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Abstract: Recently, deep learning-based object detection techniques have arisen alongside time-
consuming training and data collection challenges. Although few-shot learning techniques can boost
models with few samples to lighten the training load, these approaches still need to be improved
when applied to remote-sensing images. Objects in remote-sensing images are often small with an
uncertain scale. An insufficient amount of samples would further aggravate this issue, leading to
poor detection performance. This paper proposes a Gaussian-scale enhancement (GSE) strategy and
a multi-branch patch-embedding attention aggregation (MPEAA) module for cross-scale few-shot
object detection to address this issue. Our model can enrich the scale information of an object and
learn better multi-scale features to improve the performance of few-shot object detectors on remote
sensing images.

Keywords: few-shot object detection; meta learning; remote sensing images; scale information

1. Introduction
1.1. Background

Thanks to the development of aerospace and sensor technologies, higher-resolution
remote sensing images are now available through satellites [1] or unmanned aerial ve-
hicles [2,3]. As remote sensing has great potential in many fields (e.g., disaster mon-
itoring [4–6], environmental monitoring [7,8], urban planning [9,10], and climate ob-
serving [11]), object detection on higher-resolution remote sensing images has become
increasingly important.

In recent decades of research, object detection has been widely studied in the field
of computer vision and has been gradually applied to remote sensing images. In earlier
years, researchers attempted to use various detection theories, such as template-matching-
based methods [12,13], prior knowledge methods [14], object-based image analysis (OBIA)-
based methods [15,16], and machine learning-based methods [17–21] on remote sensing
images. Since deep learning technologies have proven their excellent performance in object
detection [22,23], people soon adopted these approaches to remote sensing images [20,24]
and achieved good results. However, the high performance of deep learning-based models
depends on a sufficient amount of training samples [25,26]. Since most remote sensing
equipment like airplanes or satellites is expensive, remote sensing images are costly to
collect [27]. Labeling small and dense targets on remote sensing images is therefore also
challenging [28,29]. Taking advantage of deep learning models with a few remote sensing
samples would be a desirable solution.
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1.2. Related Work
1.2.1. Object Detection on Remote Sensing Images

Before deep learning became widespread, many researchers focused on template-
matching-based remote sensing image object detection. Kim, T. et al. [12] used rigid
templates to detect some specific objects with simple shapes and small sizes, such as roads.
Lin, X. et al. [13] proposed a novel semi-automatic scheme based on template matching and
Euclidean distance transform to extract road strips in urban areas. Prior knowledge-based
methods are another solution that defines the applicable rules and knowledge for a target of
interest. Akcay et al. [14] utilized spectral, structural, and contextual information to detect
buildings with complex shapes and roof structures. With the availability and widespread
use of sub-meter images, OBIA-based methods [15,16,30,31] have also emerged as a new
remote sensing image detection method. The OBIA-based method starts by segmenting
the image into uniform regions representing relatively uniform groups of pixels. It then
extracts object features from the segments and feeds them to a classifier for classification.

Due to the superior performance of data-based feature extraction [32], many re-
searchers tried to use deep learning-based methods to automatically learn features in the
image to detect remote sensing images. Li et al. [20] proposed a multi-angle anchor module
based on Faster region-based convolutional neural networks (R-CNNs) [22] to solve the
problem of accuracy degradation in rotational change. Gong Cheng et al. [33] proposed an
end-to-end cross-scale feature fusion method to obtain a more powerful multi-level feature
representation, effectively improving detection accuracy. Zhipeng Deng et al. [34] added
an inception module to increase the variety of receptive field sizes in the feature extractor
and designed a multi-scale object proposal network that can detect multi-class objects in
remote sensing images with large-scale variability. Xiaoliang Qian et al. [35] proposed a
multi-level features fusion module to fuse region-of-interest proposals at different levels of
feature pyramid networks (FPN) [36], which can make full use of the multi-level features.
Unlike the methods mentioned above, which did not consider the few-shot learning cases,
our method uses a meta-learning framework to boost the deep learning detector with a
few samples.

1.2.2. Few-Shot Object Detection

Few-shot object detection is an essential branch in the field of object detection. An ob-
ject detection task aims to develop computational models and techniques that simultane-
ously provide object categories and locations [28]. Faster R-CNN [22] is a classical two-
stage detector in object detection. In contrast, single-stage detectors, such as YOLO [23,37],
SSD [38], and RetinaNet [39], tend to have faster inference speeds but poorer accuracy
performance. A few-shot object detection task is a specific task given only a small number of
samples with annotations. Karlinsky, L. [40] proposed the first few sample target detection
model called RepMet based on Faster R-CNN. It performs classification by measuring the
distance between regions of interest and class representative vectors. Since then, the re-
search on few-shot object detection has attracted extensive attention, especially the method
based on meta-learning.

