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Abstract: As an important part of remote sensing data, weather radar plays an important role in
convective weather forecasts to reduce extreme precipitation disasters. The existing radar echo
extrapolation methods do not utilize the local natural characteristics of the radar echo effectively
but only roughly extract the whole characteristics of the radar echo. To address these challenges, we
design a spatiotemporal difference and generative adversarial fusion model (STDGAN). Specifically,
a spatiotemporal difference module (STD) is designed to extract local weather patterns and model
them in detail. In our model, spatiotemporal difference information and spatiotemporal features
captured by the model itself are fused together. In addition, our model is trained in a generative
adversarial network (GAN) framework; it helps to generate a clearer map of future radar echoes at the
image level. The discriminator consists of multi-scale feature extractors, which can simulate weather
models of various scales more completely. Finally, extrapolation experiments were conducted using
actual radar echo data from Shijiazhuang and Nanjing. The experiments have shown that our model
has a more accurate prediction performance for predicting local weather patterns and overall echo
change trajectories compared with previous research models. Our model achieved MSE, PSNE, and
SSIM values of 132.22, 37.87, and 0.796, respectively, on the Shijiazhuang radar echo dataset. In
addition, our model also showed better performance results on the Nanjing radar echo dataset. The
results show that the MSE was 49.570, the PSNR was 0.714, and the SSIM was 30.633. The CC value
was 0.855.

Keywords: radar extrapolation; generative adversarial network; difference; spatiotemporal fusion

1. Introduction

Extreme precipitation is one of the important factors causing natural disasters, which
has a profound impact on every aspect of people’s life. Accurate and timely forecasts of the
coming extreme precipitation can avoid economic losses and help protect people’s lives
and ensure the safety of property [1–6]. The precipitation forecast is a prediction of rainfall
(and other precipitation phenomena) in the next 1–2 h. It can provide timely and accurate
information for weather-related decisions in various departments. At the same time, it can
also improve public safety and reduce economic losses caused by extreme weather events
such as floods, landslides, and hail. Remote sensing data are an important data source
for observing meteorological phenomena. Among them, weather radar can effectively
observe precipitation. The precipitation retrieved by a radar echo series can forecast the
precipitation in the next 1–2 h. It can provide information about the development and
change in precipitation and help to correctly judge the possible impact of precipitation [7].
However, the spatiotemporal characteristics of the precipitation development process have
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great uncertainty because it involves the complex and nonlinear spatiotemporal dynamics
of precipitation phenomena [8]. This makes it difficult to model and predict accurately.
Traditional methods based on radar echo extrapolation include TREC, SCIT, and the optical
flow method [9–11]. TREC focuses on the prediction of the motion vector of the radar
echo mode, and it is widely used in ITWS, NIMROD, NCAR ANC, and other near forecast
systems. However, TREC is susceptible to cluttering and small-scale changes in the radar
echoes, resulting in distorted radar echo images. The SCIT algorithm can identify a strong
storm and predict the position of the next storm by linear extrapolation based on the
position of the center of mass of the storm in the past time. However, when radar echoes
fuse and split, the prediction accuracy decreases rapidly. Optical flow methods, such as
ROVER, calculate the optical flow field from the continuous time radar echo image. It
replaces the radar echo motion vector field with the optical flow field and pushes the radar
echo off-site based on the motion vector to achieve the proximity prediction. However, these
methods only infer the echo position of the next moment from the radar echo images of the
previous few moments; they ignore the motion nonlinearity of the small- and medium-scale
convective system in the actual radar echo. In recent years, deep learning methods have
been gradually applied to various fields, including the precipitation forecast business.
Compared with traditional radar echo extrapolation methods, methods based on deep
learning can independently learn the spatiotemporal features from the radar echo data
without relying on the features of physical assumptions.

We summarize the main causes of the forecasting dilemma as follows. First of all,
the changes of the atmospheric system are complex and diverse, full of uncertainty and
chaos. This is more challenging than the normal spatiotemporal series prediction task.
Moreover, because the results of the forecast will be used as a basis for the prediction of
the more distant future, this inevitably leads to large systematic errors that are constantly
iterated. Finally, as one of the motivations for this study, we believe that previous studies
have neglected local weather types with great forecasting value. This seriously affects the
trend prediction of overall weather conditions.

