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Abstract: How to distinguish the relative role of climate change and human activities in vegetation
dynamics has attracted increasing attention. However, most of the current studies concentrate on
arid and semiarid regions, while the relative contributions of climate change and human activities
to vegetation changes remain unclear in warm-humid regions. Based on the normalized differ-
ence vegetation index (NDVI) and climatic variables (temperature, precipitation, radiation) during
2001–2020, this study used the Theil–Sen median trend analysis, partial correlation analysis, and
residual trend analysis to analyze the spatiotemporal pattern of vegetation trends, the response of
vegetation to climate variations, and the climatic and anthropogenic contributions to vegetation
dynamics in the warm and humid Guangdong Province of south China. Results showed that the
NDVI in most areas exhibited an increasing trend. Changes in climatic variables displayed different
spatial variations which, however, were not significant in most areas. Vegetation responded diversely
to climate change with temperature as the most important climatic factor for vegetation improvement
in most areas, while precipitation was the dominant climatic factor in the southern edge region and
radiation was the dominant climatic factor in the central and western regions. Vegetation in most
areas was influenced by both climate change and human activities, but the contribution rate of human
activities was commonly much higher than climate change. The findings of this study are expected to
enhance our understanding of the relative climatic and anthropogenic contributions to vegetation
changes in warm-humid regions and provide a scientific basis for future ecological policies and
ecosystem management in highly urbanized regions.

Keywords: vegetation change; climate variation; human activity; residual trend analysis;
Guangdong Province

1. Introduction

Terrestrial ecosystems are significant global carbon stocks and carbon sinks, and
vegetation variations are highly related to carbon budgets [1–4]. Vegetation change is
a complex process affected by various natural and anthropogenic factors [5–7]. Hence,
disentangling the driving forces of vegetation dynamics is essential for understanding
carbon balance and developing adaptive strategies.

As one of the few countries where vegetation has significantly improved since 2000,
China leads the global greening [8]. Specifically, forests in the southern part and croplands
in the central part of China display the most obvious greening trend. Contrary to naturally
vegetated areas, the urbanization process usually causes vegetation degradation in many
regions [9–11]. However, recent studies indicate that urban vegetation growth enhancement
is also widely observed in Chinese and worldwide cities [12,13]. Thus, vegetation changes
in urban areas are much more complicated than in undisturbed areas. Previous work found
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that vegetation improvement happened in urban cores, while vegetation degradation
occurred in newly developed peripheries in the Guangdong–Hong Kong–Macao Greater
Bay Area urban agglomeration [14]. Vegetation dynamics are attributed to numerous
driving forces, which are generally concluded as two categories: climate change and
human activity [15,16].

Climate variation is extensively believed to have widespread impacts on vegetation
change. Across the globe, water availability, temperature, and radiation constrained vege-
tation growth for 40%, 33%, and 27% of the vegetated areas on Earth, respectively [17]. The
increasingly intense dry seasons have caused global vegetation productivity to decrease,
and it is projected to potentially reduce by 10–30% in 2100 [18]. Effects of climate change on
vegetation vary in different regions and ecosystems [19,20]. For example, worldwide plains
are believed to be more vulnerable to climate variability than alpine regions [21]. Temperate
broadleaf forest and temperate grassland have a higher sensitivity to extremely low precip-
itation than other biomes [22]. Crops are more sensitive to water and meadows are more
sensitive to temperature in the Heihe River Basin of northern China [23]. Precipitation is the
limiting factor of vegetation changes in the northeast and southwest of the Tibetan Plateau,
while temperature and the combination of radiation and temperature are the prominent
climatic drivers for the mid-east and the south, respectively [24]. Water-limited regions
of vegetation productivity are primarily situated in the southern and eastern basins and
piedmont plains of the Taihang Mountains of north China, while the northern and central
regions with high elevations mainly suffer from low temperatures [25].

The effects of anthropogenic activities on vegetation change have attracted increasing
concern in recent decades, particularly for rapidly developing regions [8,9,26,27]. On the
one hand, industrialization and urbanization usually cause vegetation degradation and
vegetation loss. For instance, forest vegetation decline has lasted for 30 years since the con-
struction of industrial complexes in southern Korea [28]. Urban expansion widely resulted
in vegetation degradation around urbanized regions, such as the Beijing–Tianjin–Hebei
Region [27], the Yangtze River Delta [5], and the Pearl River Delta and Shantou city of
Guangdong Province [9]. On the other hand, ecological projects and land-use management
greatly contribute to vegetation greening. During the late 1990s and early 2000s, a series of
national ecological restoration programs including The Grain for Green Program, The Nat-
ural Forest Protection Program, and The Shelterbelt Development Programs were carried
out in China, and ecological restoration measures such as forest planation and mountain
closure played a vital role in vegetation improvement [29]. Agricultural intensification
and urban green space management such as fertilization and irrigation also dramatically
enhanced vegetation greening [8,26].

