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Abstract: In various engineering applications, remote sensing images such as digital elevation
models (DEMs) and orthomosaics provide a convenient means of generating 3D representations
of physical assets, enabling the discovery of new insights and analyses. However, the presence of
noise and artefacts, particularly unwanted natural features, poses significant challenges, and their
removal requires the application of filtering techniques prior to conducting analysis. Unmanned
aerial vehicle-based photogrammetry is used at Melbourne Water’s Western Treatment Plant as a
cost-effective and efficient method of inspecting the floating covers on the anaerobic lagoons. The
focus of interest is the elevation profile of the floating covers for these sewage-processing lagoons and
its implications for sub-surface scum accumulation, which can compromise the structural integrity
of the engineered assets. However, unwanted artefacts due to trapped rainwater, debris, dirt, and
other irrelevant structures can significantly distort the elevation profile. In this study, a machine
learning algorithm is utilised to group distinct features on the floating cover based on an image
segmentation process. An unsupervised k-means clustering algorithm is employed, which operates
on a stacked 4D array composed of the elevation of the DEM and the RGB channels of the associated
orthomosaic. In the cluster validation process, seven cluster groups were considered optimal based
on the Calinski–Harabasz criterion. Furthermore, by utilising the k-means method as a filtering
technique, three clusters contain features related to the elevations associated with the floating cover
membrane, collectively representing 84% of the asset, with each cluster contributing at least 19% of
the asset. The artefact groups constitute less than 6% of the asset and exhibit significantly different
features, colour characteristics, and statistical measurements from those of the membrane groups.
The study found notable improvements using the k-means filtering method, including a 59.4%
average reduction in outliers and a 36.3% decrease in standard deviation compared to raw data.
Additionally, employing the proposed method in the scum hardness analysis improved correlation
strength by 13.1%, removing approximately 16% of the artefacts in total assets, in contrast to a 3.6%
improvement with the median filtering method. This improved imaging will lead to significant
benefits when integrating imagery into deep learning models for structural health monitoring and
asset performance.

Keywords: structural health monitoring; unmanned aerial vehicles; photogrammetry; sewage
treatment; scum; unsupervised machine learning; k-means; clustering; digital elevation model;
orthomosaic
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1. Introduction

The Western Treatment Plant (WTP) in Werribee, Victoria, Australia, is operated
by Melbourne Water and plays a crucial role in providing sewage treatment services to
over half of Melbourne’s population [1]. The anaerobic digestion of raw sewage takes
place in treatment lagoons that are covered with high-density polyethylene (HDPE) sheets
approximately 2 mm thick and 450 × 170 m in size, and produces methane-rich biogas that
can be harvested for renewable energy generation [1]. However, a progressive accumulation
of scum can occur underneath these floating covers, building up to large mounds known
as scumbergs. The presence of scumbergs can compromise the structural integrity of the
floating covers as well as obstruct the collection of biogas, thereby affecting renewable
energy generation.

Recently, unmanned aerial vehicle (UAV)-based photogrammetry has been employed
as an inherently safe, rapid inspection to regularly capture the elevation profile of the
floating covers. Specifically, orthomosaics and digital elevation models (DEMs) of these
covers are generated through this approach, enabling tracking of the elevation of the cover,
and, hence, of the underlying scum [2–4], as depicted in Figure 1. In particular, this remote
sensing imagery can provide the early detection of scum accumulation and offers the
potential for developing more detailed diagnostic and prognostic models [5,6] for assessing
the structural health of the floating covers using artificial intelligence, in line with the
promise of the Industry 4.0 revolution.
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To date, our research project has primarily focused on the development of non-contact
techniques for safely gathering information regarding deformation and solid scum accumu-
lation under the floating cover [2,3,7]. The DEMs, in particular, have been instrumental in
providing the valuable spatial contexts of the floating cover, enhancing our understanding
of scum behaviour and facilitating WTP asset management. In our previous work, Wong
et al. [2] demonstrated the capability of an unsupervised machine learning technique in
delineating boundaries between regions of different scum hardness levels by leveraging
elevation data from the DEM. Additionally, the study reported that a linear model ex-
plains 77% of the variance in scum depths based on the cover elevation above water level.
However, the extensive manual suppression of unwanted artefacts (e.g., flotation, ballast,
and water features, see Figure 1) in the DEM was required, since these features were
not associated with the actual floating cover elevation and could cause erroneous results.
Therefore, there is a need for a robust method to remove artefacts in DEMs, allowing for a
more rigorous assessment of the effects of scum on the floating covers.

