. SVMs operate by
finding a hyperplane that best divides a dataset into classes. They are particularly suited for
the classification of complex but small- or medium-sized datasets. The “support vectors”
are the data points that lie closest to the decision surface (or hyperplane). SVMs can also
handle non-linear data through the use of the kernel trick [61]. CART is a decision tree
learning technique that produces either classification or regression trees, depending on
whether the dependent variable is categorical or numerical, respectively. Decision trees
split the data into subsets based on the value of the input features. This results in a tree-like
model of decisions [62]. Maximum Likelihood Classification (Max-Likelihood) is a method



Remote Sens. 2023, 15, 5387 9 of 20

used to estimate the parameters of a statistical model. By choosing the parameter values
that maximize the likelihood function, Max-Likelihood finds the parameter values that
make the observed data most probable under the assumed model [63]. This is a simple
classification algorithm where an unknown sample is classified based on the minimum
distance (often Euclidean) to known samples from different classes. It is similar in concept
to the Nearest Neighbor classifier, but generally uses mean vectors of the classes for distance
computation [64].

Table 3 reveals the results from these different machine learning methods. It reveals
that the Minimum Distance Classification (Min-Distance) method yielded the lowest ac-
curacy, falling short of the requirements for reliable impervious surface extraction. The
Max-Likelihood method secured overall classification accuracy values of 0.70 and 0.74,
alongside kappa coefficients of 85.5% and 82.7%, respectively, when applied to single
remote sensing datasets for impervious surface extraction. Employing the fusion of two
remote sensing images resulted in overall classification accuracies of 0.75, 0.80, and 0.80,
paired with kappa coefficients of 85.7%, 88.9%, and 88.7%, respectively. However, when
leveraging the fusion of three remote sensing images for impervious surface extraction,
the overall classification accuracy was slightly improved to 0.81, with a kappa coefficient
of 89.3%. Although the fusion of the three remote sensing images did enhance extraction
accuracy, the overall accuracy remained less than ideal. The ANN method, while yielding
high accuracy when applied to a standalone Landsat-8 remote sensing dataset for imper-
vious surface extraction, failed to deliver satisfactory results when applied to the fusion
of the three remote sensing images. This outcome implies that the ANN method may
not be suited for extracting impervious surfaces using multi-source remote sensing data
within the context of this study. Among the machine learning methods explored, namely
RF, SVM, and CART, RF emerged as the top performer, achieving the optimal classification
accuracy for impervious surface extraction. As such, RF is suggested as the most effective
method for extracting impervious surfaces using multi-source remote sensing data. The
RF method presents unique advantages in managing high-dimensional data. Given the
high dimensionality and redundancy of remote sensing data, traditional machine learning
classification methods often grapple with processing such data effectively. In contrast, RF
can adeptly handle high-dimensional data via feature selection and feature importance
evaluation, thereby boosting the classification accuracy. In addition, RF can extract multiple
features, exhibit robustness, and contend with missing values, outliers, and imbalanced
data when dealing with remote sensing data. These capabilities enhance the robustness and
stability of its classification. The application of the Random Forest (RF) machine learning
method, combined with Landsat-8, CBERS-04, and Sentinel-1A remote sensing data, can
notably enhance the accuracy of urban impervious surface extraction.

Table 3. Classification accuracies for four different years.

RF ANN SVM CART Max-Likelihood Min-Distance

OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa OA Kappa
CBERS-04 88.0% 0.78 84.3% 0.72 86.4% 0.76 86.7% 0.77 85.5% 0.74 44.0% 0.24
Landsat-8 90.3% 0.82 89.8% 0.81 89.7% 0.81 88.7% 0.80 82.7% 0.70 23.2% 0.10

CBERS-04 +
Landsat-8 91.8% 0.85 88.2% 0.79 89.8% 0.82 89.0% 0.81 85.7% 0.75 10.8% 0.043

CBERS-04 +
Sentinel-1 91.7% 0.85 90.4% 0.83 90.0% 0.82 89.9% 0.83 88.9% 0.80 29.0% 0.15

Landsat-8 +
Sentinel-1 93.0% 0.88 89.6% 0.80 92.6% 0.86 89.8% 0.82 88.7% 0.80 17.3% 0.07