Since both climate change and human activities have important impacts on vegetation
dynamics, how to disentangle their relative contributions has become the focus of concern,
especially in recent years. A large number of studies have made remarkable progress on
this task and at least two kinds of approaches are proposed and widely used so far. First,
statistical techniques and models such as the multiple linear regression model [30], ridge
regression [31], structural equation modeling [32], random forest algorithms [33], redun-
dancy analysis [34], geographically weighted regression models [35], and geographical
detectors [36,37] are often used to explore the relationship between vegetation indices and
their climatic and anthropogenic drivers to quantity the relative role of their influences.
These models need both climatic and human-related variables as input data, but the indica-
tors of human activities are usually difficult to obtain and often inconsistent with the spatial
resolution of climatic indicators. Hence, the residual trend analysis has been proposed
and then widely adopted to distinguish the impacts of climate variations and human
activities on vegetation changes without the requirement of human-related data [38,39].
For this residual approach, a regression model is usually established between vegetation
indices and climatic variables to obtain the climate-induced vegetation change, and then the
residuals of the model are calculated to represent the human-induced vegetation change.
Considering the difficulty in obtaining comprehensive data of anthropogenic variables, the
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residual trend approach has become increasingly popular and has been proven to be an
effective method to separate the relative effects of climate variability and human distur-
bance on vegetation greenness or productivity in many studies [15,16,40–43]. However,
most of these studies focus on arid and semiarid regions where vegetation generally has
distinct phenological dynamics and plant growth is obviously limited by climatic factors.
Few studies focus on warm-humid regions with vastly different climatic conditions to arid
and semiarid ecosystems, so attributing vegetation dynamics in warm-humid regions is
beneficial to enrich our understanding of the characteristics and mechanisms of vegetation
changes [9].

Guangdong Province, situated in South China with a warm and humid climate,
is an important carbon sink with vegetation cover at the forefront of China. Climate
extremes in Guangdong are much higher than in most other areas of China [44], and
Guangdong Province is one of the most vulnerable regions to climate change [45]. During
the past decades, Guangdong Province has experienced a soaring economy and population
boom, and land use has changed dramatically, thereby affecting ecosystem services and
habitat quality [46,47]. Current studies indicate that the vegetation in Guangdong Province
changed significantly during the urbanization process [33]. As such, Guangdong Province
is a typical area for studying the combined effects of climate change and human disturbance
on vegetation. By taking land use/cover change (LUCC) to represent human activities,
previous studies emphasized human activities as the main driving force of vegetation
changes and explored how the interaction of climate variations and human activities
affected vegetation dynamics in Guangdong Province [9,33]. LUCC is one of the most direct
manifestations of human activities, but it cannot reflect all aspects of human activities. Many
other human-related activities without LUCC, including the increase in population intensity,
improvement of low-quality forests, and management of green space, also have tremendous
impacts on vegetation variations. Thus, considering only LUCC may underestimate the
influence of human activities on vegetation changes.

This study took Guangdong Province as a case study to (1) investigate the spatiotem-
poral trends of vegetation and climate, (2) explore the relationships between vegetation and
climate, and (3) quantify the relative contributions of climate change and anthropogenic
activities to vegetation dynamics. To achieve the above aims, Moderate Resolution Imaging
Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) data dur-
ing 2001–2020 were collected, and multiple analytical methods and techniques including
Theil–Sen median trend analysis with a Mann–Kendall significance test, partial correlation
analysis, and residual trend analysis were used to detect vegetation variations and their
attribution. The results of this study are expected to separate the climate-induced and
human-induced vegetation changes in the warm-humid Guangdong Province, which is
helpful to evaluate the effectiveness of ecological conservation and restoration measures
over the last 20 years, thereby providing guidance for future policy making.

2. Materials and Methods
2.1. Study Area

Guangdong (GD) Province (20◦09′–25◦31′N, 109◦45′–117◦20′E) is located in the south
of China and covers a land area of ~179,700 km2 (Figure 1a). Guangdong Province con-
tains 21 cities and can be divided into 4 eco-regions according to ecosystem types and
geographical characteristics (www.ecosystem.csdb.cn, accessed on 5 May 2020): the north-
ern Guangdong (NG) eco-region with mid-subtropical mountainous and hilly evergreen
broad-leaved forest, the middle Guangdong (MG) eco-region with south-subtropical moun-
tainous and hilly evergreen broad-leaved forest, the southern Guangdong (SG) eco-region
with tropical monsoon forest and rainforest, and the Pearl River Delta (PRD) eco-region
with south-subtropical urban and suburban agriculture (Figure 1b). The MG eco-region
can be further divided into the western part (West MG) and the eastern part (East MG).
Vegetation in these eco-regions is different, thus the averaged NDVI over 2001–2020 dis-
plays distinct spatial patterns (Figure 1c). The warm-humid subtropical climate dominates

www.ecosystem.csdb.cn
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GD Province with abundant light, heat, and water resources. According to the spatially
interpolated meteorological records as described in Section 2.2.2 below, the mean annual
temperature (MAT), precipitation (MAP), and radiation (MAR) ranges during 2001–2020 are
11.77–24.65 ◦C, 1546–2688 mm, and 4147–5308 MJ/m2, respectively (Figure 1d–f).
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Figure 1. The geographical location (a) and eco-regions (b) of Guangdong Province and spatial
distributions of NDVI (c), MAT (d), MAP (e), and MAR (f). Eco-regions of Guangdong Province in
panel (c): NG—the northern Guangdong eco-region, MG—the middle Guangdong eco-region, SG—
the southern Guangdong eco-region, PRD—the Pearl River Delta eco-region. NDVI—normalized
difference vegetation index; MAT—mean annual temperature; MAP—mean annual precipitation;
MAR—mean annual radiation.

