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Abstract: Direction of arrival (DOA) estimation with nested arrays has been widely investigated in
the field of array signal processing, but most studies assume that the noise is Gaussian white noise.
In practical situations, there may exist impulsive noise (a kind of heavy-tailed noise), wherein the
performance of traditional subspace-based DOA estimation algorithms deteriorates significantly. In
this paper, we propose a correlation entropy-based infinite norm preprocessing algorithm, which can
be applicable to any type of impulsive noise. Each snapshot of the sensor array data is processed by
an exponential kernel function with the infinite norm, which can effectively combat the outliers. Fur-
thermore, we construct the equivalent second-order covariance matrix and perform DOA estimation
using classical subspace methods. Simulation results demonstrate the effectiveness of the proposed
method for both symmetric α-stable distribution and the Gaussian mixture model.

Keywords: direction of arrival (DOA) estimation; impulsive noise; exponential kernel function

1. Introduction

Direction of arrival (DOA) estimation has been a research hotspot in array signal
processing, which is widely used in wireless communication, sonar, radar, and electronic
reconnaissance [1,2]. Some classical DOA estimation algorithms based on subspace classes
include multiple signal classification (MUSIC) [3], thereby estimating the signal parameter
via rotational invariance techniques (ESPRIT) [4], maximum likelihood (ML) [5] algorithms,
etc. In addition, compressive sensing-based methods [6,7] and sparsity-based DOA esti-
mation algorithms [8–11] have also been proposed to solve the problem of grid mismatch.
However, all of the abovementioned traditional methods investigate DOA estimation under
the assumption of additive Gaussian noise. In practical engineering applications, noise,
such as astronomical noise generated in the atmosphere, sparking noise generated by
vehicles, electrical and industrial equipment operation noise, etc., will exhibit impulsive
and time domain-sparse characteristics [12]. This type of noise is called impulsive noise,
which has neither second-order statistics nor higher-order cumulants and cannot be directly
processed by the traditional second-order statistics-based methods.

To suppress the outliers of the impulsive noise, the robust covariation-based MUSIC
(ROC-MUSIC, [13]) DOA estimation method exploits the covariation matrix of the array
sensor outputs and assumes that the signal and additive noise obey a joint symmetric α-
stable (SαS, [14]) distribution. In practice, ROC-MUSIC can also be considered as a method
based on fractional-order low-order moments (FLOM, [15]). However, it is unrealistic for
the signal and the additive noise to jointly obey the SαS distribution, because a practical
signal always has finite variance, while the signal that obeys the SαS distribution has infinite
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variance. In [16]. The sign covariance matrix MUSIC (SCM-MUSIC) method can obtain a
convergent estimation of the signal and noise subspaces, which solves the problem that
the FLOM-like methods are only applicable to 1 < α < 2. A new subspace algorithm
based on phased fractional low-order moments (PFLOM) was proposed in [17], which can
obtain better performance for 0 < α < 1. The infinity norm normalization MUSIC (IN-
MUSIC, [18]) and zero-memory nonlinear (ZMNL, [19]) methods have been proposed to
limit the influence of impulsive noise by pruning the amplitude of the received array signal.
The IN-MUSIC method provides a more accurate DOA estimation than the FLOM, PFLOM,
and SCM methods. However, its performance may deteriorate as the signal subspace
rank increases. Recently, based on the correlation entropy property, a series of methods
have been proposed to combat impulsive noise, such as correntropy-based correlation
(CRCO, [20]), generalized autocorrentropy (GCO, [21]), and operator and generalized
maximum complex correntropy criterion (GMCCC, [22]). In addition, sparse representation
methods [23], as well as sparse Bayesian learning (SBL, [24,25]) methods have also been
developed for DOA estimation in the presence of impulsive noise. Nevertheless, only
traditional uniform linear arrays (ULAs) are considered in the above mentioned methods,
thus resulting in a limited estimation accuracy.

Sparse arrays have attracted much attention by increasing the degrees of freedom
(DOFs) for DOA estimation [26–29], such as the super nested array (SNA, [26,27]), aug-
mented nested array (ANA, [28]) and dilated nested array (DNA, [29]). In [30], a sparse
array DOA estimation algorithm based on structured correlation reconstruction was pro-
posed, which implements Nyquist space filling on the physical array and performs a
compressive transformation on the equivalent filled array to ensure its general applicability
and estimation accuracy. In [31], the authors proposed a coarray tensor DOA estimation
algorithm for sparse arrays with multidimensional structures. Nevertheless, the above-
mentioned methods do not consider the case where the received signal is interfered by
the impulsive noise. Based on this, the sparse array technique [32–35] has also been ex-
tended to the impulsive noise scenario [36,37]. In these methods [36,37], the original signal
covariance matrix is replaced by the PFLOM matrix in combination with the sparse array
technique. Alternatively, we found that it is feasible to replace the PFLOM matrix with
fractional-order low-order statistics (FLOSs), such as ROC, FLOM, PFLOM. However, the
FLOSs-based methods require a priori knowledge of the impulsive characteristic exponent
α and involve the choice of unknown parameters (e.g., the order moment parameter p),
and the uncertainty of the order moment parameter causes instability in the algorithm
performance.