In this study, we propose a new spatiotemporal difference model based on a generative
adversarial network (STDGAN) for radar echo extrapolation. First, in the framework of
a generative adversarial network, a generator network is responsible for using the his-
torical radar echo sequence as an input to predict the future radar echo pattern, and a
discriminator network is responsible for distinguishing the predicted data from the real
future data. In addition, for the generator network, we integrate spatiotemporal differ-
ence signals into the structure of the cyclic unit (the basic unit of the RNN model) to
strengthen the spatiotemporal feature extraction and extrapolation ability of the model.
For the discriminator network, we use the multi-spatial scale feature extraction method to
effectively identify the large-scale and small-scale radar echo features and output category
information. Finally, the distance between the real data distribution and the predicted data
distribution is constrained by the loss function to generate a clearer and more detailed
radar echo map. In order to evaluate our network, we conducted extrapolation experiments
on the actual radar echo data provided by the Shijiazhuang Meteorological Bureau and
Nanjing University, which are more in line with the actual business needs.

The results show that our model can generate more accurate and detailed prediction
results than the previous models of radar echo extrapolation tasks, and it achieve the
best results.

2. Related Work

In recent years, deep learning technology has been widely applied to analyze, learn,
and reason uncertain problems in various fields [12–17]. Convective weather forecasting
is a series of forecasting problems based on time and space. Some scholars have applied
deep learning technology to weather forecasts and achieved satisfactory results. Traditional
algorithms such as the optical flow method have the advantages of a good real-time
performance and support from physical theory in radar echo extrapolation tasks [18,19].
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However, traditional algorithms are not general enough for radar echo extrapolation tasks
and cannot achieve automatic feature extraction. In contrast, deep learning technology
can make up for the shortcomings of traditional algorithms to a certain extent and can
adapt to complex and changeable environments. Spatiotemporal prediction based on
deep learning involves two important aspects: spatial correlation and temporal dynamics.
The performance of a prediction system depends on its memory and on the reasoning
ability of the relevant structural information.

The convolutional neural network method converts the input image sequence into one
or more frame image sequences on a certain channel [20]. Many scholars have proposed
implementation schemes based on this method. Kalchbrenner et al. proposed a probabilistic
video model called video pixel network (VPN) [21]. Xu et al. proposed a PredCNN network
that stacked multiple extended causal convolution layers [22]. Ayzel et al. proposed a
CNN model named DozhdyaNet [23]. Some works have introduced UNet [24] for radar
echo prediction. It was originally proposed in the field of medical image segmentation.
Specifically, RainNet [13] modified the network structure of the last layer of UNet to
adapt to pixel level radar echo prediction tasks. FURENet added two additional encoders
to UNet for multimodal learning [2]. In addition, SmaAt UNet [24] added attention
modules and deep separable convolutions on UNet [24]. Compared with the traditional
radar echo extrapolation method, the method based on convolutional neural networks can
make use of a large number of historical radar echo observation data to learn its spatial
variation law, including the strengthening and weakening process of rainfall intensity.
The convolutional neural network is not sensitive to the change in the time dimension, and
the prediction mode is relatively fixed. Therefore, the method based on neural networks
has some limitations and is not widely used in radar echo extrapolation.