2.2. Data Preparation
2.2.1. NDVI Data

The MODIS NDVI data (MOD13A1) for the period of 2001–2020, with the temporal
resolution of 16 days and the spatial resolution of 500 m, were collected from the Land Pro-
cesses Distributed Active Archive Center (LP DAAC) within the U.S. National Aeronautics
and Space Administration (NASA) Earth Observing System Data and Information System
(EOSDIS) (https://lpdaac.usgs.gov, accessed on 15 April 2020). Since the data might be
contaminated by clouds and haze, we used the Savitzky–Golay filter in the TIMESET soft-
ware package of MATLAB R2020b to smooth the annual cycle of NDVI data and improve
the data quality of the NDVI time series [48]. Then, the maximum value composite (MVC)
method was used to generate monthly and yearly NDVI datasets.

2.2.2. Climate Data

Daily temperature (◦C), precipitation (mm), and sunshine duration (hour) records of
128 meteorological observation stations within and nearby Guangdong Province during
2001–2020 were provided by the China Meteorological Data Service Center (http://data.
cma.cn, accessed on 13 December 2021). Incorrect and suspicious data were first removed
via data cleaning and quality control and the percentage of missing data was kept within
10% for every meteorological station [49]. The missing data were imputed via the “mice”
package in RStudio [50]. Then, these daily climatic records were composited to monthly
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datasets for spatial interpolation. The ANUSPLIN 4.2 software was used to interpolate
meteorological point data into raster surfaces with the spatial resolution in line with NDVI
pixels [51]. The sunshine duration (hour) was converted to radiation (MJ/m2) via the
method recommended by the Food and Agriculture Organization [52]. Finally, the yearly
average temperature and total precipitation and radiation were calculated.

2.2.3. Eco-Region Data

The eco-region data were obtained from the datasets of ecosystem assessment and
ecological security in China (www.ecosystem.csdb.cn, accessed on 5 May 2020). Based
on the eco-environmental problems, ecosystem sensitivity, and ecosystem services in
China, eco-regions were delineated according to natural conditions such as landforms,
hydrothermal conditions, vegetation characteristics, ecosystem types, and geographical
features via multiple methods including spatial overlay technique, correlation analysis, and
expert consultation. There are 50 eco-regions in China, and Guangdong Province involves
4 of them (Figure 1b).

2.3. Methods

To distinguish the relative contributions of climate change and human activities to veg-
etation dynamics via residual trend analysis, it is essential to understand the characteristics
of vegetation and climate trends and the relationships between vegetation and climatic vari-
ables in advance. Using the time series of NDVI and climatic variables (temperature-TEM,
precipitation-PRE, radiation-RAD) during 2001–2020, the Theil–Sen median trend analysis
and linear regression analysis were first adopted to reveal the features of vegetation and
climate changes at both pixel and regional scales, and then partial correlation analysis was
used to explore the relationships between vegetation and climatic factors, and finally resid-
ual trend analysis was applied to separate the climatic and anthropogenic contributions to
vegetation changes in this study (Figure 2).
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Figure 2. The flowchart of methods. NDVI—normalized difference vegetation index; TEM—
temperature; PRE—precipitation; RAD—radiation.

2.3.1. Theil–Sen Median Trend Analysis with a Mann–Kendall Significance Test

The Theil–Sen median trend analysis was used to analyze the yearly trend of NDVI
or climatic variables (temperature, precipitation, radiation) at pixel scale, and the Mann–
Kendall test was used to detect the significance level of the changing trend. As a robust non-
parametric technique, this method is insensitive to outliers and missing noise values [53–55],
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so it has been widely employed for long time-series trend analyses, especially in vegetation
dynamic and climate change studies [14,15,56,57].

First, the slope of the Theil–Sen median was calculated by the Theil–Sen estimator:

Sx = Median
( xj − xi

j− i

)
, 2001 ≤ i < j ≤ 2020 (1)

where Sx is the median from the set of slopes of the NDVI or climatic variables time
series; xi and xj are the NDVI values or climatic variables of year i and year j, respectively.
Sx > 0 indicates an increasing trend, and Sx < 0 indicates a decreasing trend for the period
of 2001–2020.

Then, the significance of the trend was determined by the Mann–Kendall test:

S = ∑n−1
j=1 ∑n

i=j+1 sgn
(
xj − xi

)
(2)

sgn
(
xj − xi

)
=


1, xj − xi > 0
0, xj − xi = 0
−1, xj − xi < 0

(3)

δ(S) =
n(n− 1)(2n + 5)

18
(4)

Z =


S−1√

δ(S)
, S > 0

0, S = 0
S+1√

δ(S)
, S < 0

(5)

where n is the length of years; sgn is a sign function. Z value, calculated by S statistics, was
used to test the significance of the changing trend.

For a given significance level α, |Z| > Z1−α/2 denotes the changing trend of the time
series is significant [15,57]. This study selected α = 0.05 as the significance level to classify
the trend magnitude (Table 1).

Table 1. Trend magnitude classification of the Theil–Sen median trend analysis.