CBERS-04 +
Landsat-8 +
Sentinel-1

94.0% 0.89 86.3% 0.73 92.5% 0.87 91.9% 0.86 89.3% 0.81 7.6% 0.03
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4. Impervious Surfaces and Accuracy Assessment
4.1. Impervious Surfaces Extraction

In this study, we used three types of satellite images, as well as their combinations,
to extract impervious surfaces in the study area. We considered a total of seven satellite
image combination scenarios:

(1) Sentinel-1 SAR data only (S1);
(2) CBERS-04 image only (S2);
(3) Landsat-8 image only (S3);
(4) CBERS-04 image and Landsat-8 image combination (S4);
(5) CBERS-04 image and Sentinel-1 SAR combination (S5);
(6) Landsat-8 image and Sentinel-1 SAR combination (S6);
(7) CBERS-04 image, Landsat-8 image, and Sentinel-1 SAR combination (S7).

These scenarios were designed to compare the performance of each satellite image
type, both individually and in various combinations. The results from these different
scenarios help identify the most effective combination of satellite images for impervious
surface extraction, which contributes to more accurate and reliable results.

The impervious surface mapping results for the Nanchang metropolitan area are
depicted in Figure 4. It can be observed that the impervious surfaces in Nanchang are
multifaceted and concentrated along both sides of the Ganjiang River, with a primary
expansion axis directed westward. For the classification using only SAR data (Scenario 1),
the results show a noticeable underestimation, with some vegetation being incorrectly
classified as impervious surfaces in the process of distinguishing between vegetation and
impervious surfaces.

When using a single optical dataset for classification (Scenarios 2–3), the resulting
“salt-and-pepper” effect is quite pronounced, with many isolated pixels and discontinuous
patches distributed unevenly across the classified images. The spectral characteristics of
certain types of features, such as bare ground and brightly reflective impervious surfaces,
can be similar. This can lead to situations where the same object displays varying spectral
signatures, or different objects exhibit identical spectral characteristics. This creates chal-
lenges for accurate classification and can lead to misinterpretation of the surface features.
The integration of information from Sentinel-1 images with multiple optical imagery brings
about more distinct and well-defined contours and boundaries of adjacent features in the
classified images (such as in Scenario 7). This process virtually eliminates discontinuous
patches and isolated image elements, thereby achieving a significant enhancement in both
classification accuracy and overall image quality.

4.2. Accuracy Assessments

The accuracy of impervious surface extraction in this study is gauged using contempo-
raneous high-resolution images from Google Earth. We selected samples of water bodies,
pervious surfaces, and impervious surfaces for this purpose. Of these samples, 65% are
randomly chosen as training samples, while the remaining 35% are used as verification
samples to test the classification outcomes and measure accuracy. However, given the po-
tential impact of human factors on visual interpretation, the reliability of these verification
results is further validated using a confusion matrix and pre-existing knowledge [65]

To validate the impervious surface extraction, we employ a suite of accuracy evaluation
metrics, including overall accuracy (OA), kappa coefficient, user’s accuracy (UA), and
producer’s accuracy (PA). These metrics are derived from the confusion matrix, which is
computed using verification samples, as per the methodology suggested by Jensen and
Lulla (1987) [49].



Remote Sens. 2023, 15, 5387 11 of 20Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 4. Classification results of seven satellite image combination scenarios. 

When using a single optical dataset for classification (Scenarios 2–3), the resulting 
“salt-and-pepper” effect is quite pronounced, with many isolated pixels and discontinu-
ous patches distributed unevenly across the classified images. The spectral characteristics 
of certain types of features, such as bare ground and brightly reflective impervious sur-
faces, can be similar. This can lead to situations where the same object displays varying 
spectral signatures, or different objects exhibit identical spectral characteristics. This cre-
ates challenges for accurate classification and can lead to misinterpretation of the surface 
features. The integration of information from Sentinel-1 images with multiple optical im-
agery brings about more distinct and well-defined contours and boundaries of adjacent 
features in the classified images (such as in Scenario 7). This process virtually eliminates 
discontinuous patches and isolated image elements, thereby achieving a significant en-
hancement in both classification accuracy and overall image quality. 