Notwithstanding these acknowledged advantages of DEMs, it is important to recog-
nise their susceptibility to errors, which manifest as noise in the elevation data. Furthermore,
multiple preprocessing steps are very often necessary to isolate the feature of interest be-
fore conducting analysis [8,9]. In particular, filtering algorithms to autonomously remove
unwanted features are advantageous, considering the labourious task of manually ma-
nipulating data, particularly for high-resolution images with detailed features. Several
filter-based methods [8] have been implemented to remove artefacts and reduce errors
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associated with DEMs. Classical smoothing filter methods, such as the mean filter, present
a trade-off between the degree of smoothing and the preservation of key features. The
median filter, a widely-used simple non-linear filtering method used in various industries,
exhibits robustness in reducing impulse-like noise by replacing each data point with the
median value of the surrounding points within a specified window. Advanced spatial
methods, using adaptive smoothing, multiple anisotropic filters [10] and filtering in the
frequency space [11] have been shown to smooth 2D elevation profiles while preserving
subtle details. Specifically, multiscale analysis methods analyse variations and complexities
across multiple scales, providing a comprehensive understanding of the phenomena, as
opposed to those operating at singular scalar measurements [12,13]. These approaches have
been increasingly applied to DEMs to capture features at different scales, as well as remove
noise. Hui et al. [12] introduced a simple technique using a linearly expanding window size
and simple slope thresholds. Hani et al. [13] utilised the lift scheme, a variant of the wavelet
transform, to evaluate terrain surface roughness. Gallant [9] demonstrated a multiscale
adaptive smoothing approach to progressively increase the level of smoothing when noise
is relatively larger. Booth et al. [14] achieved 97% classification accuracy rate in landslide
mapping by using spectrum-based methods and filtering unwanted non-native features
with the assumption that they exhibit higher spatial frequency. Considerable progress
has been achieved in the active field of vegetation suppression within geospatial models,
which includes colour-based and slope-based filtering techniques [15–18], with commercial
software integrating proprietary algorithms specifically designed for vegetation filtering
in ground terrain elevation [19]. However, in specialised applications, the necessity arises
for employing highly specific processing strategies, including multiple stages of filter-
ing [15,17,18,20,21]. These demands often require a substantial investment in developing
filtering approaches tailored to unique application needs, and may not be suitable for other
applications. Furthermore, the limitations associated with the implementation of advanced
spatial techniques lie in their diminishing intuitiveness as the complexity of the filtering
technique increases, along with the increasing number of adjustable parameters. Addition-
ally, these techniques are predominantly limited to showing one (i.e., spatial) content of the
data, and do not consider multiple data attributes, thus restricting their scalability when
presented with new information. Nevertheless, removing natural features (e.g., vegetation
and trapped rainwater), man-made objects, and unwanted artefacts that do not correspond
to the terrain of interest is known to be problematic and challenging [8,22,23].

In the past decade, there has been a significant interest in incorporating machine
learning techniques into DEM and imagery data for classification and feature segmentation
applications [7,24–28]. A key advantage of machine learning techniques is their ability to
learn the characteristics of features automatically from the data, eliminating the need for
explicit feature definitions used in classical methods for classification purposes. Henriques
et al. [25] segmented intertidal habitats for ecological research using DEM and satellite
imagery in a supervised ensemble learning random decision forests algorithm. In Su’s
work [26], semi-arid vegetation mapping was conducted using remote sensing data, includ-
ing mean elevation via DEM and nadir and off-nadir reflectance measurements, through
support vector machine learning, achieving a classification accuracy of approximately 80%.
Gebrehiwot et al. [27] utilised a pre-trained convolutional neural network by applying
transfer learning for flood extent mapping, in classifying water, building, and non-relevant
features. Their neural network was fine-tuned using a smaller training population of
manually annotated UAV imagery data, resulting in an overall accuracy of 97%. While
supervised learning models, especially deep learning models, have the capability to pro-
duce highly accurate results, the main challenges in their development include the need for
very large datasets and labelled data. These limitations require substantial time and labour
investments, which can render their practical implementation less feasible. Yet, studies
have employed unsupervised learning methods, i.e., clustering methods, to address the
common challenges of insufficient labelled imagery data [29–31]. A notable advantage of
clustering algorithms is their capability to rapidly identify and enable the visual examina-
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tion of groups associated with features of interest within the clustering results without prior
knowledge of the data or labelled data to train the model. Cinat et al. [30] demonstrated the
application of an unsupervised clustering algorithm on imagery data for isolating canopy
vegetation for crop management. More recently, an unsupervised deep learning method
using a convolutional autoencoder network trained on multispectral imagery and DEM
has been used to extract abstract, high-level features from the embedding layer for land-
slide detection [31]. Evidently, the emerging research trend in utilising machine learning
algorithms is attributed to their performance in effectively filtering noise and artefacts,
while offering more capabilities such as flexibility and scalability compared to conventional
methods.

In today’s data-centric landscape, there is a strong emphasis on developing efficient
and user-friendly data processing techniques for various industry applications. Melbourne
Water is actively pursuing innovative methods that consider both DEMs and orthomo-
saics, aiming to seamlessly integrate future imagery for further refinement. Currently,
conventional filtering methods, such as median filters, are employed for DEM processing
on anaerobic lagoons due to their straightforward, rapid, and cost-effective approach,
which is sufficient for their specific applications [4]. However, advanced filtering methods,
known for their superior accuracy, often introduce increased complexity. As a result, they
can be less intuitive for non-specialists to interpret and implement, and may not scale
effectively with additional data characteristics, making them not suitable for this specific
industrial application. As such, machine learning approaches, particularly unsupervised
learning methods, emerge as highly promising alternatives that align with Melbourne
Water’s resources and needs, with the potential to enhance the existing practices.

This paper proposes a novel approach that utilises an unsupervised k-means clustering
machine learning algorithm by incorporating DEMs and their associated orthomosaics
for filtering features on the floating cover of the anaerobic lagoon. This approach enables
the visual identification of features within each cluster, followed by filtering to retain
clusters containing features related to the membrane cover. The investigation first examines
the learned clusters and then demonstrates the filtering approach in a localised region
of interest, comparing it with current filtering methods used in practice. Furthermore,
the correlations between scum hardness and unfiltered and filtered DEM elevations are
investigated. The preceding results highlight the significance of this approach in achieving
a more accurate and precise analysis of the scum hardness and elevation of the floating
cover. Furthermore, this preliminary work represents a significant step forward in the
pursuit of real-time structural health monitoring for anaerobic lagoons at WTP.

2. Materials and Methods
2.1. UAV–Photogrammetry

Elevation maps of WTP floating covers were obtained via UAV–photogrammetry
using a Hex Rotor UAV DJIM600 Pro, equipped with a 15 mm lens Zenmuse X5 camera,
and employing a single flight path mode set in Pix4Dcapture [32]. The scan was conducted
at a height of 50 m above the floating cover, and was georeferenced using 6 ground control
points, with the entire scanning process lasting approximately 30 minutes. To ensure
comprehensive coverage, the capture configuration was set to achieve 80% image overlap
in both forward and side directions.