Sx Z Trend Magnitude

Sx > 0 |Z| > 1.96 Significant increase
Sx > 0 |Z| ≤ 1.96 Slight increase
Sx < 0 |Z| > 1.96 Significant decrease
Sx < 0 |Z| ≤ 1.96 Slight decrease

2.3.2. Linear Regression Analysis

The linear regression analysis based on the ordinary least-squares method was applied
to detect the overall interannual trend of NDVI during 2001–2020 at regional scale. The
slope coefficient was calculated as below:

slope =
n×∑n

t=1 t× NDVIt − (∑n
t=1 t)(∑n

t=1 NDVIt)

n×∑n
t=1 t2 − (∑n

t=1 t)2 (6)

where slope is the changing trend of NDVI; n is the number of years; NDVIt is the averaged
NDVI value of year t for the study area or eco-regions. The positive slope value indicates
an overall increasing trend and the negative slope value implies an overall decreasing trend
in the study period.
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2.3.3. Partial Correlation Analysis

Partial correlation analysis was performed to explore the degree of association between
every individual climatic factor (temperature, precipitation, or radiation) and monthly
NDVI while controlling the potential effects of the other two climatic variables. The partial
correlation coefficient can reflect a more intrinsic correlation compared with the simple
correlation coefficient by eliminating the interactive influences of climatic factors on vegeta-
tion, so the partial correlation analysis has been widely used to investigate climatic driving
forces on vegetation growth [11,15,24,36]. We used the “ppcor.test” function in the “ppcor”
package in software RStudio version 2023.03.0 to explore the partial correlations between
NDVI and each climatic variable. The calculation of the partial correlation coefficient was
as follows:

r2
ab,c∼p =

R2
a(b,c,...,p) − R2

a(c,...,p)

1− R2
a(c,...,p)

(7)

where rab,c~p is the partial correlation coefficient between variables a and b without the
influence of variables (c~p); Ra(b,c,. . .,p) is the Spearman correlation coefficient of regression
analysis between variable a and (b~p); Ra(c,. . .,p) is the Spearman correlation coefficient of
regression analysis between variable a and (c~p). The non-parametric Spearman’s rank
correlation has no assumptions of the distribution of variables, so the Spearman correlation
coefficient rather than the conventional Pearson correlation coefficient was used in this
study because the climatic variables may not be normally distributed. According to the
significance test, the partial correlation between NDVI and each climatic variable was
classified into four types: significant negative (SN), non-significant negative (NN), non-
significant positive (NP), and significant positive (SP).

In order to screen the dominant climatic factor driving vegetation change, the absolute
partial correlation coefficient values of the three climatic variables (temperature, precipita-
tion, radiation) were compared, and the climatic factor with the maximum absolute partial
correlation coefficient value was considered to have the greatest importance [58,59].

2.3.4. Residual Trend Analysis

Since both climate variations and human activities have tremendous impacts on vege-
tation in Guangdong Province [14,33,45], residual trend analysis was used to distinguish
the relative impacts of climate change and human activities on vegetation changes [38].
This method assumes that the unexplained variation in the model between vegetation
and climatic variables is attributed to anthropogenic activities [60]. In other words, this
assumption regards human activities as the only remaining cause except for climate change
in driving vegetation dynamics. Hence, the impact of human activities on vegetation
dynamics can be indirectly quantified by establishing a model between climatic variables
and vegetation indices and extracting the residual of the model. Heat, water, and light are
widely regarded as the three main climatic limitations for vegetation growth [17], and vege-
tation responds sensitively to monthly climate extremes in Guangdong Province [45]. Thus,
we selected temperature, precipitation, and radiation as climatic factors and established a
multiple linear regression model between monthly NDVI and climatic factors to predict
the climate-driven NDVI in this study. Then, the human-induced NDVI was calculated
by the model residual (NDVIres), which was the difference between the observed NDVI
(NDVIobs) and predicted NDVI (NDVIpre). The model was expressed as follows:

NDVIpre = α× TEM + β× PRE + γ× RAD + ε (8)

NDVIres = NDVIobs − NDVIpre (9)

where TEM, PRE, and RAD refer to the climatic factors of temperature, precipitation, and
radiation, respectively; α, β, γ, and ε refer to the model coefficients.



Remote Sens. 2023, 15, 5377 8 of 19

2.3.5. Relative Contribution under Various Scenarios

Based on the residual trend analysis as mentioned above, the impacts of climate
change and human activities on vegetation variations were separated and measured by
NDVIpre and NDVIres, respectively. The trends of both NDVIpre and NDVIres were then
analyzed by linear regression analysis. An increasing/decreasing trend of NDVIres indicates
positive/negative effects of human activities on NDVI improvement and so does the
NDVIpre. Thus, various scenarios based on the slopes of NDVIobs (slopeobs), NDVIpre (slopepre),
and NDVIres (sloperes) were developed to determine the relative contributions of climate
change and human activities in vegetation change [39] (Table 2).

Table 2. Relative contributions of climate change and human activities to vegetation change [39].

Vegetation Trend
Scenario Relative Contribution (%)

Contribution Classification
slopepre sloperes Climate Change Human Activity

Increase >0 <0 100 0 Climate change induced vegetation
improvement (CI).

(slopeobs > 0) <0 >0 0 100 Human activities induced vegetation
improvement (HI).

>0 >0 slopepre
slopeobs

× 100
sloperes
slopeobs

× 100
Both climate change and human
activities induced vegetation
improvement (BI).

Decrease <0 >0 100 0 Climate change induced vegetation
degradation (CD).