In this paper, we propose a correlation entropy-based infinite norm (Co-IN) strategy
to combat the impulsive noise outliers. This strategy belongs to the data-adaptive zero-
memory (DA-ZM) algorithmic class and has the following characteristics: (1) It is “blind”
and does not require any a priori knowledge of “heavy-tailed” noise statistics. (2) It is
applicable to any impulsive noise model, including SαS distributions and Gaussian mixture
models. (3) It can estimate parameters from impulsive noise-disturbed data by utilizing
a second-order statistics-based algorithm. (4) It is data-adaptive and zero-memory, and
it does not require prior information retention or linkage to other snapshots. The main
contributions are as follows:

• We propose a data-adaptive zero-memory exponential infinity norm strategy based
on correlation entropy to suppress the impulsive noise outliers without the prior
information of impulsive noise.

• We analyze the pseudocovariance matrix of the processed signal data and prove its
boundedness.

• We extend the proposed Co-IN method to the nested array scenario [34].

2. Signal Models with a Nested Array Structure

Consider Q far-field independent narrowband signals impinging on a nested array
(shown in Figure 1) with DOA θq, q = 1, 2, · · · , Q. The nested array is composed of two
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uniform linear arrays (ULAs) with element spacings of l1 and l2 = (N1 + 1)l1, respectively.
Assuming that the first array element of the first subarray is the reference point, the locations
of the array sensors are then given by

Reference sensor
... ...

( )qs t

q

( )qs t

0    l1     2l1      …   (N1-1)l1   N1l1             N1l1+l2     N1l1+2l2  …    N1l1+l2(N2-1)

Figure 1. Nested array model.

L = {nl1|0 6 n 6 N1−1}∪{N1l1 + ml2|0 6 m 6 N2−1}
=
{

Lp|p = 1, 2, · · · , N1 + N2, L1 = 0
}

,
(1)

where N1, N2 ∈ N, l1 = λ/2, and λ are the carrier wavelengths of incoming signals. The
array output (t = 1, 2, · · · , Ts with Ts being the number of snapshots) is

z(t) =
Q

∑
q=1

a
(
θq
)
sq(t) + n(t) = As(t) + n(t), (2)

where z(t) =
[
z1(t), z2(t), · · · , zN1+N2(t)

]T is the received data vector with the transpose
operation (·)T ; A =

[
a(θ1), · · · , a

(
θq
)
, · · · , a

(
θQ
)]

is the directional matrix with the steering

vector a
(
θq
)
=
[
1, e−j2πL2 sin θq/λ, · · · , e−j2πLN1+N2 sin θq/λ

]T
; s(t) =

[
s1(t), · · · , sQ(t)

]T is

the signal source vector, and n(t) =
[
n1(t), n2(t), · · · , nN1+N2(t)

]T is the impulsive noise
term obeying α-stable distribution [12] or the Gaussian mixture model (GMM) [19].

Since impulsive noise does not have second-order statistics, subspace-based DOA
estimation methods, such as MUSIC [3] and ESPRIT [4], will fail in the scenario of impulsive
noise. Therefore, it is essential to develop a method for recovering the virtual equivalent
second-order statistics that are applicable to any impulsive noise scenario.

3. Proposed Method
3.1. Correlation Entropy-Based Infinite Norm (Co-IN) Strategy

Motivated by the information theory, the correlation entropy of two random vectors x
and y can be defined as

cσ(x, y) = E{κσ(x− y)}, (3)

where κσ(·) is a kernal function, such as an exponential kernel, a Gaussian kernel, or a Lapla-
cian kernel [21], and E{·} is the mathematical expectation operation. The correlation entropy can
convey information about the correlations and statistical distributions of random variables.