Post-processing of these images was performed using Agisoft Metashape Professional,
version 1.5, which enables users to customise the alignment quality, generate dense clouds,
create meshes, and generate DEMs and orthomosaics [19]. For the purpose of alignment,
all metadata, including GPS location and camera settings, were imported into Agisoft
Metashape Professional, version 1.5. During the post-processing stage, all settings were
configured to their maximum values when working with the images acquired from the scan.
A total of 655 aerial images were captured in January 2019 and underwent processing to
construct the raw DEM and orthomosaic, achieving a spatial resolution of 1.14 cm per pixel.
The raw DEM and orthomosaic underwent a transformation process to align them with a
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reference point, such that the elevation is relative to the water level, and were subsequently
rescaled into a lower resolution of 2 cm per pixel for analysis.

2.2. Scum Hardness

On-site scum hardness surveys of WTP floating covers are regularly carried out by
field personnel. These surveys were conducted through cover walk inspections, wherein
personnel walked on the floating cover to qualitatively assess the hardness of the scum
underneath. The scum hardness levels were categorised as follows, in descending order of
hardness: hard (H), medium-hard (MH), medium (M), medium-soft (MS), soft (S), fluffy
(F), water–fluffy (WF) and water (W). For the present study, the closest available completed
survey conducted in January 2018 was considered for analysis. The scum hardness survey
was digitised by manually annotating polygon shapes with the orthomosaic as a reference,
as shown in Figure 2.
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2.3. Unsupervised k-Means Clustering Method for Image Segmentation and Filtering
2.3.1. k-Means Clustering Method

Clustering analysis is a widely-used unsupervised machine learning technique that
aims to discover inherent groups or patterns within a dataset where the data points do not
have any predefined categories [33]. The goal of clustering algorithms is to partition data
into clusters based on their similarity, and the resulting clusters represent subsets of data
points that share common characteristics. Several clustering algorithms have been proposed
for the classification and segmentation of imagery relating to this field of work [29–31].
However, in high-dimensional spaces and datasets with diverse data types, clustering
algorithms can be slower and more computationally intensive, and struggle to identify
meaningful groups. k-means clustering is the most popular choice to group data into a
predefined number of k clusters due to its efficiency, ease of implementation [33], and
suitability for this particular study. This algorithm involves the random selection of initial
centroids for each cluster, followed by the assignment of each data point to its nearest
centroid. The centroids are then updated iteratively by computing the mean of the assigned
data points until convergence is achieved. The objective of the cost function is to minimise
the sum of squared Euclidean distances between the data points and the centroid of their
corresponding cluster. However, the traditional execution of the k-means method to achieve
convergence is computationally expensive and can struggles with scalability when applied
to large and high-dimensional data. Furthermore, it is sensitive to the initialisation of the
centroid, leading to potentially suboptimal clusters. An improved k-means algorithm with
a centroid initialisation technique, commonly known as k-means++ clustering analysis [34],
aimed to address these shortcomings. Unlike the random initialisation in traditional
k-means, k-means++ distributes the initial centroid more uniformly across the dataset,
resulting in a more reliable clustering outcome, as well as faster convergence. From here
on, the paper now refers to k-means++ as k-means for simplicity.
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2.3.2. Image Segmentation Using k-Means

In this work, the analysis used Statistics and Machine Learning Toolbox in MATLAB
R2022b. For the image segmentation process using k-means, the proposed dataset involves
stacking the DEM and orthomosaic image, resulting in a 4D array that comprises features
such as red, green, and blue (RGB) channels with values ranging from 0 to 255, along with
elevation displacement. The algorithm configuration was defined by setting a maximum of
10,000 iterations, along with 5 multiple runs (replicates) utilising different initialisations
of centroids. The solution was determined by selecting the replicate with the lowest cost
function value.

Generally, as k increases, the segmentation becomes more refined, capturing smaller
and more intricate features, as seen in Figure 3. However, it should be noted that exces-
sively large values of k can lead to overfitting the data, resulting in poor generalisation
performance and increased computational complexity. Therefore, it is crucial to determine
the optimal number of clusters to ensure meaningful and interpretable clusters. Cluster
validation was performed by using the Calinski–Harabasz (CH) Criterion to identify the
optimal value kopt and ensure robustness of the clusters [35]. This criterion assesses the
trade-off between minimising within-cluster variance and maximising between-cluster
variance, ensuring a balance between clustering results. By examining the CH index across
different values of k, ranging from 0 to 12, the value of kopt was selected as the one that
yielded the highest CH index. The maximum k value was arbitrarily selected to ensure that
the highest CH is achieved well before reaching the maximum k range and for discussion
beyond kopt. After obtaining the clustering outputs for kopt, a 2D image segmentation map
is generated, with each pixel assigned an integer value ranging from 1 to kopt corresponding
to its cluster groups. Thereby, the features within each cluster can be visually identified on
the image segmentation map, enabling subsequent analysis of the groups. Additionally,
the centroid and standard deviation of each variable for each cluster can be extracted,
calculated, and reported for further analysis.
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2.3.3. Cluster Groups of k-Means Image Segmentation with Optimal k

Based on the CH index, the optimal number of clusters was kopt = 7, as seen in
Figure 4a), with the resulting image segmentation based on k-means is shown in Figure 4b).
After determining the optimal number of clusters using the k-means clustering algorithm,
the natural and man-made features within each cluster were identified through visual
inspection, as illustrated in Figures 4 and 5, and their associated centroid of variables is
presented in Table 1. The black image background was identified as Group 5, characterised
by low RGB channel values, resembling the colour black, and significantly low elevation.
As this cluster was unrelated to the asset, it was removed by setting its value to null
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(NaN), and was thereby ignored in the further analysis. The remaining clusters were then
specifically analysed based on the image of the asset and not the entire image.
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Table 1. Centroid and standard deviation and proportion of each variable for kopt groups.