(slopeobs < 0) >0 <0 0 100 Human activities induced vegetation
degradation (HD)

<0 <0 slopepre
slopeobs

× 100
sloperes
slopeobs

× 100
Both climate change and human
activities induced vegetation
degradation (BD)

3. Results
3.1. Spatiotemporal Changes in the NDVI and Climatic Variables

The spatial pattern of yearly NDVI trends analyzed by the Theil–Sen median trend
analysis showed that an increasing trend was observed in most land areas (61.87% for
significant increase and 25.13% for slight increase) of Guangdong Province from 2001 to
2020 (Figure 3a). Areas with a decreasing NDVI trend were mainly concentrated in the PRD,
SG, and East MG eco-regions, in which the significant decrease trend (4.03%) primarily
happened in the PRD and East MG eco-regions, and the slight decrease trend (8.97%) chiefly
occurred in the SG eco-region.

Area statistics illustrated that NDVI trends varied greatly among eco-regions
(Figure 3b). Overall, the total area percentage of increased NDVI ranked as follows:
NG > MG > SG > PRD. The NDVI in approximately two-thirds of the MG (67.72%) and NG
(66.00%) eco-regions exhibited a significant increasing trend, and the proportion for the SG
and PRD eco-regions was 49.71% and 37.43%, respectively. In contrast, many more areas
(14.30%) in the PRD eco-region experienced a significant NDVI decrease than in the other
eco-regions, while this percentage was only 1.08% for the NG eco-region. The significant
decrease areas for the MG and SG regions were comparable, accounting for 4.30% and
3.76%, respectively.

From the result of linear regression analysis, the regional area-averaged NDVI gen-
erally presented a significant increasing trend (p < 0.01, n = 20) during 2001–2020 for the
whole study area but with different changing rates and processes for the four eco-regions
(Figure 3c). The changing rate of interannual NDVI was highest for the MG and NG
eco-regions with a similar rate of 0.0030–0.0031 per year and the minimum NDVI value
appeared in 2004. The SG eco-regions had a slightly lower changing rate at 0.0027 per
year, and the NDVI increased sharply from 2003 but fluctuated between 2005 and 2014
and increased again after 2014. The increasing rate for the PRD eco-region was lowest at
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0.0015 per year with the NDVI increasing between 2006–2016 but decreasing before 2006
and after 2016.
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During 2001–2020, temperature, precipitation, and radiation displayed diverse fluc-
tuations but non-significant yearly trends in most areas (Figure 4). A warming trend was
observed in most areas especially for several regions in the southern PRD, northern NG
and eastern East MG eco-regions with more evident warming, but only a small region
exhibited a significant changing trend (Figure 4a). Wetting mainly happened in most of the
NG and PRD eco-regions, while the majority of the MG and SG eco-regions became drier,
particularly for some regions at an annual decreasing rate of more than 16 mm (Figure 4b).
Radiation decreased in the whole study area except for a few areas in the SG eco-region
with a slightly increasing trend, and the significant changing trend was merely observed in
a small part of the central NG eco-region (Figure 4c).



Remote Sens. 2023, 15, 5377 10 of 19Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 4. Spatial patterns of trends for temperature (TEM, (a)), precipitation (PRE, (b)), and radiation 
(RAD, (c)) in Guangdong Province from 2000 to 2020. The four eco-regions: NG—the northern 
Guangdong eco-region, MG—the middle Guangdong eco-region, SG—the southern Guangdong 
eco-region, PRD—the Pearl River Delta eco-region. 

3.2. Relationships between Climatic Variables and the NDVI 
The partial correlation between the monthly NDVI and climatic factors (temperature, 

precipitation, and radiation) was mapped to determine the impacts of climate change on 
vegetation variations (Figure 5). A significant positive correlation between the NDVI and 
temperature was observed in most of the study area (80.73%), while the area showed a 
significant negative correlation only accounting for 0.32%. Regions with non-significant 
correlations between the NDVI and temperature were mainly scattered in the PRD and 
West MG eco-regions (Figure 5a). Contrary to temperature, the impact of precipitation on 
the NDVI was not significant in most areas (71.63%). The NDVI and precipitation showed 
significant positive correlations in the SG eco-region and parts of the West MG and north-
ern NG eco-regions, whereas the NDVI and precipitation showed significant negative cor-
relations in the East MG and eastern NG eco-regions (Figure 5b). Similar to PRE, regions 
showing a significant negative correlation between the NDVI and radiation were mainly 
distributed in the East MG eco-region. There was a noticeable tendency of transition from 
significant negative correlation to significant positive correlation between the NDVI and 
radiation along the east-west gradient, except for the negative correlation at the southern 
edge of the SG eco-region. The proportion of regions presenting a significant positive cor-
relation between the NDVI and radiation was 30.35%, which was widely situated in the 
PRD, West MG, southern NG, and northern SG eco-regions (Figure 5c). 