Since the received data contain outliers, we propose an autocorrelation entropy (ACE)
operator based on the following exponential kernel function

κσ(x) = e−
|x|

2σ2 , (4)
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where x is a scalar, σ is the size of kernal, and |·| is the modulus operator. The ACE operator
for the received array data in Equation (2) can be expressed as

κσ(z(t)) =

[
e−
|z1(t)|

2σ2 , e−
|z2(t)|

2σ2 , · · · , e−
|zN1+N2

(t)|
2σ2

]T

. (5)

For a finite number of data samples, we have

cσ(Z) = E{κσ(z(t))} =

1
Ts

[
Ts

∑
t=1

e−
|z1(t)|

2σ2 ,
Ts

∑
t=1

e−
|z2(t)|

2σ2 , · · · ,
Ts

∑
t=1

e−
|zN1+N2

(t)|
2σ2

]T

,
(6)

where cσ(Z) ∈ C(N1+N2)×1 is a vector.
Subsequently, we consider that the noise follows the symmetric α-stable (SαS) dis-

tribution or the GMM. A histogram with 1000 samples of these two noise distributions
is shown in Figure 2a and Figure 2b, respectively. For the SαS noise simulation, α = 1.2,
and the dispersion parameter γ = 0.1. In the GMM, it consists of two Gaussian noises
with σ2

2 = 100σ2
1 , and the weighting coefficients of the two terms are c1 = 0.9 and c2 = 0.1,

respectively. Figure 2a,b show that the amplitudes of a large number of samples are around
zero in all the sample data for both noises, while significant outliers are present in only a
limited number of samples. In this paper, we propose a correlation entropy-based infinite
norm (Co-IN) strategy that does not require any prior information about the noise, which
utilizes an exponential infinity norm to compress the outliers of impulsive noise.

Definition 1. Assuming that z(t) is the received array data with impulsive noise, and z(t) can be
normalized as

y(t) = w(t)z(t), (7)

with

w(t) = e
−
∥∥∥∥ |z(t)|2σ2

t

∥∥∥∥
∞

= e
−max

{
|z1(t)|

2σ2
t

, |z2(t)|
2σ2

t
,··· ,
|zN1+N2

(t)|
2σ2

t

}
,

(8)

and the adaptive kernel size function σt satisfies

σt =
2π

3(1 + e−Ht)
, t = 1, 2, · · · , Ts, (9)

where Ht is the local entropy for the t-th snapshot, which is defined as

Ht = −∑N1+N2
i=1 fit log( fit), (10)

fit =
|zi(t)|

∑N1+N2
k=1 |zk(t)|

. (11)

Then, the pseudocovariance matrix can be constructed from the Ts samples as follows

RCo-IN =
1
Ts

∑Ts
t=1 y(t)yH(t), (12)

and RCo-IN is bounded; the proof is provided in Appendix A.
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Figure 2. Histogram of 1000 samples for SαS noise and GMM noise (the horizontal coordinate
indicates the amplitude of the received signal samples, and the vertical coordinate represents the
number of samples). (a) Histogram of SαS noise. (b) Histogram of GMM noise.

3.2. Statistical Analysis of the Co-IN Strategy

The proposed Co-IN strategy can guarantee the zero spatial crosscorrelation of the
input noise, provided that the prenormalized impulsive noise follows a spherically sym-
metrical distribution (This section demonstrates that the proposed Co-IN strategy nor-
malization method preserves the zero spatial crosscorrelation of input noise when the
prenormalized noise exhibits a spherically symmetrical distribution on the complex plane,
along with defined mean and variance parameters. Examples of such impulse noises are
complex value SαS noise, as well as special cases of complex-value Gaussian noises and
complex-value Gaussian mixture noises, which have many applications in signal processing
and communication, such as the noise in telephone circuits, anthropogenic and natural
impulsive noise, underwater acoustic signals, and low-frequency atmospheric noise. For
details, we can refer to reference [12]) on the complex plane, as has been discussed in [18].
Thus, the prenormalized impulsive noise has no pseudocorrelation between the noise
subspace and the signal subspace.

Corollary 1. Considering an independent and SαS (N1 + N2)× 1 impulsive noise n(t), there is
no signal; then, z(t) = n(t), i.e., y(t) = w(t)n(t). Then, the proposed Co-IN strategy would give

E{y(t)} = 0, (13)

0 means an all-zeros vector, and

E
{

y(t)yH(t)
}
= D, (14)

where D is a diagonal matrix with finite entries.
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Proof. Because w(t) is real-valued, w(t)ni(t) is spherically symmetrical, so E{w(t)ni(t)} =
0, ∀i = 1, · · · , N1 + N2, and Equation (13) holds.