Meta-learning methods, which can learn category-representative vectors through
meta-learners and perform feature re-weighting for prediction, have been suggested as one
strategy to overcome the few-shot learning challenge [26]. The key idea of meta-learning is
to improve the learning ability over time or equivalently. For example, META-YOLO [41]
included a meta-feature extractor and max-pooling to obtain the class feature vectors of
the support images and then used channel-level multiplication to re-weight the query
image and class feature vectors. B. Li et al. [42] introduced a max-margin loss and feature
disturbance module in the meta-learner to obtain a more appropriate inter-class distance
and to improve the accuracy of detecting new categories. Hu, Hanzhe et al. [43] pointed out
that the previous meta-learning network used a global pooling operation to lose detailed
local context. They used global attention fusion for feature re-weighting to fully use the
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supporting image’s information. Guangxing Han et al. [44] first attempted to design a
novel Transformer-based backbone network for few-shot object detection.

The transfer learning method [45] is also a solution to the few-shot problem, which
mainly relies on fine-tuning from the source dataset to the target dataset and does not
require training from scratch. Wang, X. et al. [46] adopted a two-stage fine-tuning strategy,
which achieved good detection accuracy by freezing the backbone network weights and
only fine-tuning the last layer of the detector head during the fine-tuning stage. Jiaxi Wu
et al. [47] proposed a positive sample enhancement strategy to solve the scale sparsity
problem. Qiao, Limeng et al. [48] proposed a simple fine-tuning-based network named
Decoupled Faster R-CNN (DeFRCN), which alleviates the problem of data scarcity by
adding multi-task decoupling and multi-stage decoupling modules. Sun, Bo et al. [49]
proposed few-shot object detection via contrastive proposal encoding. This method can
achieve more robust object representations through contrastive learning, which helps to
improve the classification accuracy of detected objects.

The above methods were designed for datasets with natural scenes. In contrast,
remote sensing datasets have dense and small targets with a wide range of size variations.
This paper focuses on the cross-scale and the problem of a sparse distribution of scale
information for remote sensing object detection.

1.2.3. Few-Shot Object Detection on Remote Sensing Images

Considering the characteristics of remote sensing datasets, researchers have proposed
tentative designs for few-shot object detection algorithms and achieved remarkable results.
Li, Xiang et al. [50] proposed the first few-shot object detection algorithm on remote
sensing images, adding a multi-scale architecture based on META-YOLO to adapt to the
scale change in remote sensing objects. Zhao, Zhitao et al. [51] proposed a path-aggregation
module to aggregate features from all feature levels and to alleviate the problem of scale
sparsity. Wang, Yan et al. [52] designed a context information refinement module to learn
discriminative context features, which can detect objects of different scales and among
clutter such as in complex backgrounds. Zhang Yuchen et al. [29] proposed an adaptive
global similarity module, which introduces spatial information and computes the global
similarity between support instances and query instances to alleviate the problem of
significant appearance variations in the same category.

Most of these methods used a multi-layer pyramid structure to produce semantic
feature maps of different sizes to enrich the scale space of features. However, they do not
change the scale distribution of the data, which is crucial to few-shot object detection in
remote sensing images. To address this issue, we propose a framework to enrich the scale
information of the data by constructing a scale space for the targets.

1.3. Problems and Contributions

This paper studies the scale information distribution of remote sensing images. When
the amount of data used for training is limited, the scale information of remote sensing
images is insufficient. Figure 1 shows an example. We randomly chose n (n = 5, 10, 20)
images and counted the scale distribution of the DIOR remote sensing dataset [28].The red
columns represent the scale distribution of a sufficient amount of data, and the blue ones
represent the scale distribution of a small number of randomly selected samples. There is a
vast difference between the scale distribution of the five randomly selected samples and
the case with sufficient data. As the number of instances increases, the difference between
the two distributions gradually decreases. A typical case in remote sensing images is that
the scale information for many instances in one image is similar (Figure 1c). The lack of
scale variety affects the performance of the detector. Furthermore, cross-scale is a common
problem in object detection of remote sensing images. Despite extensive studies in previous
work, this remains a challenging problem [36,47,50] in few-shot object detection tasks.