 
Figure 5. Spatial distributions of partial correlations between NDVI and temperature (TEM, (a)), 
precipitation (PRE, (b)), and radiation (RAD, (c)). The significance of the partial correlation: SN—
significant negative correlation, NN—non-significant negative correlation, NP—non-significant 
positive correlation, SP—significant positive correlation. The four eco-regions: NG—the northern 
Guangdong eco-region, MG—the middle Guangdong eco-region, SG—the southern Guangdong 
eco-region, PRD—the Pearl River Delta eco-region. 
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3.2. Relationships between Climatic Variables and the NDVI

The partial correlation between the monthly NDVI and climatic factors (temperature,
precipitation, and radiation) was mapped to determine the impacts of climate change on
vegetation variations (Figure 5). A significant positive correlation between the NDVI and
temperature was observed in most of the study area (80.73%), while the area showed a
significant negative correlation only accounting for 0.32%. Regions with non-significant
correlations between the NDVI and temperature were mainly scattered in the PRD and
West MG eco-regions (Figure 5a). Contrary to temperature, the impact of precipitation
on the NDVI was not significant in most areas (71.63%). The NDVI and precipitation
showed significant positive correlations in the SG eco-region and parts of the West MG and
northern NG eco-regions, whereas the NDVI and precipitation showed significant negative
correlations in the East MG and eastern NG eco-regions (Figure 5b). Similar to PRE, regions
showing a significant negative correlation between the NDVI and radiation were mainly
distributed in the East MG eco-region. There was a noticeable tendency of transition from
significant negative correlation to significant positive correlation between the NDVI and
radiation along the east-west gradient, except for the negative correlation at the southern
edge of the SG eco-region. The proportion of regions presenting a significant positive
correlation between the NDVI and radiation was 30.35%, which was widely situated in the
PRD, West MG, southern NG, and northern SG eco-regions (Figure 5c).
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Figure 5. Spatial distributions of partial correlations between NDVI and temperature (TEM, (a)),
precipitation (PRE, (b)), and radiation (RAD, (c)). The significance of the partial correlation: SN—
significant negative correlation, NN—non-significant negative correlation, NP—non-significant
positive correlation, SP—significant positive correlation. The four eco-regions: NG—the northern
Guangdong eco-region, MG—the middle Guangdong eco-region, SG—the southern Guangdong
eco-region, PRD—the Pearl River Delta eco-region.
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The absolute values of the partial correlation coefficients between temperature, precipi-
tation, radiation and the NDVI were compared to determine the dominant climatic factor in
driving vegetation changes (Figure 6). The area percentage of the three dominant climatic
factors was calculated for each eco-region and the whole study area. Results indicated
that vegetation was predominantly influenced by temperature (73.42%), especially for the
East MG and northern NG eco-regions. Areas with precipitation as the dominant factor
were mainly distributed in the southern SG eco-region, accounting for 32.98% of the SG
eco-region, while the impact of precipitation on the other three eco-regions was relatively
small. Vegetation dynamics in the northern PRD, West MG, southern NG, and northern SG
eco-regions were primarily dominated by radiation.
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Figure 6. Spatial pattern (a) and area percentage (b) of the dominant climatic factor in driving
NDVI variations for eco-regions. The three climatic factors: TEM—temperature, PRE—precipitation,
RAD—radiation. The four eco-regions: NG—the northern Guangdong eco-region, MG—the middle
Guangdong eco-region, SG—the southern Guangdong eco-region, PRD—the Pearl River Delta eco-
region. GD—Guangdong Province.

3.3. Contributions of Climate Variations and Human Activities to NDVI Change

Vegetation responded differently to climate change and human activities based on
their relative contribution rates calculated by the residual trend analysis (Figure 7). For
climate change, regions with a negative contribution to the NDVI were mainly distributed
in the southern NG, southern and northern West MG, eastern East MG, massive areas of
the PRD, and a few areas of the SG eco-regions, accounting for 31.18% of the study area,
against 68.82% for the regions with a positive contribution (Figure 7a). The contribution of
climate change for most areas was small (−25% < contribution rate < 25%), while regions
with a relatively large contribution (contribution rate < −50% or contribution rate > 50%)
were scattered sparsely throughout all the eco-regions with an area proportion of only
1.57%. For human activities, regions with a negative contribution to the NDVI increase
merely occupied 8.32%, and most (87.74%) of these regions were concentrated in the PRD
and eastern East MG eco-regions with a contribution rate of less than −75% (Figure 7b).
Conversely, human activities in most areas (91.68%) exhibited a positive contribution,
in which 96.98% presented a high contribution rate (>75%). Overall, human activities
dominated (contribution rate < −50% or contribution rate > 50%) 98.43% of the vegetation
changes in the whole study area.
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Figure 8. Contribution types of climate change and human activities to NDVI changes. (a) Spatial
pattern of the contribution types; (b) Area percentage of the contribution types among eco-regions.
The label with a percentage less than 1% was hidden in panel (b). The six contribution types:
CI—climate change induced vegetation improvement, HI—human activities induced vegetation
improvement, BI—both climate change and human activities induced vegetation improvement,
CD—climate change induced vegetation degradation, HD—human activities induced vegetation
degradation, BD—both climate change and human activities induced vegetation degradation. The
four eco-regions: NG—the northern Guangdong eco-region, MG—the middle Guangdong eco-region,
SG—the southern Guangdong eco-region, PRD—the Pearl River Delta eco-region.