In the autocorrelation of the noise component, then

E{yi(t)y∗i (t)}
= E{w(t)ni(t)w∗(t)n∗i (t)}

= E
{

w2(t)|ni(t)|2
}

6 E
{

e
− |ni(t)|

σ2
t · |ni(t)|2

σ4
t
· σ4

t

}
,

(15)

where (·)∗ is the conjugate operation, and e
− |ni(t)|

σ2
t × |ni(t)|2

σ4
t
×σ4

t 6 4σ4
t

e2 ; thus, E
{

w2(t)|ni(t)|2
}

has a finite value.
Similarly, for ∀i, j ∈ 1, 2, · · · , N1 + N2 and i 6= j, we have

E
{

yi(t)y∗j (t)
}

= E
{

w(t)ni(t)
(
w(t)nj(t)

)∗}
= E{w(t)ni(t)}E

{(
w(t)nj(t)

)∗}
= 0.

(16)

Then, Equation (14) is proven.

Corollary 2. Considering an independent and SαS (N1 + N2)× 1 impulsive noise n(t), according
to Equations (2) and (7), we have y(t) = w(t)(As(t) + n(t)). Then, the pseudocovariance matrix
of the proposed Co-IN strategy can be expressed as

RCo-IN = AΦSAH + κIN1+N2 , (17)

where A is the directional matrix defined in Equation (2), κ is a constant, IN1+N2 is the identity
matrix, and ΦS is the diagonal matrix of the signal vector.

Proof. RCo-IN is a (N1 + N2)× (N1 + N2) matrix; the (i, j)-th element is

R(i,j)
Co-IN = E

{
yi(t)yH

j (t)
}

= E
{

w(t)zi(t)w∗(t)z∗j (t)
}

.
(18)
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Substituting zi(t) =
Q
∑

q=1
e
−j2πLi sin θq

λ sq(t) + ni(t) and zj(t) =
Q
∑

p=1
e
−j2πLj sin θp

λ sp(t) + nj(t)

into Equation (18), we then have

R(i,j)
Co-IN = E


w2(t)

(
Q

∑
q=1

e
−j2πLi sin θq

λ sq(t) + ni(t)

)

×
(

Q

∑
p=1

e
−j2πLj sin θp

λ sp(t) + nj(t)

)∗


=
Q

∑
q=1

e
−j2πLi sin θq

λ ×E
{

w2(t)sq(t)

(
Q

∑
p=1

e
−j2πLj sin θp

λ sp(t) + nj(t)

)∗}

+E
{

w2(t)ni(t)

(
Q

∑
p=1

e
−j2πLj sin θp

λ sp(t) + nj(t)

)∗}
.

(19)

Since the noise and signal are independent of each other, it has the following prop-
erty: ∀i 6= j, E

{
ni(t)nj(t)∗

}
= 0, E

{
si(t)sj(t)∗

}
= 0, and ∀i, j,E

{
si(t)nj(t)∗

}
= 0,

E
{

ni(t)sj(t)∗
}
= 0. We can obtain

R(i,j)
Co-IN =

Q

∑
q=1

e
−j2πLi sin θq

λ E
{

w2(t)sq(t)
Q

∑
p=1

e
j2πLj sin θp

λ s∗p(t)

}
+E
{

w2(t)ni(t)n∗j (t)
}

=
Q

∑
q=1

e
−j2πLi sin θq

λ E
{

w2(t)sq(t)s∗q(t)
}

e
j2πLj sin θq

λ + κδij

=
Q

∑
q=1

e
−j2πLi sin θq

λ φqe
j2πLj sin θq

λ + κδij

= AiΦSAH
j + κδij,

(20)

where ΦS = diag
{

φ1, · · · , φQ
}

is the signal covariance matrix, φq = E
{

w2(t)sq(t)s∗q(t)
}

,

and κ = E
{

w2(t)ni(t)n∗j (t)
}

; δij is the Kronecker delta function and Ai is the i-th row of
elements of A.

Then, the pseudocovariance matrix can be written as

RCo-IN =
[
A1; · · · ; AN1+N2

]
ΦS

[
AH

1 , · · · , AH
N1+N2

]
+ κIN1+N2

= AΦSAH + κIN1+N2 .
(21)

Thus, Equation (17) holds.

3.3. Algorithm Flow of Co-IN Strategy

By vectorizing Equation (17), a virtual single snapshot vector can be obtained as
follows:

r = vec(RCo-IN) = Ãb + vec
(
κIN1+N2

)
, (22)

where Ã =
[
a∗(θ1)⊗ a(θ1), · · · , a∗

(
θQ
)
⊗ a
(
θQ
)]

, with⊗ being the Kronecker product; b is
the equivalent single snapshot signal power, whose elements are the diagonal entries of ΦS.
According to [34], the virtual difference coarray vector r contains redundant information.
Therefore, by removing the redundant terms, we can obtain

r̃ = Ã1b̃ + κ̃, (23)
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with the directional matrix Ã1, thereby corresponding to a ULA with sensor positons
[−M, M], where M = N1N2 + N2 − 1. κ̃ is a vector obtained by removing the redundancy
in vec