Group Feature
Observations

Centroid ± σ
of Red

Centroid ± σ
Green

Centroid ± σ
Blue

Centroid ± σ
Elevation

(mm)
Portion of

Image
Portion of

Asset
Only

1 High slope and
edge-like/wrinkle features 179.1 ± 14.4 180.1 ± 14.0 183.0 ± 15.3 452.4 ± 377.1 4% 5%

2 Water features, i.e., trapped
rainwater and water streaks 45.2 ± 17.1 40.8 ± 12.9 30.7 ± 13.5 202.8 ± 482.7 4% 5%

3

Debris and dirt, i.e., dried water
marks; small man-made

structures, i.e., portholes and
ballast

99.8 ± 15.0 88.5 ± 12.0 76.2 ± 17.2 194.1 ± 362.6 5% 6%

4

Depressed features on the
membrane, i.e., trough of
wrinkles, shallow water

features

127.2 ± 10.4 120.1 ± 7.7 113.8 ± 11.1 164.8 ± 370.5 15% 19%

5 Image background −3.0 ± 1.1 2.5 ± 1.1 1.3 ± 0.9 −9.71 ± 60.6 19% -
6 Membrane cover—Section

Upper 151.3 ± 7.6 152.4 ± 6.2 156.0 ± 8.2 261.1 ± 357.7 22% 27%

7 Membrane cover—Section
Lower 138.2 ± 7.3 137.3 ± 5.3 137.6 ± 8.3 238.8 ± 372.0 31% 38%

The membrane cover was segmented into two groups, namely Groups 6 and 7, which
represented the upper and lower halves of the floating cover asset, respectively, as seen
in Figure 4. In Group 7, the colour scheme was relatively darker, primarily due to cloud
shadows. During data acquisition using UAV–photogrammetry, photos were captured
progressively over approximately 30 minutes, and on some occasions, cloud transit re-
sulted in overcast shadows, causing certain sections of the cover to appear darker. This
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darkness corresponded to approximately 9.7% decrease in luminance compared to Group 6.
Additionally, the elevation in Group 6 (upper half) was slightly higher than that in Group 7
(lower half), indicating a relatively higher average elevation in the upper half of the floating
cover.

Moreover, clusters (Groups 1–3) were found to be associated with intricate features of
the membrane cover, comprising approximately 5–6% of the asset. These groups exhibited
larger standard deviations in colour characteristics, ranging from 12.0 to 17.2, which
is approximately twice that of the membrane cover groups (Groups 6 and 7). Group 1,
characterised by the high elevation, exhibited membrane features with high slope elevations
and crests of wrinkles near the boundary of the floating cover. Group 2 exhibited a distinct
dark colour scheme, representing the water features, and had a relatively lower centroid
elevation compared to groups representing the membrane cover. However, the significant
elevation noise in this group, indicated by the relatively large standard deviations that
are approximately 30% larger than those of the membrane cover groups, suggested that
water features contributed significantly to the observed noise. Group 3 consisted of features
characterised by distinctive brown colours such as debris, dirt, and dried water marks,
with a similar elevation to Group 2. Additionally, small man-made structures such as
ballast and portholes were also clustered within this group. Group 4 possessed depressed
membrane features, including in the vicinity of shallow water features and wrinkle troughs,
as indicated by its low centroid elevation. This cluster had similar RGB values to Groups 6
and 7, and accounted for almost 20% of the asset.

2.3.4. k-Mean Filtering Method: Filtering Unwanted Artefacts on the Asset

In the previous section, the k-means clustering method was demonstrated as a tech-
nique for image segmentation to categorise features of the anaerobic lagoon into distinct
groups. With the learned group segments using k-means clustering, this method enables
the visual identification of features within each cluster, followed by the exclusion of the
unwanted clusters and the retention of elevation points assigned to the specific clusters
consisting of features specifically relating to the matter of interest. Furthermore, the filtering
of feature groups is further facilitated by analysing their quantitative characteristics i.e.,
data portion, as well as their elevation and RGB characteristics. Primarily, the similarities
of these characteristics for each group are assessed to determine their exclusion. Thus, this
proposed procedure enables the removal of unwanted features that could interfere with the
analysis of specific features of interest, resulting in a more precise analysis. From here on,
this procedure is referred to as the “k-means filtering” method for ease of reference, and, as
such, data (elevation) filtered using this method are referred to as “k-means filtered data”.

In this particular study, the k-means filtering method is performed to exclude artefacts
that are not associated with the floating cover membrane, with the goal of analysing the
elevation associated with the floating cover. Thereby, only groups relating to the asset (all
groups except for Group 5) are considered in this analysis from here on. The rationale for
retaining and removing the feature groups is as follows:

• Retained feature groups: Groups 4, 6, and 7 mainly consisting of features related
to the membrane cover, exhibit similar RGB characteristics with an average relative
difference of 32.9 for colour intensities relative to those of Group 6, as seen in Table 1.
Collectively, these groups account for 84% of the asset, with each of these groups
significantly contributing between 19% and 38% of the asset. Thereby, these groups
are classified as representative of the membrane cover.

• Unwanted feature groups: Conversely, the remaining groups with data points consti-
tuting less than 6% of the total data points of the asset were interpreted as artefacts.
These groups exhibited features, RGB characteristics, and statistical measurements
different from those of the membrane groups, as discussed in the previous section.
Therefore, they were deemed irrelevant and subsequently removed from the analysis.