The contribution type of climate change and human activities to vegetation dynamics
was classified under various scenarios (Table 2, Figure 8). Vegetation increase or decrease
caused by climate change only happened in a few regions, accounting for 0.56% and 0.14%



Remote Sens. 2023, 15, 5377 13 of 19

of the study area, respectively. Human-induced vegetation improvement (23.42%) mainly
occurred in the NG and MG eco-regions, while human-induced vegetation degradation
(4.71%) was concentrated in the PRD and eastern East MG eco-regions. Vegetation varia-
tions in most (68.26% for NDVI increase and 2.92% for NDVI decrease) of the study area
were influenced by both climate change and human activities. The area proportion of
vegetation improvement caused by both climatic and anthropogenic contributions was
highest in all four eco-regions, occupying 64.71%, 69.62%, 79.19%, and 60.04% of the NG,
MG, SG, and PRD eco-regions, respectively. In contrast, regions of vegetation degradation
induced by the combination of climate change and human activities had a relatively small
area and were distributed dispersedly, except for the concentrated distribution in the PRD
eco-region.

4. Discussion
4.1. Vegetation Trends and Their Climatic Drivers

This study found that vegetation growth in most areas of Guangdong Province dis-
played an increasing trend during 2001–2020, and the decreasing trend was mainly con-
centrated in the urban areas and peripheries in the PRD and eastern East MD ecoregions
(Figure 3), in agreement with previous studies [9,33]. However, these studies demonstrated
a non-significant increasing or even decreasing trend of vegetation greenness in most area
of northern Guangdong [9,33], contrasting with our results that vegetation improved signif-
icantly in the NG eco-region. This is partially due to the more extended study period of our
study (2001–2020) compared with the prior work (2001–2013). Our results showed that the
NDVI in the NG eco-region fluctuated highly before 2011, and has sharply increased in re-
cent years (Figure 3c). Another possible reason is the difference in zonation. The eco-regions
in this study were delineated based on natural conditions, while previous studies used
the administrative division map. Thus, the boundary definition of northern Guangdong
(NG eco-region in this study) was different. The vegetation trend in many regions of the
northern NG eco-region in this study was not significant either, similar to these previous
studies. The results of this study indicated that trends of climatic variables (temperature,
precipitation, radiation) and their effects on vegetation changes were spatially different
(Figures 4 and 5). First, significant positive correlations between the NDVI and temperature
were observed across most areas (Figure 5a) and temperature was the dominant climatic
factor for 73.42% of the study area (Figure 6), especially the northern NG and East MG
eco-regions, in line with previous studies [9,33]. These regions are mostly mountainous
areas with higher latitudes and elevations, and the temperature is relatively low in com-
parison with other eco-regions (Figure 1d), so vegetation growth is more sensitive to low
temperatures [61]. The increasing temperature is widely believed to prolong the growing
season with an earlier spring and a delayed autumn [62,63], thus promoting vegetation
greenness in these heat-limited regions. Second, radiation had a predominant influence on
vegetation in most areas of the PRD, West MG, and southern NG eco-regions (Figure 6),
where the NDVI and radiation were significantly and positively correlated (Figure 5c). The
deficiency of sunshine time may be the reason why vegetation tends to be limited by light
in these regions (Figure 1f). Conversely, negative effects of radiation on vegetation were
extensively detected in the East MG eco-region and the southern edge of the SG eco-region.
This is possibly because of photoinhibition as sufficient radiation exists in these regions and
strong light inhibits vegetation photosynthesis [64]. Last, compared with the widespread
impacts of temperature and radiation on vegetation variations, regions with precipitation
as the dominant climatic factor only accounted for 6.42% of the study area (Figure 6).
Since precipitation in Guangdong Province is usually abundant, drought is generally not
the stressor of vegetation growth, which was also concluded in a global study showing
that tropical forests are highly sensitive to temperature and cloudiness rather than water
availability [19]. The influence of precipitation on vegetation showed distinct north-south
patterns with negative impacts in most areas except for the SG eco-region (Figure 5b), which
was also observed in previous studies [9,45]. Specifically, significant negative correlations
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between the NDVI and precipitation were mainly distributed in the eastern NG and East
MG eco-regions. This is presumably because these regions have high susceptibility to
geohazards [65], and the excessive precipitation is likely to reduce photosynthetic activity
via aggravating soil erosion and even triggering floods [66]. In contrast, the significant
positive effect of precipitation on vegetation greenness was primarily situated in the SG
eco-region. The precipitation in the SG eco-region is relatively low with a decreasing trend
(Figures 1e and 4b), thus the drier environment may cause stress on vegetation growth. In
addition, the SG eco-region has the best heat and light resources in the study area, and the
persistent high temperature and radiation may accelerate evapotranspiration and exhaust
soil moisture, thereby causing adverse impacts on vegetation [67–69]. Precipitation is
believed to alleviate these unfavorable effects and promote vegetation growth [45,70].

4.2. The Dominant Role of Anthropogenic Activities in Vegetation Change

As Guangdong Province belongs to the warm-humid subtropical climate region with
relatively high temperature, abundant precipitation, and sufficient radiation (Figure 1) and
these climatic variables did not change significantly in most areas over 2001–2020 (Figure 4),
vegetation dynamics are largely independent of climate change. Instead, anthropogenic
activities play a dominant role in vegetation variations (Figures 7 and 8), also supported by
other studies [7,9,33,36], suggesting that the residual trend analysis is an effective method
in the study area.