(
κIN1+N2

)
. Since r̃ is a single snapshot vector, the spatial smoothing method should

be applied. r̃ can be divided into M overlapping subarrays r̃m = r̃(m : m + M− 1, :),
m = 1, · · · , M. Then, a new covariance matrix with a recovered rank can be obtained by

Rnew =
1
M

M

∑
m=1

r̃m r̃H
m . (24)

Consequently, by performing the eigenvalue decomposition (EVD) of Rnew, DOA
estimation can be obtained by using the corresponding subspace-based algorithm. In this
paper, we utilize the total least square ESPRIT (TLS-ESPRIT, [4]) algorithm to estimate the
DOAs of the signals, and the pseudoprocedure of the proposed Co-IN method is provided
in Algorithm 1.

Algorithm 1: Proposed Co-IN method.

Input: z(t) ∈ C(N1+N2)×1, t = 1, 2, · · · , Ts;
for t = 1 : Ts do

Calculate the local information entropy Ht according to Equation (10);
Calculate the adaptive kernel according to Equation (9);
Calculate the memoryless normalized weights w(t) according to Equation (8);
Calculate the normalized received data: y(t) = w(t)z(t).

end
1: Construct the pseudo-covariance matrix RCo-IN and obtain the new covariance

matrix Rnew according to Equations (13) and (24), respectively.
2: Perform an EVD operation on Rnew to obtain the signal subspace
Es =

[
e1, e2, · · · , eQ

]
spanned by the eigenvectors corresponding to the first Q

eigenvalues.
3: Decompose Es to Ex and Ey, as follows

Es =

[
Ex

The last row of Es

]
=

[
The first row of Es

Ey

]
.

4: Construct a new signal matrix Ẽ =
[
Ex, Ey

]
, and calculate R̃ = ẼHẼ ∈ C2Q×2Q;

5: Perform EVD on R̃ to obtain the matrix of eigenvectors EV , which is
decomposed to

EV =

[
E1 Gx
E2 Gy

]
, and E1, E2, Gx, Gy ∈ CQ×Q.

6: Calculate ψ = −GxG−1
y ;

7: Perform EVD on ψ to obtain the eigenvalue ψq, q = 1, 2, · · · , Q;

8: Estimate the DOAs: θq = − arcsin
(

angle(ψq)
π

)
· 180◦

π , q = 1, 2, · · · , Q.

Output: The estimated DOAs θq, q = 1, 2, · · · , Q.

4. Simulation Results

In this section, the proposed Co-IN method is compared with some recently reported
methods in the case of impulsive noise, such as the SCM [16], IN [18], ZMNL [19], GCO [21],
and Toeplitz-PFLOM [36] methods. These various methods are applied to DOA estimation
using the TLS-ESPRIT method. Impulsive noise is spatiotemporally uncorrelated and obeys
the SαS distribution or the Gaussian mixture model.

To evaluate the performance of the proposed algorithm and other methods, the root
mean square error (RMSE) is defined as

RMSE =

√√√√ 1
MC

MC

∑
j=1

1
Q

Q

∑
q=1

(
θ̃qj − θq

)2, (25)
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where θ̃qj denotes the DOA estimation of the q-th source θq at the j-th Monte Carlo (MC)
experiment.

4.1. Complexity Analysis

In this section, the number of multiplications of the real (or complex) values is consid-
ered as a complexity criterion. The computational complexity of the proposed algorithm
mainly includes the computation of the new covariance matrix Rnew of O

{
(N1N2 + N2)

3},
the complexity of the local correlation entropy Ht of O{2PTs}, the complexity of the adap-
tive kernel function σt of O{Ts}, the complexity of the weight function w(t) of O{Ts}, the
complexity of the normalized received array data y(t) of O{PTs}, and the complexity of
the pseudocovariance matrix RCo-IN of O

{
P2Ts

}
, with a total computational complexity

of O
{
(N1N2 + N2)

3 + (P2 + 3P + 2)Ts
}

. For the proposed Co-IN algorithm with ULA, it
has a total computational complexity of O

{
(P2 + 3P + 2)Ts

}
. The main computational

complexity results of the proposed algorithm and other algorithms are given in Table 1.
It can be seen from Table 1 that the complexity of the proposed algorithm with ULA is
slightly higher than that of the IN, ZMNL, and SCM algorithms, but it is significantly
lower than those of the GCO and Toeplitz-FLOM methods. Moreover, the DOA estimation
performance of the proposed method can be verified in the later simulations.

Table 1. Complexity analysis of the covariance matrix before using TLS-ESPRIT.