To address these problems, we propose a few-shot object detection method on remote
sensing images, design a Gaussian-scale enhancement strategy, and add a multi-scale
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attention module. To tackle the problem of sparse scale distribution with few training
samples, we proposed the Gaussian-scale enhancement strategy, which can enrich the scale
information of the target. In the MPEAA module, we use multi-scale patch embedding to
obtain the feature map of different receptive fields and calculate the attention. Furthermore,
the multi-path aggregation method we designed can learn better multi-scale features.

(a) 5-shot

(b) 10-shot

(c) 20-shot

Figure 1. An example of scale distribution of windmills in the DIOR dataset under a few shots [28].
The red columns and left axes indicate the scale distribution for sufficient samples, while the blue
ones and the right axes describe the cases when the sample number is insufficient. (a) The distribution
comparison under five shots from three randomly selected images; (b) the distribution comparison
under ten shots from five randomly selected images; (c) the distribution comparison under twenty
shots from nine randomly selected images.

Our main points of contribution are as follows:

• We propose a Gaussian-scale enhancement strategy to enrich scale information with
limited training data. The strategy can enrich the scale information of a target by
constructing a Gaussian-scale space for a small sample of targets and can feed it into
the network for training to improve the performance of detectors.

• We propose a multi-branch patch-embedding attention aggregation module with
meta-learning. We use multi-scale patch embedding to represent fine and coarse fea-
tures effectively. Multi-branches perform feature re-weighting based on Transformer
attention. The resulting features are aggregated, which can better learn multi-scale
features to alleviate the cross-scale problem and improve the performance of detecting
new classes of targets.



Remote Sens. 2023, 15, 5372 5 of 19

• We experimentally demonstrate the improved effectiveness of our method on the
DIOR [28], NWPU VHR-10 [53–55], and DOTA [56–58] datasets. Our method outper-
forms the state-of-the-art methods on both datasets.

2. Methods

Our model adopts a meta-learning-based architecture [41–44] for few-shot object
detection. Similarly to other work, our method contains the support and query branches.
The support branch is responsible for extracting the class information, and the query branch
is responsible for extracting the features of the detected images. Following the definition of
meta-learning [41], we re-weighted the query features with the support features and then
fed the results into the subsequent detection head network. As mentioned in Section 1,
the object-scale variety is affected by fewer samples. Thus, we propose a Gaussian-scale
enhancement strategy which uses Gaussian convolution to enrich the scale information of
supporting images.

Query features use three different sizes of patch embeddings for encoding. The output
of the query branch features patch embeddings of different sizes. We used the self-attention
method in the Transformer for re-weighting features and then fused the multi-branch
outputs in a pyramidal manner to obtain a feature map containing multi-scale information.
The feature maps were fed into the RPN network to generate proposal boxes related to
the supported feature categories. Then, we used region of interest (RoI) align [59] to crop
out the feature proposal regions and to fine-tune the regression box in the second stage
to obtain the detection result. Our loss function mainly consists of RPN loss and head
loss [22]. The RPN loss and head loss include classification loss and regression loss. Our
overall architecture is shown in Figure 2. In the following subsections, we first introduce
the research background, including the problem definition of few-shot object detection and
the construction process of the scale space in Section 2.2. Next, we illustrate the Gaussian-
scale enhancement strategy and the multi-branch patch-embedding module based on the
Transformer architecture design in Sections 2.2 and 2.3.

Figure 2. Overview of the proposed method. The method inherits a meta-learning framework [41–44]
with a two-branch structure. We applied a Gaussian-scale enhancement (GSE) strategy to the image
categories in the support branch. The role of the Gaussian Convolution module is to construct a
Gaussian-scale space and to enrich the scale information on the support image. Then, we used a
multi-branch patch-embedding attention aggregation (MPEAA) module for feature re-weighting.
Finally, we fed the re-weighted features to the region proposal network (RPN) network and the
detection head to obtain the object categories and locations.

2.1. Research Background

First, we explain the problem setting of few-shot object detection [50]. Few-shot target
detection means learning a detection model from a base class dataset that can detect targets
of a new class. The few-shot target detection tasks usually require only a small number of
annotated new class samples. There are sufficient samples for model training for base class
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targets to gain prior knowledge, while new class targets have only limited samples. Few-
shot object detection can learn meta-knowledge from the base class dataset and apply it
generously to new class targets. This setting is standard in real-world application scenarios
where a large-scale dataset covers a limited number of classes. When a new class of targets
needs to be detected, it is costly to re-collect a large amount of data for training.