Subsequently, the image segmentation map can be adapted to create a pixel-wise mask
map, which is applied to the raw DEM. This process yields a filtered DEM where only the
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relevant features are retained, while the rest are masked. For this study, the retained feature
groups are combined by assigning them a value of 1, whereas artefact groups are assigned
a null value (NaN), thereby resulting in a filtered DEM with a more accurate representation
of the elevations related to the floating cover.

In the context of this study, it is noteworthy that flotations, as indicated in Figure 6,
are a prominent feature of the asset, and are anticipated to significantly influence the
analysis of scum association. Notably, the k-means clustering algorithm did not facilitate
the identification of these flotations, which remained unfiltered through the proposed
filtered method. To address this, a binary mask map was created and employed on the
filtered DEMs to manually remove the flotations. The process involved the manual tracing
and interpolation of the flotations using a cubic spline method in the in-plane directions
to generate uniform discretised lines on a binary mask map. Subsequently, these lines
were dilated using a morphological dilation with a disk-shaped structuring element of
1 m radius, ensuring sufficient suppression of the corresponding data points, as seen in
Figure 6.
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The k-means filtered DEM, shown in Figure 6, is compared in the following sections
of the results to the existing methods for elevation readings and scum hardness analysis. In
order to maintain consistency throughout the comparative study, the flotation suppression
mask was applied to the raw data and data after the application of filtering methods.

To benchmark the proposed method, the current filtering methods used were applied,
including 2D median, mean, and Gaussian filters. Generally, classical filtering methods
operate by computing each pixel value in the output array with the prescribed function,
which, in the case of the median filter, corresponds to the median value within the pixel’s
neighbourhood in the input array. This was accomplished by systematically moving a
fixed-size window across the input array, centring it on each pixel in turn. At each window
position, the filter takes into account the pixel values within the neighbourhood and
executes the prescribed function, computing the centre pixel of the window in the output
array, accordingly. For a Gaussian filter, the prescribed function replaces the centre pixel
with a weighted average determined by a Gaussian function, with the peak value at the
centre pixel of the window. This entire process is subsequentially repeated for all pixels
in the input array. For comparison, the median filter was employed with window sizes 3,
7, and 15, the mean filter was employed with window sizes 7 and 15, and the Gaussian
filter was employed using window sizes 9 and 21, along with corresponding 2- and 5-pixel
standard deviations, respectively. These classical filtering methods were applied solely to
the elevation of the DEM, differing from the proposed k-means filtering method, which
disregards unwanted clusters. The comparison of these methods is intended to provide



Remote Sens. 2023, 15, 5357 10 of 17

further insight and contribute to the advancement of analysing methods in the industry.
Additionally, the results were evaluated against a laser-surveyed elevation measurement
obtained using the IMEX i77R rotating red beam laser.

The elevations of a 2 m by 2 m localised region of interest, which primarily contained
a porthole and trapped rainwater, were considered to demonstrate the effectiveness of the
k-mean filtering method compared to the existing methods. Furthermore, the raw elevation
distributions for different scum hardness levels were analysed and compared with those
obtained using the median filter with a window size of 15 and the k-means filtering method.
Statistical measurements were evaluated for these comparisons. Outliers in the elevation
distributions were defined as values more than 1.5 times the interquartile range above
the upper quartile or below the lower quartile. Additionally, Spearman’s correlation test
was conducted to evaluate the coefficient of correlation strengths between scum hardness
and elevation. The analysis compared the raw elevation data, median filtered data, and
k-means filtered data. The ordinal categorical data representing the scum hardness (“W” to
“H”) were assigned ranks corresponding to the numerical values 1 to 8, respectively.

3. Results
3.1. Elevation Distributions of a Localised Region of Interest Using Various Filtering Methods

The following results demonstrate the effectiveness of the k-means filtering method
and its comparison with existing methods in a 2 m by 2 m localised region of interest. In this
section, the clustered groups are identified via the k-means clustering algorithm, followed
by a statistical comparison of different filtering methods and their accuracy relative to laser
survey measurements.

Within the localised region, the k-means clustering algorithm identified three distinct
clusters: Groups 2, 7 and 3, as illustrated in Figure 7. Upon visual inspection, Group 2
predominantly represents the trapped rainwater body on the floating cover, while Group 7
corresponds to the floating membrane cover. Group 3 encompasses the porthole structure
and its shadow. As indicated in Table 2, Group 2 exhibits a large standard deviation of
137.8 mm with a mean value of 46.4 mm, indicating significant variation in elevations and
noise within this group. Although Group 3 exhibited mean and median values similar to
Group 7, its relatively larger standard deviation was mainly due to the presence of the
porthole structure’s shadow. It was evident that the features in Groups 2 and 3 consisted of
relatively larger noise and did not represent the membrane cover. As a result, through the
k-means filtering method, these features were subsequently filtered (refer to Section 2.3.3),
and, hence, only Group 7 was retained.

The comparisons of the different filtering methods on the elevation distributions
of the localised region are shown in Figure 8. Referring to Table 3, the median filters
resulted insignificant changes in their median values (with a maximum difference of 1.3%)
compared to the median value of the raw data. In contrast, both mean and Gaussian filters
exhibited reductions in the median values (ranging from 5.6% to 15.2%). This decrease is
attributed to their smoothing nature, which tends to blur or not preserve edges and finer
details, particularly at larger window sizes. While it is evident that all methods can remove
impulse-like noises, classical methods do not specifically filter out unwanted natural and
man-made features, as their function is to smooth the entire surface elevation of the image.