Figure 4. Classification results of seven satellite image combination scenarios.

Among them, the kappa coefficient and overall accuracy (OA) are indicators represent-
ing the overall classification performance. Producer’s accuracy (PA) and user’s accuracy
(UA) are metrics used to assess the consistency between the predicted and true values for
each category. A higher value indicates a higher classification accuracy. The formulas for
calculating these metrics are as follows:

OA =
∑K

i=1 Nii

Ntotal
× 100% (3)

PA =
Nii
N+i
× 100% (4)

UA =
Nii
N+i
× 100% (5)
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Kappa =
Ntotal∑

K
i=1 Nii −∑K

i=1 Ni+N+i

N2
total −∑K

i=1 Ni+N+i
(6)

In the above equations: Nii represents the number of correctly classified samples,
N+i denotes the number of true samples in class i, Ni+ represents the number of samples
predicted in class i, Ntotal is the total number of samples, and K represents the total number
of classes.

These metrics facilitate an assessment of machine learning classification performance
and pinpoint areas that warrant improvements. Moreover, pre-existing knowledge about
the city of Nanchang is utilized to verify the classification results for urban and suburban
areas. This incorporation of prior knowledge allows for the cross-validation of the classifi-
cation outcomes against known data concerning this area, thereby validating the accuracy
of the extracted impervious surfaces.

We obtained the respective impervious surface (IS) and non-impervious surface (Non-
IS) mapping results for various satellite data combinations and proceeded with a compara-
tive analysis. Metrics such as overall accuracy (OA), mapping accuracy, user accuracy, and
kappa coefficient were calculated and are depicted in Table 4. For single image scenarios
(S1–S3), the results indicate that optical images identify urban impervious surfaces with
greater accuracy than SAR images, as can be seen in Table 4. When two types of satellite
images are fused (S4–S6), the accuracy levels for these scenarios surpass those of the single
image scenarios (S1–S3), as demonstrated in Table 4. The highest accuracy is achieved in
Scenario 7 (S7), where a synthesis of CBERS-04 and Landsat-8 optical images, supplemented
with Sentinel SAR data, is deployed.

Table 4. Classification accuracies of seven satellite image combination scenarios.

Scenario
ID

PA (%) UA (%)
OA Kappa

IS Others Water IS Others Water

S1 Sentinel-1 37.61 94.01 80.07 86.07 70.19 89.53 75.0% 0.54
S2 CBERS-04 83.25 92.12 79.83 77.58 91.63 91.59 88.0% 0.78
S3 Landsat-8 87.24 94.38 79.69 85.22 91.67 93.68 90.3% 0.82
S4 CBERS-04 + Landsat-8 88.51 95.20 84.29 85.12 94.17 93.86 91.8% 0.85
S5 CBERS-04 + Sentinel-1 86.28 93.25 94.25 85.73 93.63 93.73 91.7% 0.85
S6 Landsat-8 + Sentinel-1 91.90 91.96 98.53 88.00 96.73 88.40 93.0% 0.88

S7 CBERS-04 + Landsat-8 +
Sentinel-1 89.00 95.58 95.44 91.23 95.29 93.21 94.0% 0.89

In order to more effectively evaluate the detection accuracy of impervious surfaces and
identify key elements influencing this accuracy, we compared the extraction outcomes of
impervious surfaces derived from different satellite images. Table 5 presents the confusion
matrices for the three types of satellite data. As per these confusion indices, the results
derived from Landsat-8 surpass those from the CBERS-04 images, owing to the availability
of a broader spectrum of information. Regarding the three land cover types, all three
satellite images are effective in identifying water bodies. However, due to variables such as
building shadows and complex ground materials, there are increased misclassifications
between the impervious and pervious surfaces. This analysis emphasizes the importance
of selecting appropriate satellite data sources and highlights the potential benefits of
integrating multiple satellite data sources to bolster their overall accuracy and minimize
misclassification errors.
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Table 5. Confusion matrices for the different satellite images.