We followed the general settings for few-shot object detection on remote sensing
images [50,52]. The dataset was divided into two parts by category, one containing the base
category Cbase with a large amount of data and the other containing the novel category
Cnovel with a small amount of sample data. There was no intersection between Cbase and
Cnovel. Let us define I as an image and Y = {(bn, yn)}N as a list of N objects in I. bn ∈ R4

is the bounding box of the nth instance, and yn ∈ {0, 1}|Cbase ∪Cnovel | denotes an associated
one-hot label encoding. (I, Y) is a sample in Dbase ∪ Dnovel.

In accordance with meta-learning-based object detection [50,52], we constructed sev-
eral episodes as input to the model. Each episode consisted of a set of supporting images
and a query image. The supporting images contained K annotated objects per class for the
K-shot few-shot object detection setting. The training process of few-shot object detection
contained two steps. First, we constructed episodes with Cbase to train the network and
learned prior knowledge from Cbase. Second, we used several episodes composed of Cbase
and Cnovel to fine-tune the network so that the network can detect novel categories.

Scale-space theory [60] is a classic theory in computer vision. The scale space repre-
sents the scale range of an object. Koenderink [60] and Lindeberg [61] have shown that,
under various reasonable assumptions, the Gaussian function is the best candidate for a
scale-space kernel [62]. Following scale-space theory, we can construct a scale space by
convolving the target object image with a series of Gaussian filters with different parame-
ters. This operation can produce images at different scales, efficiently supporting the target
object’s scale variety. The calculation process is as follows:

gσ(x, y) =
1

2πσ2 e−(x2+y2)/2σ2
(1)

fσ(x, y) = gσ(x, y) ∗ f (x, y) (2)

where x, y denote the pixel positions of the 2D image; σ is the scale parameter in terms
of the standard deviation of the 2D Gaussian filter; f (x, y) denotes a 2D image; gσ(x, y)
denotes a Gaussian filter; and ∗ represents a convolution operation.

Constructing a scale space for a certain object can enrich its scale information without
affecting the texture and shape information. The scale-invariant feature [63] is defined as
an unchangeable feature even though its object-scale changes [64]. Scale-invariant feature
transform (SIFT) [62] extracts scale-invariant features from a scale space generated by
Gaussian filters. SIFT can perform key point matching well, which illustrates that a scale
space image generated by the Gaussian filter will retain key information about the target.
Following this idea, we used Gaussian kernels to construct a scale space to train our meta-
learning object detection network and to enrich the scale information while retaining the
texture and shape information of the target objects.

2.2. Gaussian-Scale Enhancement Strategy

Inspired by the scale-space theory [60,63], we designed a Gaussian-scale enhance-
ment strategy that can be applied to support branch learning. First, we cropped vari-
ous objects through an annotation frame and resized the cropped image into four sizes
{642, 1282, 2562, 5122}. Then, we used Gaussian convolution kernels of different scale pa-
rameters σ to perform convolution on these four scaled images.

fσi (x, y) = gσi (x, y) ∗ f (x, y) (3)
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σ = 0.3 ∗ ((ksize− 1) ∗ 0.5− 1) + 0.8 (4)

Image processing library OpenCV provides Formula (4) for the adaptive calculation of
σ. ksize represents the size of the convolution kernel, which is taken as odd numbers. We
take ksize with 3, 5, 7, and 9, respectively, and obtain the value of σi = {0.8, 1.1, 1.4, 1.7}.

The results obtained with the original image construct a scale space for this class of
targets, as shown in Figure 3. After obtaining images of object at various scales in the scale
space, we inputted them into the network for training. Augmenting the new category scale
distribution, we obtained support image representations with richer scale information.

Figure 3. A Gaussian-scale space constructed for a specific instance by performing a resize operation,
followed by Gaussian filtering of different intensities.

Next, we randomly selected one image at each size in the entire scale space as the
input to the network support branch. Since the inputs contain different sizes, we designed
a multi-level support feature aggregation (MSFA) module for scale fusion, as shown in
Figure 4. The support images were input into the backbone network, which had the multi-
scale feature maps of FPN {P2, P3, P4, P5, P6}. For the given support images of different
sizes {S1 : 642, S2 : 1282, S3 : 2562, S4 : 5122}, we selected multi-scale feature maps of FPN
as the output {P2(S1), P3(S2), P4(S3), P5(S4)}. The four feature maps had the same size. We
concatenated (Concat) them and then used two convolutional layers for feature fusion.

Xs = Conv(Conv(Concat(P2(S1), P3(S2), P4(S3), P5(S4)))) (5)

where Conv() denotes a standard convolution operation in which the convolution
kernel size is 1× 1. Furthermore, Concat() represents the channel-level concatenation. We
can obtain the final support class representatives Xs through Equation (5).