Algorithm Total Computational
Complexity Remarks

IN with ULA [18] O
{
(P2 + P + 1)Ts

}
P = N1 + N2

GCO with ULA [21] O
{
(6P2 + 2P + 2)Ts

}
P = N1 + N2

ZMNL with ULA [19] O
{
(P2 + 2P + 2)Ts

}
P = N1 + N2

SCM with ULA [16] O
{
(P2 + 2P)Ts

}
P = N1 + N2

Toeplitz-FLOM with ECA [36] O
{
(MN + M)3 + 3P2Ts

}
P = 2M + N − 1

Proposed Co-IN with ULA O
{
(P2 + 3P + 2)Ts

}
P = N1 + N2

Proposed Co-IN with NA O
{
(N1N2 + N1)

3 + (P2 + 3P + 2)Ts
}

P = N1 + N2

4.2. SαS Impulsive Noise

The generalized signal-to-noise ratio (GSNR) of an impulsive noise with an SαS
distribution [12] is defined as

GSNR = 10 log

E
{
|s(t)|2

}
γ

, (26)

where γ is the dispersion parameter.
Consider two independent quadrature phase shift keying (QPSK) sources with DOAs

of 10◦ × rand(1, 2) + [−20◦, 15◦]. Other parameters are set as follows: the total number of
ULA is 10 (SCM, IN, GCO, ZMNL and Co-IN-ULA), the extended coprime array is 2M = 6
with N = 5 (Toeplitz-PFLOM), and the nested array is N1 = N2 = 5 (the proposed Co-IN
with NA). In addition, p = 0.9 is selected in the GCO method. In addition, to ensure a
fair comparison of the DOA estimation performance of different algorithms, we extended
all the above ULA-based algorithms to NA scenarios (where the total number of physical
sensors is always identical), which are denoted as SCM-NA, IN-NA, GCO-NA, ZMNL-NA,
and GCO-NA. The difference between these algorithms and the proposed algorithm lies
in the construction of the equivalent covariance matrix Equation (18), and all of them can
realize DOA estimation using the nested array technique.

Firstly, we considered the scenario where α is between 0.3 and 1.4, set GSNR = 4 dB,
set the snapshots to Ts = 400, and set MC = 1000; the simulation results of all the compared
algorithms are shown in Figure 3. As can be seen from Figure 3, the RMSE of all the
algorithms gradually decreased as α increased. Moreover, the RMSE of the proposed
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algorithms was smaller than that of the other compared methods for either ULA or NA
scenarios. From Figure 3b, it can be found that the GCO algorithm was more adaptable to
NA scenes compared to the ZMNL algorithm. Under the same intensity of impulsive noise,
the proposed algorithm provided better performance than the SCM, GCO, IN, ZMNL and
Toeplitz-PFLOM algorithms.

Then, we tested the RMSE performance of all the compared algorithms versus their
GSNRs and snapshots, where α = 0.8. As shown in Figure 4a, the proposed Co-IN algorithm
and IN-ULA algorithm had better estimation performance than other methods under the
same GSNR. Similar performance results can be observed in Figure 4c, where the number
of snapshots was variable. In addition, we extended the aforementioned comparison
algorithms to NA scenarios and compared the performance with the proposed Co-IN-NA
algorithm among different GSNRs and numbers of snapshots, as shown in Figure 4b,d.
As can be seen from Figure 4b,d, the RMSE of all the methods was significantly reduced
as compared to Figure 4a,c. Also, it can be observed that the SCM-NA, IN-NA, and the
proposed Co-IN-NA algorithms outperformed the other algorithms, where the proposed
algorithm has the best performance result.
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Figure 3. RMSE of DOA estimation versus α, where GSNR = 4 dB, Ts = 400, MC = 1000. (a) ULA.
(b) Nested arrays.
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Figure 4. RMSE of DOA estimation versus (a) GSNRs with ULA, where Ts = 400, MC = 1000.
(b) GSNRs with NA, where Ts = 400, MC = 1000, (c) Snapshots with ULA, where GSNR = 4 dB,
MC = 1000. (d) Snapshots with NA, where GSNR = 4 dB, MC = 1000.
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For the IN algorithm, the proposed Co-IN-ULA method shown in Figure 4a yielded
a slightly better performance with α = 0.8. To better represent the Co-IN algorithm’s
effectiveness, Figure 5 compares the two algorithms with impulsive noise in the α range
of 0.2 to 1.4; the GSNR was taken between −2 dB and 6 dB, and the other experimental
conditions were the same as in Figure 4. As Figure 5 shows, in the case of the ULA, the
Co-IN-ULA algorithm’s estimation accuracy was significantly higher than the IN algorithm
for the same values of α. Moreover, the proposed Co-IN algorithm was applicable to the
strongly impulsive noise environment.