Sentinel-1 SAR

Ground Truth (Pixels)

Class

Water IS Others

Water 26,512 30 3069
IS 19 23,805 3833

Others 6517 39,460 108,404

CBERS-04

Ground Truth (Pixels)

Class

Water IS Others

Water 1753 48 113
IS 264 2723 523

Others 179 500 7434

Landsat-8

Ground Truth (Pixels)

Class

Water IS Others

Water 1719 38 78
IS 119 2871 379

Others 319 379 7679

Figure 5 displays the overall accuracy (OA) and kappa coefficient for the classification
results of the seven data combination scenarios, offering a comparison of classification
accuracy when utilizing single and multi-source remote sensing data. The integration
of multi-source remote sensing data significantly improves the classification accuracy of
impervious surfaces, with the overall accuracy increasing from 75.5% to 88.3% (Table 4). The
combination of three remote sensing data types (CBERS-04, Landsat-8, and Sentinel-1 SAR)
achieves the highest classification accuracy, emphasizing the importance of integrating
various remote sensing data to improve results. The fusion of multi-source remote sensing
data with a wider range of features and higher spatial resolution could have the potential
to yield even better classification outcomes.
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5. Analyses and Discussions
5.1. Comparisons of Impervious Surfaces between Different Fusion Scenarios

This study reveals that impervious surface extraction varies markedly across different
satellite data scenarios. To delve deeper into these variations, we further contrasted the
impervious surfaces derived from various data fusion scenarios. For classification purposes,
pixels were assigned a value of 1 for impervious surfaces and 0 for non-impervious surfaces.
Using the impervious surface mapping results from a combination of the data from CBERS-
04, Landsat-8, and Sentinel-1 SAR (S7) as a benchmark, a comparison was conducted by
subtracting the S7 results from the other five data scenarios (S2–S6). This operation yielded
three possible values for these classification image pixels: −1, 0, and 1. When a pixel in
the S7 image represents an impervious surface (with a value of 1) and the corresponding
pixel in Sn (n = 2, . . ., 6) represents a non-impervious surface (with a value of 0), the result
of Sn − S7 equals −1. In this case, Sn potentially underestimates the impervious surface
in comparison to S7. When both S7 and Sn show the same impervious or non-impervious
surfaces, Sn − S7 equals 0, indicating a consistency between S7 and Sn for that pixel.
Similarly, when Sn − S7 equals 1, Sn overestimates the impervious surface. Table 6 displays
the areas corresponding to these three values (1, 0, −1) for Sn − S7, demonstrating the
underestimation and overestimation results of impervious surfaces from Sn relative to S7.

Table 6. Underestimated and overestimated impervious surfaces of S1–S7 relative to S7.

Cases

1
(Overestimated) 0 −1

(Underestimated)

Area (km2)

(a) S2–S7 605.52 6176.95 403.40
(b) S3–S7 319.97 6497.04 368.82
(c) S4–S7 334.76 6696.35 154.75
(d) S5–S7 366.12 6413.79 408.41
(e) S6–S7 166.19 6701.25 320.89

Figure 6 illustrates the distribution of overestimated impervious surface pixels for
various data scenarios in relation to S7. When it comes to impervious surface mapping, the
CBERS-04 image (S2) shows a more pronounced overestimation, whereas the fusion of the
Landsat-8 image and Sentinel-1 SAR data (S6) features the least number of overestimated
pixels. In Figure 6a, pixels with a value of 1 are primarily situated outside the central
urban area, notably along riverbanks, lakes, and urban perimeters. Figure 6b,c demonstrate
that incorporating Landsat data, with its additional spectral bands, bolsters vegetation
extraction and enhances classification accuracy, thereby reducing the overestimation of
impervious surfaces. This improvement is especially noticeable on the western side of the
Gan River and the northern region of the Fu River area. Figure 6d unveils the results of
the fusion of CBERS-04 and SAR data; however, the enhancement in impervious surface
mapping with the integration of CBERS-04 optical data and SAR data is not substantial. As
depicted in Figure 6c,d and Table 6, the overestimated area of impervious surfaces when
SAR data is combined with CBERS-04 does not show significant improvement compared to
the S2 case (where only CBERS-04 data was used). Conversely, with the inclusion of SAR
data with the Landsat-8 images, the overestimated area of impervious surfaces is noticeably
diminished (Figure 6e, Table 6).