Figure 4. Detail of the multi-level support feature aggregation module (MSFA). The support images
resized to various scales. Specific feature maps from FPN were selected for fusion. We used Concat
and two convolutional layer to aggregate feature maps.
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Although the GSE strategy we proposed cannot make the scale information completely
consistent with the real distribution, it can increase scale information and alleviate the
problem of sparse scale distribution.

2.3. Multi-Branch Patch-Embedding Attention Aggregation

Previous few-shot object detection work [41,42,50] mainly used support features after
global pooling to modulate query features, which is prone to losing detailed local context
information [43]. Therefore, some researchers [43,44] have attempted to match query and
support features at the pixel level without using global average pooling operations. They
used the cross-attention mechanism to calculate the pixel-level similarity between query
features and support features, which can be seen as an extension of the self-attention
mechanism in Transformer. However, since these methods did not consider the cross-scale
problem, applying these methods to remote-sensing images would be challenging.

Enlightened by the idea of multi-scale patch embeddings proposed in MPViT [65] and
CrossViT [66], we designed a multi-branch patch-embedding attention aggregation module
for feature re-weighting, which can learn better multi-scale features. Vision Transformer’s
(ViT) [67,68] primary process generally divides the feature map into several patches. Each
patch is flattened and goes through a trainable linear projection. The output of this projec-
tion can be seen as the patch embeddings. After linear projection, we mapped the input
patch sequence to query Q, key K, and value V with learnable matrix WQ, WK, WV and then
used Formula (7) to calculate the attention.

Q = XWQ, K = XWK, V = XWV (6)

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (7)

Overlapping patch embedding is proposed in PVTV2 [69]. Ref. [69] proves that
overlapping patch embedding performs better on classification and detection tasks than
original patch embedding because it can model the local continuity of images and feature
maps via the overlapping sliding window. So, we use overlapping patch embedding to
divide the images into several patches on the MPEAA module. We used three parallel
patch-embedding layers with different patch sizes to obtain the multi-scale projection of
the query feature.

Xi
q = PEi(Xq) (8)

where Xq represents the query feature and PEi() represents the patch-embedding layers.
Patch-embedding layers use convolution operations with different kernel sizes and strides
to project multi-size patches.

After the patch-embedding layer, the input feature X ∈ RH×W×C will map to the
Ci dimension. Additionally, the output PEi(X) ∈ RHi×Wi×Ci has the following height
and width:

Hi =

⌊
H − ki + 2pi

si
+ 1
⌋

, Wi =

⌊
W − ki + 2pi

si
+ 1
⌋

(9)

where k represents the kernel size of the patch-embedding layers, s represents the stride
size, and p represents the padding size. The parameter settings of each PE() layer are
shown in Table 1.

Table 1. Parameter settings for each PE() layer.

PEi() k s p

i = 0 3 2 1
i = 1 7 4 3
i = 2 15 8 5
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Then, we mapped each branch’s query patch sequence Xi
q to Qi

q, Ki
q and Vi

q . Further-
more, we mapped the support feature Xs to Ki

s and Vi
s . Next, we concatenated the K-V

pairs of the two branches to enable the deep interaction of support and query features.
Subsequently, we computed the attention with aggregated features.

Yi = Attention(Qi
q, Concat(Ki

q, Ki
s), Concat(Vi

q , Vi
s )) (10)

where Yi represents the results of the three parallel branches with different sizes. We
upsampled lowest-resolution feature maps using nearest neighbor upsampling by a factor
of 2. Then, the upsampled feature map was merged with the following branch output by
element-by-element addition, and this process was repeated until we obtained the highest-
resolution feature map. This aggregation process was iterated until the highest-resolution
feature map was generated. Finally, the result was concatenated with query feature Xq and
convolution operations for learnable feature aggregation.

Yf inal = Conv(Concat(Xq, UP(Y0 + UP(Y1 + UP(Y2))))) (11)

where + represents an element-wise addition and UP() represents nearest neighbor upsam-
pling. We adopt the method of gradually upsampling and combining features of different
scales, which can integrate multi-scale features well. We additionally concatenate multi-
branch fusion features and the query feature to keep the information intact. Then, the final
aggregation results Yf inal will be fed into the RPN network to generate the RoI. Finally,
after RoI align is performed, these RoIs perform the final classification and regression tasks.

3. Experiments and Results
3.1. Datasets

The NWPU VHR-10 [53–55] dataset contains 800 high-resolution satellite images
collected from Google Earth and Vaihingen datasets and then manually annotated by
experts. The dataset contains ten categories (airplanes, ships, storage tanks, baseball fields,
tennis courts, basketball courts, ground runways, ports, bridges, and vehicles).