Significant differences in statistical measurements were observed when the k-means
filtering method was applied compared to the raw data and classical filtering methods.
Specifically, there was a 54.2% increase in mean and a 24.5% increase in median relative to
those of the raw data, whereas the classical filtering methods showed a relative decrease in
mean of up to 5.0% and a relative decrease in median value of up to 15.2% relative to those
of the raw data. Furthermore, the standard deviation of the k-means filtered elevations
exhibited a significant reduction of 57.2% relative to those of the raw data, while classical
filtering methods showed relative reductions in standard deviation ranging from 2.2% to
14.1% relative to those of the raw data. Notably, the majority of the elevations obtained
through the k-means filtering method demonstrated a close correspondence with the laser
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survey measurement of 370 mm, particularly in mean and median values, with relative
percentage errors of 1.0% and 3.8%, respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW  11  of  18 
 

 

   
(a)  (b) 

Figure 7. (a) Highlighted artefacts via the k-means filtering method and (b) elevation distributions 

of each cluster group within the localised region of porthole. 

Table 2. Clusters within the localised region of the porthole using k-means filtering method. 

Cluster 
Primary Feature 

Observed 

Mean 

Elevation (mm) 

Median 

Elevation (mm) 

Standard Deviation 

(mm) 

Group 2  Trapped rainwater  46.4  42.2  137.8 

Group 3  Porthole structure  355.7  377.3  115.6 

Group 7  Membrane cover  366.4  384.2  80.1 

The comparisons of the different filtering methods on the elevation distributions of 

the localised region are shown in Figure 8. Referring to Table 3, the median filters resulted 

insignificant changes in their median values (with a maximum difference of 1.3%) com-

pared to the median value of the raw data. In contrast, both mean and Gaussian filters 

exhibited reductions in the median values (ranging from 5.6% to 15.2%). This decrease is 

attributed to their smoothing nature, which tends to blur or not preserve edges and finer 

details, particularly at larger window sizes. While it is evident that all methods can re-

move impulse-like noises, classical methods do not specifically filter out unwanted natu-

ral and man-made features, as their function is to smooth the entire surface elevation of 

the image. 

Table 3. Statistical measurements of different filtering methods on localised region of porthole. 

Filtering Method 
Mean 

Elevation (mm) 

Median 

Elevation (mm) 
Standard Deviation (mm) 

Raw  237.6  306.3  187.1 

k-means filtering  366.4  384.2  80.1 

Median (size 3)  237.3  304.5  183.0 

Median (size 7)  241.3  302.4  172.1 

Median (size 15)  249.4  302.3  161.4 

Mean (size 5)  236.8  284.4  171.4 

Mean (size 7)  237.5  259.7  161.5 

Gauss (2σ)  236.9  289.0  172.4 

Gauss (5σ)  237.8  263.9  160.8 
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Table 2. Clusters within the localised region of the porthole using k-means filtering method.

Cluster Primary Feature
Observed

Mean
Elevation (mm)

Median
Elevation (mm)

Standard
Deviation (mm)

Group 2 Trapped rainwater 46.4 42.2 137.8

Group 3 Porthole structure 355.7 377.3 115.6

Group 7 Membrane cover 366.4 384.2 80.1
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Table 3. Statistical measurements of different filtering methods on localised region of porthole.

Filtering Method Mean
Elevation (mm)

Median
Elevation (mm)

Standard Deviation
(mm)

Raw 237.6 306.3 187.1

k-means filtering 366.4 384.2 80.1

Median (size 3) 237.3 304.5 183.0

Median (size 7) 241.3 302.4 172.1

Median (size 15) 249.4 302.3 161.4

Mean (size 5) 236.8 284.4 171.4

Mean (size 7) 237.5 259.7 161.5

Gauss (2σ) 236.9 289.0 172.4

Gauss (5σ) 237.8 263.9 160.8

3.2. Correlation between Scum Hardness and Floating Cover Elevation

In this section, the correlations between scum hardness and floating elevation, consid-
ering both raw and filtered elevation data, are presented. The elevation distributions for
each scum hardness level before and after applying median and k-means filtering methods
are shown in Figure 9. As indicated in Table 4, the k-means filtering method resulted in an
average reduction of 32.9% in the filtered data for each scum hardness, while the median
filter showed a negligible reduction of less than 1.7% due to the presence of null (NaN)
data due to the filtering process. There were no significant differences, with a maximum
difference of 2%, in the relative proportion of data in scum hardness levels between the
filtered data and the raw data. This suggests that the removal of artefacts through the
filter methods did not significantly impact the proportion of each scum hardness relative
to the raw data. Therefore, it is considered appropriate to compare the scum hardness
distributions between the filtered data and the raw data since the relative proportions
remain relatively consistent.
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filtered data.
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Table 4. Statistics of elevations on different scum hardness levels for raw, median filtered, and
k-means filtered data.

Hardness Mean
(mm)

Standard Deviation
(mm) % Relative Proportion of Data % Proportion of Outlier % Filtered Data