R
M

S
E

(D
e

g
re

e
)

Figure 5. RMSE of DOA estimation versus α, Ts = 400, MC = 1000.

4.3. Gaussian Mixture Heavy-Tailed Noise

We adopted the two-term GMM [24] with the following probability density function:

pn(x) =
2

∑
h=1

ch

πσ2
h

exp

(
−|x|

2

σ2
h

)
(27)

where 0 6 ch 6 1 and σ2
h denote the probability and variance of the h-th Gaussian term,

respectively. We set σ2
2 = 100σ2

1 , c1 > c2 > 0, and c1 + c2 = 1. According to [24], the SNR
can be defined as

SNR =
E
{
|s(t)|2

}
σ2

1
. (28)

Figure 6a illustrates the RMSE performance results of the proposed algorithm com-
pared with other algorithms versus the SNRs in the GMM environment, and Figure 6c
shows the RMSE results for different numbers of snapshots. The GMM parameters were
c1 = 0.9, c2 = 0.1 and σ2

1 = 1, σ2
2 = 100, and the other parameters were consistent with the

simulation in Section 4.2. It can be seen from Figure 6a that the proposed Co-IN algorithm
had the best RMSE performance over its three competitors under noise following the same
SNR in the presence of the Gaussian mixture model. The RMSE performance versus the
number of snapshots shown in Figure 6c also verifies the superiority of the proposed
methods. Furthermore, Figure 6b,d show the RMSE results of the methods in Figure 6a,c
in the presence of nested arrays. It can be seen that in the context of nested arrays, the
performance of all the algorithms improved with the increase in the SNR or the number
of snapshots. From the figures, it can be seen that the proposed Co-IN-NA algorithm
outperformed the other algorithms, which also illustrates the effective resistance of the
Co-IN strategy against impulsive noise.
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Figure 6a shows that the RMSE of the Co-IN-ULA algorithm was similar to the IN
algorithm for the values of c2 = 0.1. To clarify the advantage of the proposed Co-IN
algorithm, we selected GMM noise with different parameters of c2 for comparison, as
shown in Figure 7, where c2 ranged from 0.04 to 0.36, the number of snapshots was
Ts = 400, MC = 1000, the sensor numbers of the ULA were 10, the SNR was taken between
−8dB and 0dB, and the other experimental conditions were the same as in Figure 6a.

The results in Figure 7 indicate that the proposed Co-IN algorithm can effectively
handle different components of Gaussian mixture heavy-tailed noise. In addition, the
Co-IN-ULA algorithm is a simple application of our proposed algorithm to the ULA. The
focus of our work is to propose the Co-IN-NA algorithm for nested array configurations.
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Figure 6. RMSE of DOA estimation versus (a) SNRs with ULA, where Ts = 400, MC = 1000. (b) SNRs
with NA, where Ts = 400, MC = 1000. (c) Snapshots with ULA, where SNR = 4 dB, MC = 1000.
(d) Snapshots with NA, where SNR = 4 dB, MC = 1000.
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Figure 7. RMSE of DOA estimation versus c2, Ts = 400, MC = 1000.

4.4. Underdetermined DOA Estimation

The ULA-based method is no longer applicable when the number of sources exceeds
the number of sensors, and only the Toeplitz-PFLOM (with degrees of freedom (DOFs)
M(N + 1)− 1) method could be considered in comparison with the proposed Co-IN-NA
(with DOFs N1(N2 + 1)− 1) method. In this simulation, the MUSIC pseudospectrums of
the proposed algorithm and Toeplitz-PFLOM were tested by different DOA values and α
values. The number of snapshots was 1000, and the GSNR = 20 dB; these settings were
defined in the following three cases:

Case 1: θ is taken between [−48◦, 48◦] with an interval of 8◦, Q = 13, and α = 0.5, 1.2.
Case 2: θ is taken between [−48◦, 48◦], with an interval of 6◦, Q = 17, and α = 0.5, 1.2.
Case 3: θ is taken between [−55◦, 55◦], with an interval of 5◦, Q = 23, and α = 0.5, 1.2.
Figures 8 and 9 show the MUSIC pseudospectrums of the proposed Co-IN-NA and