The DIOR dataset [28] is a large-scale benchmark dataset for object detection in optical
remote sensing images.The DIOR dataset is satellite images from Google Earth and contain-
ing 23,463 images and 192,472 instances, covering 20 object classes. The 20 object classes
are airplane, airport, baseball field, basketball court, bridge, chimney, dam, expressway
service area, expressway toll station, harbor, golf course, ground track field, overpass, ship,
stadium, storage-tank, tennis court, train station, vehicle, and windmill.

The “Dataset for Object Detection in Aerial Images” (DOTA) dataset is specifically de-
signed for detecting and classifying various object categories within high-resolution aerial
images. Aerial imagery is collected using aircraft or drones equipped with high-resolution
cameras. Currently, there are multiple versions of DOTA datasets. This paper uses the
DOTAv1.0 version for the study of few-shot object detection. The DOTA dataset contains
2806 images of 15 classes. The object classes include planes, ships, storage tanks, baseball
diamonds, tennis courts, basketball courts, ground track fields, harbors, bridges, large
vehicles, small vehicles, helicopters, roundabouts, soccer ball fields and swimming pools.

Our experimental setup uses the same general settings as previous work [29,50–52].
For the NWPU VHR-10 dataset, which is also based on a satellite, three classes (airplane,
baseball diamond, and tennis court) were used as novel classes, and the others were used
as base classes. For larger datasets such as the DIOR dataset, five classes (airplane, baseball
field, train station, windmill, and tennis court) were used as novel classes and the others
were used as base classes. For the aerial dataset DOTA, we selected four novel classes
(plane, baseball-field, tennis-court and helicopter). When training the base class with
sufficient sample instances, the few-shot object detection focuses only on the performance
of the novel class target. K sample instances can be used per class when training the fewer
new class samples. For the NWPU VHR-10 dataset, the number of annotated instances K
was set as 3, 5, and 10. For the DIOR dataset, the number of annotated instances K was set
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as 5, 10, and 20. For the DOTA dataset, the number of annotated instances K was set as 3, 5,
10, and 20. We used ten random number seeds and calculated their average to ensure that
we could obtain algorithmically stable results.

3.2. Experimental Set and Evaluation Metrics

We trained the model using two RTX 3090 GPUs, each with a batch size of 4. The base
training phase used a stochastic gradient descent (SGD) optimization algorithm with an
initial learning rate of 0.01. We trained 10,000 iterations on the NWPU VHR-10 dataset,
dividing the learning rate by ten into 4000 and 6000 iterations. We also used the same initial
learning rate in the fine-tuning phase. We trained 20,000 iterations on the base class for the
DIOR data and performed learning rate decay from 14,000 to 16,000 iterations. Training the
model on both datasets for up to 2000 iterations is sufficient to achieve good performance.

We use the mean average precision (mAP) [70] as an evaluation metric to evaluate the
detection performance (Equation (12)). The mAP is a commonly used evaluation metric in
object detection. It comprehensively considers precision and recall to evaluate detection
results. Precision measures the accuracy of the predicted bounding boxes, while recall
measures the fraction of ground-truth objects that are successfully detected. We can obtain
the AP value of the c-th category by calculating the area under the precision–recall (P–R)
curve, the formula for which is shown in Equation (12).

APc =
∫ 1

0
Pc(R)dR (12)

where P denotes precision, R denotes recall, and mAP refers to the average AP value of
multiple detection categories.

mAP =
∑n

c=1 APc

n
(13)

where n denotes the number of novel classes under the few-shot object detection setting.

3.3. Results

We validated our proposed few-shot detector on the NWPU VHR-10 and DIOR
datasets along with state-of-the-art FSOD methods, such as meta-learning-based Rep-
Met [40], FSODM [50], PAMS-Det [51], DCNet [43], FCT [44], and fine-tuning-based CIR-
FSD [52], MPSR [47], TFA [46], SAGS [29], and DeFRCN [48]. The meta-learning-based
methods construct several episodes to learn and obtain the class representative vector.
These methods then use the class representative vector to re-weight the query features and
to predict the target. The transfer-learning-based methods use a batch training strategy and
then directly predict the target in the image.

The DIOR dataset is a large-scale dataset. Table 2 shows that our proposed method
achieves the best performance. We highlight the mAP score of the best detection perfor-
mance in bold for Tables 2–7. Compared with the baseline model DCNet, our method has a
1.5% improvement in the 20-shot setting, a 2.3% improvement in the 10-shot setting, and a
2% improvement in the 5-shot setting.