At present, the neural network models used for radar echo extrapolation are mainly
image sequence prediction methods based on recurrent neural networks (RNNs). Shi et al.
proposed ConvLSTM to replace the Hadamard multiplier by using convolution operations
in LSTM internal transformations [1]. This extends the time series prediction task to the
spatiotemporal series prediction task and further extracts the spatiotemporal feature infor-
mation. Subsequently, many variations of ConvLSTM were proposed. TrajGRU introduced
the idea of the optical flow method to dynamically capture the movement trend of radar
echoes; however, this method would consume a lot of computing resources and training
speed [25]. PredRNN divides the originally unified memory state into spatial memory
and temporal memory [26]. Memory states in both directions participate in transforming
recursive units at the same time, thus further enhancing the ability of spatial information to
propagate in the spatiotemporal dimension. In addition, information is transmitted hori-
zontally and vertically through highway connections, which helps to model spatiotemporal
dynamics. In order to coordinate the learning of long and short frames, Wang et al. further
proposed PredRNN++ to increase the depth of recursive units and improve the modeling
ability of the model for spatiotemporal information in a cascading manner [27]. In order to
enhance the model’s ability to model higher-order dynamics, MIM introduced differential
signals to process nonstationary and stationary information [28]. MotionRNN inserts a Mo-
tionGRU between stacked PredRNN layers, which assumes that the physical world motion
can be decomposed into transient changes and motion trends [29]. Jing et al. designed a
hierarchical prediction RNN model for the long-term extrapolation of radar echoes, which
adopted a hierarchical prediction strategy and a coarse-to-fine cycle mechanism to reduce
the prediction errors accumulated over time in the long-term extrapolation [3]. However,
these models are all universal spatiotemporal series prediction models that do not take into
account the inherent uncertainty and prediction ambiguity caused by uncertainty in radar
echo sequences. In addition, previous studies have ignored the importance of small-scale
weather patterns.

In recent years, generative adversarial networks [30] (GANs) have achieved great
success in the field of image generation, which has greatly improved the quality of gener-
ated images. GAN is mainly divided into generators and discriminators. The generator
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is responsible for generating images and attempting to deceive the discriminator. The
discriminator attempts to identify the generated image and from real images. These two
systems enhance the credibility of the generated images by playing games with each other.
However, if two training systems are not synchronized properly, the generator and dis-
criminator may lose the gradient to be updated. To address this drawback, a more robust
version of Wasserstein GAN (WGAN) has been developed [31]. Due to the excellent per-
formance of GAN in image generation, several recent studies have also utilized GAN as
regularization in the loss function to generate more qualified predictions for precipitation
forecasting. These methods roughly first use convolutional neural network models for
prediction, and then establish GAN methods to further correct the prediction to improve
its clarity [32,33]. Although these existing studies have demonstrated the effectiveness of
GAN, their powerful potential has not been fully utilized due to the lack of effective design
of generators and discriminators in network structure.

3. Methods

Our proposed model focuses on solving the problem of ambiguity in unsupervised
precipitation proximity forecasting and the dilemma of previous models not being able to
accurately perceive meteorological changes (such as the movement trend of cloud clusters)
and make accurate predictions.

3.1. Problem Description

Considering that radar has the advantages of high spatial and temporal resolution,
wide geographical coverage, and real-time data transmission, rainfall prediction mainly
relies on the radar echo as the observed value. Then, in an indirect way, the reflectivity of
the radar echo is translated into predicted rainfall. Therefore, the task of rainfall prediction
can be regarded as utilizing the observation value of the historical radar echo to predict the
evolution trend of the future radar echo. In this study, the reflectivity factor intensity of the
radar echo is reflected by the pixel value in the form of grid points.

In the rain forecast, we observe that the radar echo movement is in a discrete state.
Therefore, we consider a sample of radar echoes observed at time intervals:

S = (St0, S(t0+∆t), . . . , St1), S ∈ RC×H×W , t1 = t0 + v∆t (1)

The real future sequence is Starget = (St1+1 , St1+2 , . . . , St1+n), the forecasted future
sequence of Spred = (Ŝt1+1 , Ŝt1+2 , . . . , Ŝt1+n), where n is the predicted number of frames.
In this study, we try to make the predicted future radar echo sequence approximate the
true value by using a neural network with θ as the parameter. The formulaic description of
the problem we are studying is

θ = arg max
θ

P(Starget|S; θ) (2)

3.2. Generative Adversarial Networks

In previous studies, the generative adversarial network (GAN) is often used as a
generative model [30]. The generative adversarial network mainly consists of generator
network G and discriminator network D. The generator network G takes random vector Z
satisfying the normal distribution as the input and generates reconstructed false data G(Z)
through complex nonlinear changes. The discriminator network D receives the real data
and the data generated by the generator network G as the input and outputs the category
information (0 or 1), respectively. During training, the model can generate more realistic
data through the confrontation and game between the two networks. The adversarial
training is defined as the following min-max optimization problem.