This study indicated that 98.43% of vegetation changes were predominantly induced
by human activities with the absolute contribution rate >50% (Figure 7), which is much
higher than the value of 79.40% in a previous work [33]. One possible reason is that
our results included the contribution of both climate change and human activities just
with a higher contribution rate of human activities than climate change. In contrast, the
previous work only referred to the explanation rate of human activities. Additionally, the
previous work took LUCC to represent human activities, which might neglect human-
related activities without land use conversions and thus underestimate the anthropogenic
contribution to vegetation changes. By comparison, we used the residual trend analysis in
this study which assumed that vegetation variations were induced by human activities after
excluding the effect of climate change. Human activities have both negative and positive
effects on vegetation greenness. Land cover changes caused by urbanization are widely
regarded as the main reason for vegetation degradation in Guangdong province [9,14,33,71].
Our results also found that the NDVI decreased around the urban areas, particularly for
the PRD eco-region and the eastern part of the East MG eco-region (Figure 3a), where
urban expansion mainly occurred [47]. Apart from urban regions, vegetation in most other
areas was improved by human activities, which is principally due to a series of ecological
protection and restoration programs since 1999 [72]. In this study, we found that NDVI
had the largest increasing trend in the MG eco-region (Figure 3c). This is probably because
conversions from croplands and grasslands to forests via afforestation mainly happened
in eastern and western Guangdong [9], and fast-growing forest species were selected in
these large-scale reforestation programs [73], which significantly contributed to vegetation
greenness. In addition, urban greening policies [26], the urban heat island effect [74], the
fertilization effect of carbon dioxide [75], and nitrogen deposition [76] may also promote
vegetation enhancement in built-up areas. thus, vegetation changes were more complicated
in the PRD eco-region (Figure 3c).

4.3. Uncertainties and Challenges

Our findings highlighted the predominant role of human activities in vegetation
change in Guangdong Province, but some limitations and uncertainties remain. The resid-
ual trend analysis used in this study assumes that vegetation changes are driven by either
climate change or human activities. However, some situations may conflict with this as-
sumption including (1) the difficulty in accurately quantifying the relationship between
climatic variables and vegetation indices, and (2) where other factors rather than climate
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change and human activities are the controlling factors of vegetation variations. Firstly,
the residual trend analysis based on the multiple linear regression model has been well
applied to disentangle the relative contributions of climate change and human activities to
vegetation dynamics in arid and semiarid regions [39,40,42,43], where vegetation growth
is usually water-limited and linearly correlated to precipitation change. However, vege-
tation growth in warm and humid regions such as Guangdong Province is generally not
inhibited by climatic conditions and the response of vegetation to climate change may
be nonlinear [77,78]. The multiple linear regression model may not be able to accurately
reflect the complicated relationship between vegetation responses and climate variations.
A recent study attempted to combine a nonlinear model with residual trend analysis to
better reveal the nonlinear vegetation responses to climatic variables [41]. Thus, the method
applicability and selection need more exploration based on a deeper understanding of
vegetation–climate relationships. Moreover, other factors such as atmospheric carbon
dioxide concentration [62], nitrogen deposition [76], soil condition [25], agricultural inten-
sification [26], and exotic plant invasion [79] may also largely affect vegetation greenness
and productivity. For example, the invasion of the exotic grass red brome in the north-
eastern region of the Mojave Desert played a vital role in vegetation greening on post-fire
landscapes [79]. The carbon dioxide fertilization effects explained most of the greening
trends in the tropics [62]. Hence, the contribution of human activities to vegetation changes
separated by the residual trend analysis is likely to be overestimated when there are other
important factors besides climate change and human activities. Additionally, the lag effect
of climate change on vegetation growth was not considered in this study but has been
considered in many other studies [9,58,80]. However, these studies only analyzed the
lag time of climatic influences on vegetation, but how to integrate the lag effect into the
attribution analysis of vegetation dynamics is still a challenging work.

5. Conclusions

Based on data of the NDVI time series and climatic variables (temperature, precip-
itation, radiation) during 2001–2020, this study analyzed the spatiotemporal patterns of
vegetation trends, explored the response of vegetation to climate variations, and distin-
guished the relative climatic and anthropogenic contribution to vegetation dynamics in
Guangdong Province of South China. Vegetation enhancement happened in most areas,
while vegetation degradation was mainly concentrated around urban areas. Vegetation
trends varied largely among the four eco-regions in Guangdong Province with the high-
est rate of change in the MG eco-region and lowest rate of change in the PRD eco-region.
Changes in temperature, precipitation, and radiation presented distinct spatial patterns over
the past 20 years, but their changing trends were not statistically significant in most areas.
Vegetation responded differently to climate change with significant positive correlations to
temperature in most areas, and negative correlations in the east but positive correlations in
the west were generally observed between vegetation and both precipitation and radiation.
Temperature was the dominant climatic factor in most areas, while regions with radiation
or precipitation as the dominant factor were mainly concentrated in the center-west or the
southern edge, respectively. The contribution of climate change to vegetation variations
was much smaller compared with human activities. Human-induced vegetation greening
widely happened in the NG and MG eco-regions, while human-induced vegetation brown-
ing was concentrated in the PRD and eastern East MG eco-regions. Vegetation dynamics
in most areas were influenced by both climate change and human activities, although the
contribution rate of human activities was much higher than climate change. The results of
this study highlight the effectiveness of ecological policies in vegetation restoration, which
is of great significance for future ecosystem management and conservation.
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