Figure 6 presents the areas that underestimated impervious surfaces, represented by
a value of −1, for various data scenarios in comparison to S7. When solely utilizing the
CBERS-04 image for classification (S2), impervious surfaces in the central urban area with
building shadows are prone to misclassification as non-impervious surfaces (Figure 6a).
However, the S3 scenario (using Landsat-8 data) generates the largest underestimated area
of 701.77 km2 (Figure 6b, Table 6). Table 6 demonstrates that using CBERS-04 data alone (S2)
may result in the highest underestimation of impervious surfaces. Interestingly, the fusion
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of CBERS-04 and Landsat-8 data subsequently reduces areas of underestimation (Figure 6c,
Table 6), indicating that data fusion may serve to balance both the underestimated and
overestimated areas. While the integration of SAR data alongside either CBERS-04 or
Landsat-8 images can decrease the areas of underestimated impervious surfaces compared
to S2 and S3, as depicted in Figure 6d,e and Table 6, the fusion of CBERS-04 and Landsat-
8 images (S4) may yield better outcomes than scenarios S5 and S6. This suggests that
optimizing the fusion of multiple optical images can yield improved results.
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5.2. Changes in Impervious Surfaces

Building on the multi-sensor image fusion scenario (S9), this study selected additional
Landsat-8, CBERS-04, and Sentinel-1 images from the years 2015, 2017, and 2020. In
total, twelve images (including those from 2021) were compiled to detect changes in the
impervious surface area within the Nanchang metropolitan region. The dates and times
for the acquisition of these images are provided in Table 7. The kappa coefficients, overall
accuracy (OA), and impervious surface areas derived from the satellite images for the years
2015, 2017, and 2020 are presented in Table 8, along with the corresponding data for 2021.
From 2015 to 2021, the area covered by impervious surfaces exhibited a significant increase,
expanding from 1183.40 km2 in 2015 to a striking 1703.70 km2 in 2021. The impervious
surface area in the city of Nanchang expanded by 27.68 km2 from 2015 to 2017, with an
average yearly increase rate of 1.17%; by 374.05 km from 2017 to 2020, with an average
yearly increase rate of 10.30%; and by 118.57 km2 from 2020 to 2021, with a yearly rate of
7.48%, indicating that urban expansion in Nanchang has been accelerating in recent years
since 2017.
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Table 7. Dates and times of the satellite images acquired in 2015, 2017, and 2020.

Table Sensor Date and Time of
Acquisition

2015

Sentinel-1 SAR 3 October 10:18:10

CBERS-04 28 September 03:06:37
21 October 03:10:36

Landsat-8 2 October 02:50:48
11 October 02:44:37

2017

Sentinel-1 27 November 10:18:02

CBERS-04 21 October 02:58:34
9 December 03:01:07

Landsat-8 1 November 02:44:55
10 December 02:50:56

2020

Sentinel-1 9 February 10:18:12

CBERS-04 8 January 02:47:34
31 January 02:52:16

Landsat-8 18 February 02:50:49
14 March 02:44:29

Table 8. Impervious surface accuracy in 2015, 2017, 2020, and 2021 and the changes in
impervious surfaces.

2015 2017 2020 2021

Kappa 0.85 0.84 0.78 0.89
OA 93.92% 93.79% 87.61% 93.96%

IS Area (km2) 1183.40 1211.08 1585.13 1703.70
IS increase (km2) 27.68 374.05 118.57

Average yearly increase
rate (%) 1.17 10.30 7.48

The same methodology outlined in Section 5.1 was employed to trace the evolution
of impervious surfaces from 2015 to 2021. In this process, a value of 1 is assigned to an
impervious surface pixel, and a value of 0 is assigned to a non-impervious surface pixel.
The evolution is calculated by subtracting the 2015 pixel value from those of 2017, 2020,
and 2021. A result of 1 signifies a shift from a non-impervious to an impervious surface,
while a value of −1 indicates the reverse. A result of 0 implies no change in surface type.