Relative to Raw Data

Raw Median-
15 k-means Raw Median-

15 k-means Raw Median-
15 k-means Raw Median-

15 k-means Median-
15 k-means

H 664.2 661.1 683.5 184.3 170.7 152.2 15.9% 15.9% 17.5% 0.8% 0.5% 0.2% 98.6% 70.7%

MH 533.5 531.2 515.2 204 196.1 150.4 5.2% 5.2% 5.1% 2.7% 2.3% 1.3% 99.1% 65.1%

M 318.6 317.6 296.4 170.1 165.4 115.6 7.4% 7.5% 8.9% 4.9% 5.0% 0.7% 100.0% 77.9%

MS 466.5 464.5 432.6 173.1 162.6 106.2 1.5% 1.5% 1.3% 9.3% 9.6% 5.7% 100.0% 62.3%

S 250.8 249.9 227.1 186.3 182.5 133.1 8.2% 8.3% 8.8% 5.3% 5.4% 1.9% 100.0% 72.1%

F 99.8 95.6 75.7 138.5 130 85.1 16.7% 16.8% 16.0% 10.1% 10.9% 6.4% 99.6% 63.9%

WF 178.7 177.6 154.2 128.2 121.3 48.1 5.2% 5.3% 4.6% 10.2% 9.9% 2.7% 100.0% 59.0%

W 83.7 71.1 50.7 162.7 130.6 86.8 39.8% 39.5% 37.7% 11.2% 11.2% 6.2% 98.3% 65.5%

There were 3% to 8% differences in the mean values of soft to hard scum hardness
levels between the k-means filtered data and the raw data, as indicated in Table 4. However,
fluffy and water scum hardness levels exhibited larger mean differences, at 24.1% and 39.4%
relative to the raw data, respectively. In comparison to the median filter, the majority of
the mean differences were less than 0.6%, except for fluffy and water scum hardness levels,
which showed 4.4% and 17.7% mean differences relative to the raw data, respectively.

The k-means filtered data showed a significant average reduction of 59.4% in the
proportion of outliers compared to the outliers of raw data. Particularly, the hard and
medium scum hardness levels exhibited substantial reductions of 80.2% and 85.4% in
the proportion of outliers relative to those of raw data, respectively. This reduction was
attributed to the removal of large water bodies, which were predominantly present in
these regions. In contrast, when considering the median filtered data, the most substantial
reductions in the proportion of outliers were observed in the hard, medium, and fluffy scum
hardness, with reductions of 37.4%, 14.9%, and 7.0%, respectively, relative to those of raw
data. Conversely, the remaining scum hardness levels exhibited relative reductions of less
than 3.5%. The k-means filtered data also showed an average reduction of 36.3% in standard
deviation relative to the standard deviation of raw data, with significant relative standard
deviation reductions of 62.5% and 46.7% observed in the water–fluffy and fluffy scum
hardness levels, respectively. These reductions were attributed to the removal of ballast,
the water surrounding the ballast, and debris/dirt, which were prevalent in these regions.
For the median filter, the majority of scum hardness levels showed outlier reductions of
less than 7.4% relative to those of raw data, except for the water scum hardness, which
exhibited a significant relative outlier reduction of 19.7%. Similar to the previous findings,
it was observed that the median filter is efficient in removing impulse noises from raw data.
However, the k-means filtering method exhibits notable effectiveness in its ability to filter
unwanted features, including those that contain significant noises, resulting in reduced
variance and fewer outliers in elevation distributions.

Furthermore, Spearman’s correlation analysis revealed strong and highly significant
correlation coefficients between scum hardness and elevation for the raw data, median
filtered data, and k-means filtered data, with values of 0.719, 0.746, and 0.813, respectively.
These coefficients indicated a monotonic relationship between scum hardness and elevation.
Notably, the coefficient of correlation strength was lower in the raw data due to the
presence of noise and artefacts. However, the k-means filtered data showed a significant
improvement of 13.1% in correlation strength compared to a 3.6% improvement with the
median filtered data.

4. Discussion

The preceding findings underscore the capability of this method to attain a more
precise assessment of scum hardness and the elevation of the floating cover. The research
objective was to employ inspection parameters, such as DEMs and orthomosaics, to make
informed decisions that ensure the cover maintains its structural integrity. The findings
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reveal clear associations between scum hardness and elevation, and support the advantages
of effectively filtering unwanted features. Both filters demonstrated their capacity to miti-
gate irrelevant data points, thereby improving data quality for uncovering the association
with scum hardness. This is demonstrated by the significant increase in correlation strength
achieved through the use of the k-means filtering method to remove artefacts, which consti-
tute approximately 16% of the total asset. Particularly in studies where unwanted natural
features can have a significant influence on the results, the k-means filtering method offers a
convenient way to identify these features for removal. The analysis suggests that the consis-
tency of scums influences the height of the floating cover, which may have implications for
the asset’s structural integrity. This highlights the necessity for the further understanding
and management of scum to maintain the asset effectively.

The preceding findings highlight the advantages of the k-means filtering method,
which utilises machine learning techniques to efficiently group features based on their
parameter similarity without relying on pre-existing knowledge of the data. This capability
facilitates the rapid identification of clusters associated with the features of interest through
visual inspection. It eliminates the need for conventional methods that require defining
functions or dependencies, especially those related to spatial characteristics, as commonly
seen in most smoothing filters. In this particular study, a substantial proportion of the
image is dedicated to the elevation of the floating cover, with only small portions of the
image occupied by the unwanted features. This allows a simple thresholding approach
to remove clusters with lower proportions of the image. Furthermore, the effectiveness
of the k-means filtering method in reducing noise and artefacts was exemplified by the
significant reduction in outliers and standard deviation compared to classical filtering
methods. In particular, water features have been observed to be the primary artefacts
where impulse-like noises are concentrated. It should be noted that the classical methods
take into account the entire elevations, including those of the water surface. This does not
accurately represent cover, and, therefore, the removal of water features is deemed crucial
in this study.

The present work only included the image processing step of transforming the DEM
and orthomosaic to a global reference point. Further applications of morphology and
digital image processing techniques, such as contrast correction adjustment, can enhance
the quality of the image before performing k-means filtering. Nonetheless, the k-means
filtering method has demonstrated its robustness in effectively identifying distinct groups
associated with the membrane covers with different luminance characteristics (Groups 6
and 7), as well as unrelated image backgrounds (Group 5), without the need for extensive
preprocessing procedures. Group 5 was immediately excluded from the analysis due to the
primary objective of demonstrating the filtering of features specific to the asset. In the case
of extending the filtering process to the entire image, this approach would consequently
identify Group 5 as an undesirable feature as well.