Toeplitz-PFLOM methods for different source numbers and characteristic exponents of
α. Figure 8 illustrates the performance of the Co-IN-NA and Toeplitz-PFLOM methods
for the number of sources (Q = 13) being slightly larger than the number of sensors
(2M + N − 1 = N1 + N2 = 10). The Co-IN-NA shown in Figure 8 provided an accurate
estimate, while the Toeplitz-PFLOM estimation had an incorrect peak at a small value of
α. Figure 9 shows the MUSIC spectrum with the number of sources (Q = 17) reaching
the upper limit estimated by the Toeplitz-PFLOM method (DOFs = 17). It can be seen that
the Toeplitz-PFLOM method showed a failure of the true DOA for different α values. By
comparison, the proposed Co-IN-NA method had improved estimation results. Compared
to Figure 9, Figure 10 shows the MUSIC spectrum for 23 sources; at this time, the Toeplitz-
PFLOM method was no longer working, while the Co-IN-NA method was still robust in
all cases.
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Figure 8. Case 1: (a) Toeplitz-PFLOM method with α = 0.5; (b) Co-IN-NA method with α = 0.5;
(c) Toeplitz-PFLOM method with α = 1.2; (d) Co-IN-NA method with α = 1.2. Where the dashed
line denotes the true DOAs.
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Figure 9. Case 2: (a) Toeplitz-PFLOM method with α = 0.5; (b) Co-IN-NA method with α = 0.5;
(c) Toeplitz-PFLOM method with α = 1.2; (d) Co-IN-NA method with α = 1.2. Where the dashed
line denotes the true DOAs.
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Figure 10. Case 3: (a) α = 0.5; (b) α = 1.2. Where the dashed line denotes the true DOAs.

In addition, we tested the performance of the Co-IN-NA algorithm for the different
number of sources. Figure 11 depicts the performance dependence of the proposed Co-
IN-NA algorithm on the number of sources, where the total number of array sensors was
set to 10, i.e., N1 = N2 = 5. In addition, the characteristic exponents were α = 0.6 and
α = 0.9, the number of snapshots was Ts = 400, and MC = 1000. Thanks to the advantage
of the nested array technique, it can be seen from Figure 11 that our method still obtained
satisfactory performance when the number of sources was Q = 12, 15. The RMSE was
within one degree when the GSNR > 2 dB. This simulation indicates the applicability of
the Co-IN-NA algorithm to the variation in source number. Further work will consider the
extension of the proposed algorithm to other sparse array scenarios.
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Figure 11. RMSE of DOA estimation versus different numbers of sources Q; Ts = 400; MC = 1000.
(a) α = 0.6; (b) α = 0.9.

5. Conclusions

In this paper, a correlation entropy-based infinite norm preprocessing algorithm was
proposed for DOA estimation with nested arrays in the presence of impulsive noise. The
proposed method utilizes an exponential kernel function for each snapshot of the sensor
received array data, which effectively suppresses the impulsive noise outliers and constructs
an equivalent covariance matrix. Not only doe this improve the accuracy and robustness of
the DOA estimation under impulsive noise, but it also can detect more sources than sensors.
Meanwhile, the proposed method does not require any prior knowledge of impulsive noise
information (e.g., the characteristic exponent α). Simulation results through two different
noise scenarios show that the proposed method outperformed the conventional IN, ZMNL
and SCM approaches and the recently reported GCO and Toeplitz-PFLOM methods in
DOA estimation. However, the work in this paper does not consider the mutual coupling
effect between the dense array elements, and it will be our future work to find out how to
efficiently decouple these elements.
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Appendix A

Proof of Equation (12). Let R(i,j)
Co-IN denote the (i, j)-th element of matrix RCo-IN; since

R(i,j)
Co-IN is a complex number, we prove separately that the real partR

{
R(i,j)

Co-IN

}
and imagi-

nary part I
{

R(i,j)
Co-IN

}
are bounded. According to Equations (18)–(20), we have

R
{

R(i,j)
Co-IN

}
= R

{
E
{

yi(t)y∗j (t)
}}

= R
{

AiΦSAH
j + κδij

} (A1)

For any complex number c,R{c} 6 |c|, we then have

R
{

AiΦSAH
j + κδij

}
6
∣∣∣AiΦSAH

j + κδij

∣∣∣
6
∣∣∣AiΦSAH

j

∣∣∣+ |κ|
(A2)

Under the assumption that the signal distribution has finite covariance, then ΦS is
bounded, i.e., ∣∣∣AiΦSAH

j

∣∣∣ < ∞, ∀i, j. (A3)

Hence, the boundness of R
{

R(i,j)
Co-IN

}
is limited to the boundness of |κ|. According

to Corollary 1, we have |κ| =
∣∣∣E{w2(t)ni(t)n∗j (t)

}∣∣∣ = ∣∣Di,j
∣∣ < ∞, where Di,j is the (i, j)-th

element of matrix D.
Thus,R

{
R(i,j)

Co-IN

}
< ∞ holds, i.e.,R

{
R(i,j)

Co-IN

}
is bounded. The proof of the imaginary

part I
{

R(i,j)
Co-IN

}
is the same as the real part.
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