Upon examining Figure 7, several consistent patterns in impervious surface growth
are revealed:

1. The area of impervious surfaces in Nanchang exhibited a diminishing trend moving
from the city center to the outskirts.

2. Urban impervious surfaces primarily congregated near riverine regions.
3. Proximity to the city center intensified the changes in impervious surfaces.
4. The eastern part of Nanchang, characterized by its relatively flat terrain and well-

established river systems, displayed larger impervious surface areas than the western
region along the Gan River.

Figure 7 shows a decrease in impervious surfaces, primarily observed from 2015 to
2017 on the west side of the Gan River in the outskirts of the metropolitan area, but these
reductions were significantly smaller than the corresponding increases. From 2015 to 2021,
the expansion of impervious surfaces advanced toward the southern region of the city,
with isolated patches of impervious areas observed in other regions, leading to substantial
changes in the central city land area’s cover types. By 2020, when compared to 2015, the
expanded impervious surface area had spread from the city center’s southern region along
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the Gan River to its southern, eastern, and northern regions. An increase in impervious
surfaces was also detected in the Fu River basin. By 2021, as illustrated in Figure 7a, the
continuous increase in impervious surface area in the city of Nanchang began to spread
toward the northern region, dispersed around the Gan River basin. From the extraction
results, we also observed a decrease in urban impervious surface area in certain regions.
Several factors contribute to this phenomenon. Firstly, Nanchang is prone to flooding
disasters [66], and the images used for this study were captured during the flood-prone
seasons, leading to some buildings and roads being submerged by water and resulting in a
certain degree of classification error. Secondly, Nanchang has been highly committed to the
construction of sponge cities. In 2016, Nanchang became a provincial-level pilot city for
sponge city development, and by the end of 2021, the area meeting sponge city standards
had reached 96.48 km2 [67]. In summary, the impervious surface area in Nanchang showed
an overall increasing trend from 2015 to 2021.
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6. Conclusions

This study uses multi-sensor satellite images to detect changes in urban impervious
surfaces, using the metropolitan area of Nanchang as an example. Three types of satellite
images were selected in this study, including Landsat-8 and CBERS-04 optical images and
Sentinel-1 SAR data, which constitute seven satellite image combination scenarios. The
Random Forest machine learning methodology was applied to these data scenarios to
extract the impervious surfaces of the study area.

For comparisons between Landsat-8 or CBERS-04 optical satellite images and the
Sentinel-1 SAR image, it is suggested that optical satellite images with abundant spectral
characteristics can obtain a higher detection accuracy than radar images of Sentinel-1. Sec-
ondly, multi-sensor satellite images may integrate more ground spectral information and
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perform better in impervious surface detection than single satellite images of the Landsat-8,
CBERS-04, or Sentinel-1 satellites. The best result was achieved with the combination of all
three types of satellite multi-sensor images (Landsat-8, CBERS-04, and Sentinel-1), improv-
ing the kappa coefficient from 89.21% to 92.55% and the overall classification accuracy from
84.3% to 88.3% compared to using the Landsat-8 image alone. Furthermore, the Random
Forest algorithm’s employment of a unique dual-random sampling approach, involving
both random feature selection and random sample selection, utilized for merging the
multi-sensor satellite data, proved more effective for impervious surface extraction when
compared to other machine learning techniques, such as the Artificial Neural Network
(ANN), Support Vector Machine (SVM), Classification and Regression Tree (CART), Maxi-
mum Likelihood Classification (Max-Likelihood), and Minimum Distance Classification
(Min-Distance) methods.

This study incorporates additional satellite images from 2015, 2017, and 2020 to
examine changes in the impervious surface area within the Nanchang metropolitan region.
Between 2015 and 2021, a significant increase in impervious surfaces from 1183.40 km2 to
1703.70 km2 was recorded, indicating accelerated urban expansion. Our research identified
several patterns within the impervious surfaces’ distribution and growth, such as a higher
concentration near rivers, and more substantial areas in Nanchang’s eastern part. From
2015 to 2021, the expansion of impervious surfaces happened mainly toward the city’s
southern region, but by 2021, the expansion started spreading toward the northern region,
around the Gan River basin.
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