As shown in Figure 5a, the airplanes in the pictures are of different sizes and environ-
ments, which makes it a challenging detection task. With the help of the Gaussian-scale
enhancement strategy, our method has the best performance with the lowest missed de-
tection rate. The field rotation in Figure 5b shows another challenge. Since the proposed
MPEAA module can efficiently extract the multi-scale features, the proposed method
achieves the best performance in Figure 5b. Furthermore, when targets with tiny or large
sizes are in the scene, such as the tennis court in Figure 5c, our method can also accurately
localize and classify them.
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Table 2. Experimental results for novel class detection on the DIOR dataset.

Method 5-Shot 10-Shot 20-Shot

RepMet [40] 8 14 16
TFA [46] 25 31 37

FSODM [50] 25 32 36
PAMS-Det [51] 33 38 -

SAGS [29] 34 37 42
CIR-FSD [52] 33 38 43
DeFRCN [48] 27.2 31.7 34.8

FCT [44] 32.3 34.6 42.4
MPSR [47] 32.9 38.4 44.2
DCNet [43] 33.2 38.3 44.9

Ours 35.2 40.6 46.4

The results of the NWPU VHR-10 dataset are shown in Table 3. Our method outper-
forms the other state-of-the-art methods, with a 3.4% improvement in the 3-shot setting,
a 3.3% improvement in the 5-shot setting, and a 2.6% improvement in the 10-shot setting
when compared with DCNet.

Figure 5. Visualization of object detection on the DIOR dataset. The green bounding box represents a
ground truth bounding box and the purple bounding box represents the model’s detection results:
(a) airplane, (b) baseball field, (c) tennis court, (d) train station, and (e) windmill.
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Table 3. Experimental results for novel class detection on the NWPU VHR-10 dataset.

Method 3-Shot 5-Shot 10-Shot

RepMet [40] 23 23 26
TFA [46] 29 49 65

FSODM [50] 32 53 65
PAMS-Det [51] 37 55 66

SAGS [29] 51 66 72
CIR-FSD [52] 54 64 70
DeFRCN [48] 33.5 41.9 50.7

FCT [44] 54.6 58.8 63.8
MPSR [47] 59.3 65.9 69.5
DCNet [43] 56.7 64.8 72.1

Ours 60.1 68.1 74.7

Figure 6 shows a visualization of the experimental results on the NWPU-NHR10
dataset. In Figure 6a, the missed detection rate is relatively high when the object (aircraft)
size changes. Aided by the Gaussian-scale enhancement strategy, our method has the best
detection performance. Figure 6c shows a dense object detection challenge: almost all the
tennis courts are small and densely arranged. While most other methods include many
missing objects, our method can accurately detect densely arranged small-sized targets
with the help of the MEPAA module.

Figure 6. Visualization of object detection on the NWPU-NHR10 dataset: (a) airplane, (b) baseball
field, and (c) tennis court.

Table 4 compares our method with other few-shot object detectors. Our method
consistently outperforms DCNet and other counterparts with each shot setting. Compared
to MPSR, our method significantly improves accuracy by 1.7%/3.8%/2.9%/3.6% mAP
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with 3/5/10/20-shot setting. The detection result verifies the effectiveness of our proposed
method on satellite and aerial image data.

Table 4. Experimental results for novel class detection on the DOTA dataset.

Method 3-Shot 5-Shot 10-Shot 20-Shot

CIR-FSD [52] 16.7 20.4 24.3 27.9
DeFRCN [48] 13.8 23.8 31.2 34.6

MPSR [47] 21.6 29.7 41.1 50.1
DCNet [43] 21.9 29.2 35.4 48.1

Ours 23.3 33.5 44.0 53.7

Figure 7 shows a visualization of the experimental results on the DOTA dataset.
With the help of the GSE strategy, our method can successfully detect planes and baseball
fields of various sizes, and other methods will lose some targets. Our proposed MPEAA
module can achieve high-quality feature reweighting, and our method can detect densely
arranged tennis courts. The red box represents a misdetection. Figure 7d shows a chal-
lenge case. The helicopter can be considered as a class with similar patterns of planes,
causing both MPSR and DCNet to detect helicopters as airplanes. The proposed model can
successfully recognize the helicopter with the help of MPEAA module.

Figure 7. Visualization of object detection on the DOTA dataset: (a) plane, (b) baseball field, (c) tennis
court, and (d) helicopter.