It is important to acknowledge that errors may arise from variations in the scum
hardness survey, considering the time lapse of approximately a year between the survey
and DEM data. However, given the gradual increase in scum hardness over a long period
of time, it is reasonable to assume that the data are sufficiently reliable for the purpose
of this study. Additionally, there were substantial differences in sample sizes among the
scum hardness levels, with water scum hardness comprising more than 37% of the image
data, while medium-soft scum hardness accounts for less than 1.5%, as seen in Table 4 and
Figure 2. The considerably smaller sample size of medium-soft scum hardness may result
in underrepresentation and potentially unreliable estimates of statistical measurements.
Nevertheless, the inclusion of simultaneous surveys with the DEMs would be beneficial in
mitigating errors arising from temporal variation and providing additional data samples to
strengthen the validity of the results obtained from the analysis.

The filtering process relies on the clustering capability of k-means to effectively group
the features of interest. In this study, we employed the CH criterion for clustering validation
to quantitatively assess the quality of the clustering results. The advantage of the CH
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criterion lies in its capability to account for both the separation between clusters and the
cohesion within the clusters, thereby providing an overall assessment of clustering quality,
where a higher CH index indicates a more well-defined and compact clustering outcome.
As the CH criterion considers variance ratios, it is more robust in scenarios where clusters
exhibit complex geometry compared to other alternatives such as the elbow method and
silhouette plot. Upon applying this criterion, the kopt = 7 clusters exhibited visually
identifiable features, making them suitable for filtering purposes. In contrast, clusters with
a lower CH index, falling below kopt, did not capture less prevalent and complex features
(e.g., dirt), while those exceeding kopt yielded less meaningful groups that were challenging
to interpret, as illustrated in Figure 3. Therefore, a non-optimal number of clusters (lower
CH index) would render the k-means filtering method less robust and practical, as the
key advantages of this method lie in its ability to cluster interpretable features for filtering.
Further evaluation to analyse the quality of the clusters individually and globally can also
be carried out through the integration of multiple cluster validation methods; however, this
is beyond the scope of this work.

Furthermore, certain features (e.g., flotation) were not distinctly separated into groups.
This is attributed to overlapping patterns among data points related to the feature, which
makes achieving distinct separation difficult. To address this limitation and enhance the fil-
tering process, the integration of supplementary information, such as thermal imagery, can
provide valuable insights, enabling the better distinction and grouping of desired features
that may not be apparent from elevation and colour variables alone. While clustering was
effective for the prevalent feature of interest in this study, further consideration is needed
for less prevalent and more intricate features.

This comparative analysis, as well as the proposed k-means filtering method, are
designed for the specific application of anaerobic lagoon covers, and may not be universally
applicable. While the capabilities of the proposed method have been demonstrated, deter-
mining its suitability for other applications may require further investigation, modification,
and refinement. Furthermore, it should be noted that the k-means and the conventional
methods are not mutually exclusive, and they operate on different principles and appli-
cations. Hence, a direct comparison of their capabilities to filter noise and unwanted
artifacts is rather difficult. Nevertheless, for this specific study application, the intention is
to showcase a machine learning approach and its additional capabilities as opposed to the
currently existing methods in practice.

Another aspect of this research involves employing data-driven learning algorithms
to predict biogas performance using historical operational data from the WTP [5,6]. Fur-
thermore, incorporating filtered DEMs and orthomosaics are highly beneficial in enhancing
these machine learning models. The outcomes of this work also lay the groundwork for
future machine learning endeavours, enabling models to incorporate the spatial character-
istics of the asset and effectively account for elevation variations.

In future work, efforts will be directed towards enhancing the data quality and incor-
porating additional information to further improve the filtering process. Moreover, the
focus will be on developing a deep learning model for asset performance and monitoring,
leveraging the advancements in machine learning techniques.

5. Conclusions

In this study, an unsupervised machine learning method was demonstrated to effec-
tively identify features from DEM and orthomosaic images of anaerobic lagoon floating
covers, allowing the subsequent filtering of unwanted artefacts unrelated to the elevation
of the floating cover. The k-means filtering method was proposed with the purpose of
enabling the visual identification and removal of unwanted features, facilitating subsequent
analysis of the scum hardness association. The proposed method was compared to existing
filtering methods applied to DEMs of anaerobic lagoons in the industry. First, the k-means
clustering algorithm was applied, utilising the elevation of the DEM and the three colour
channels of the orthomosaic image. The findings highlighted significant improvements
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when employing the k-means filtering method, including a substantial average reduction
of 59.4% in the proportion of outliers and a decrease of 36.3% in standard deviation com-
pared to the raw data. These reductions were specifically attributed to the elimination of
unwanted natural features and man-made objects such as trapped rainwater, debris, and
ballast, which cannot be effectively identified by the classical filtering methods. Further-
more, the coefficient of correlation strength exhibited an approximate 13.1% improvement
with the use of k-means filtered data, while a 3.6% improvement was observed with a
median filter using a window size of 15. The k-means filtering method is more intuitive,
simpler, and more user-friendly alternative compared to employing advanced classical
filtering methods that require the pre-definitions of artefacts characteristics and param-
eters. Additionally, the proposed approach has the capacity to integrate additional data
information, making it suitable for industries seeking to leverage new data sources. Future
considerations encompass the processing of remote aerial imagery to develop artificial-
intelligence-enabled models for autonomously regulating asset performance and ensuring
structural integrity, thus transforming the assets at WTP into smart structures.
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