3.4. Ablation Experiments

To demonstrate the effectiveness of each module of our proposed method, we con-
ducted ablation experiments using the Gaussian-scale enhancement strategy and the multi-
branch patch-embedding attention aggregation module. The ablation experiment Table 5
shows that GSDA achieved a 0.7–1.7% improvement on the DIOR dataset. As shown in
Table 6, an improvement of 1.5–3% is also obtained on the NWPU VHR-10 dataset, proving
the strategy’s effectiveness. Also, using the MPEAA module, improvements of about
0.7% and 0.4–0.8% were obtained on the DIOR dataset and the NWPU VHR-10 dataset,
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respectively. We used the Gaussian-scale enhancement strategy and the MPEAA module to
maximize these improvements.

Table 5. Ablation experiment on the DIOR dataset.

GSE MPEAA 5-Shot 10-Shot 20-Shot

33.2 38.3 44.9√
34.9 39.9 45.6√
33.9 39.0 45.6√ √
35.2 40.6 46.4

Table 6. Ablation experiment on the NWPU VHR-10 dataset.

GSE MPEAA 3-Shot 5-Shot 10-Shot

56.7 64.8 72.1√
59.7 67.6 73.6√
57.4 65.2 72.9√ √
60.1 68.1 74.7

Figure 8 shows a visualization of the ablation experiment results. The baseline model
cannot detect the targets of the two baseball fields at different sizes. After adding GSE,
the model can detect ground track files with larger scales and smaller baseball files. How-
ever, our method can detect the baseball files with appearance changes and at minor scales
after using the MPEAA module. This proves the effectiveness of our proposed method.

Figure 8. Visualization of the ablation experiment results.

We compared the abilities of our method and the baseline model to detect the cross-
scale targets. As shown in Figure 9, the baseline model cannot detect windmills with
different scales. Thanks to the GSE strategy and the MPEAA module improving the ability
of our method to detect multi-scale targets, our method can successfully detect windmills
at each scale.

In addition, to explore the optimal number of the support image sizes in Gaussian-
scale enhancement strategy, we conduct a comparison experiment setting the number of
image sizes in the scale space from 2 to 5. We evaluate the indicators, including mAP and
latency. Table 7 shows the detection accuracy with the 5-shot setting on the NWPU-VHR
dataset and the training speed of each episode. When the number of support images’ sizes
is 5, the detector achieves the best accuracy of 68.2% mAP and the highest latency of 0.46 s.
As observed, increasing the number of crop sizes will improve detection accuracy and
reduce training speed. As the number of sizes increases, the range of learnable target
scale distribution becomes wider. Constructing a complete scale space can effectively
enhance scale information for network learning. Meanwhile, due to the increasing number
of supporting images, it will inevitably take a longer time to train the network. Compared
to size 2, size 4 improves accuracy by 1.3% mAP and increases the latency by 29%. Size 5
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delivers 1.4% mAP improvement but increases the latency by 43%. The accuracy difference
between the size 4 and size 5 is minimal, but the size 5 requires much more training time.
Considering comprehensive accuracy and speed, cropping the support images into size 4 is
a better choice.

Figure 9. Comparison of windmill detection results with multi-scale size.

Table 7. Our comparison results with different numbers of the support image sizes.

322 642 1282 2562 5122 mAP (%) Latency
(s)

2 sizes
√ √

66.8 0.326
3 sizes

√ √ √
67.6 0.375

4 sizes
√ √ √ √

68.1 0.423
5 sizes

√ √ √ √ √
68.2 0.468

4. Discussion

The effectiveness of our proposed Gaussian-scale augmentation strategy was also
demonstrated by performing ablation experiments. We conducted experiments on the
DIOR dataset and obtained the most significant improvement with the 5-shot setting,
about 1.7%, compared with 1.3% with the 10-shot setting and 0.7% with the 20-shot setting.
Our method improves more as the sample size decreases. Our method can provide more
scale information since the scale information distribution (Figure 1) becomes sparser with
fewer samples. A similar situation is observed on the NWPU VHR-10 dataset, with 3%
improvement for 3 shots, 2.8% improvement for 5 shots, and 1.5% improvement for 10 shots,
as expected.

5. Conclusions

In this paper, we proposed a new meta-learning-based few-shot object detection model
to solve the problem of remote sensing images with cross-scale and sparse-scale information
that exists when samples are scarce. According to the scale-space theory, we designed a
Gaussian-scale enhancement strategy to enrich the scale information of the training samples
by constructing a Gaussian-scale space for the support images. Furthermore, based on the
Transformer’s powerful self-attention and context acquisition capabilities, we designed
a multi-branch patch-embedding attention aggregation module, which can better learn
multi-scale features to improve detection accuracy. We conducted comparison and ablation
experiments on two datasets to demonstrate the effectiveness of our method.
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