G∗, D∗ = arg min
g

max
c

V(G, D) (3)
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The loss function of the GAN network is

min
G

max
D

V(D, G) = Ex∼ptrue [logD(x)] + Ez∼p(z|µ;σ)[log(1− D(G(z)))] (4)

where ptrue is the true data distribution and p(z|µ; σ) is a normal distribution with mean µ
and variance σ; the random variable z is sampled from it.

3.3. Model

In this chapter, we will cover the architectural design and details of the model. The ar-
chitecture of the model is based on the following considerations. The convective precipita-
tion forecasting is always troubled by the problem of forecasting ambiguity. To address this
problem, we try to provide a clearer prediction by setting the overall network architecture
as a GAN network. However, GAN networks are known to be vulnerable to pattern col-
lapse, in which the model’s predictions fall into several specific patterns and lack diversity.
In the specific task of convective precipitation forecasting, the radar echoes predicted by
the model tend to have a similar movement trend. It violates the underlying physical
constraints. In this study, we believe that this is mainly because the model cannot extract
enough spatiotemporal information to identify different motion patterns and guide the
model to make accurate predictions. To solve this problem, we try to capture the move-
ment trend of radar echoes of adjacent frames explicitly using a differential calculation.
The movement pattern of the radar echo is used as an additional hidden variable to modify
the prediction results of the model.

3.3.1. Generator

In our research, a GAN is used to produce a clearer picture of future radar echoes.
Compared with the general prediction network, the future radar echo map under a GAN
framework can depict a more detailed echo shape, and local weather conditions can also
be simulated effectively [34–36]. However, it is well known that GAN networks are prone
to fall into the dilemma of gradient disappearance and mode collapse during training.
The main reason for the disappearance of the gradient comes from the game process of
the generator network and discriminator network. The overlap probability between the
distribution of real radar echo data and the distribution of generated radar echo data
is very small. Therefore, the discriminator network can easily distinguish the true and
predicted distribution during the training process. This makes it difficult for the network
to obtain gradient updates to iteratively optimize the network parameters and even makes
it difficult to converge during the training process. In addition, mode collapse mainly
refers to the possibility that for the data distribution of radar echo prediction results with a
multi-modal distribution, the ordinary model tends to predict the probability of a certain
fixed radar echo motion mode while ignoring other motion modes. This also results in
models that do not fully capture the true data distribution and cover all possibilities for
future changes. For the radar echo extrapolation task, we believe that the model cannot
extract enough spatiotemporal information to recognize different motion patterns, which
is the main reason for the mode collapse. Based on the above reasons, this study uses
the differential information between adjacent frames to effectively extract complex high-
dimensional spatiotemporal information and simulate capturing the motion trend of the
radar echoes.

In the research, the main task of the generator is to use the historical radar echo
sequence to generate the radar echo sequence for a certain period of time in the future.
At the same time, the landing area, detail information, and overall movement trend need
to be consistent with the real radar echo sequence as much as possible. Considering the
complex spatiotemporal variability of radar echoes, we hope that the model can extract
deeper spatiotemporal characteristic information to produce more accurate predictions.
From the perspective of the time dimension, the overall change trend of the atmospheric
system will not change so quickly in a short time. Thus, the overall difference between the
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two consecutive frames of radar echo images will not be too large. However, local drastic
changes are evident, and this important change is often overlooked by previous studies.

Therefore, differences in local weather conditions contain more information about
temporal and spatial changes than overall movement trends. By extracting and analyzing
the difference information, the model can learn the complex spatiotemporal changes more
effectively [28]. In addition, differential technology can explicitly extract the changing
part of the adjacent radar echo frame (especially the part with drastic changes), and the
invalid background information and unchanging part of the radar echo motion are explicitly
ignored. Inspired by this, we use the past frame Xt−1 and the current frame Xt as differential
inputs. In addition, the differential signal is considered to have a strong correlation with the
time change. Therefore, we introduce the hidden state Zt, which changes on the timeline,
and adopt the gating mechanism to adaptively select the ratio of the difference information
and the hidden state at the current time to cope with sudden weather conditions. Finally,
we design a spatiotemporal difference LSTM (STD-LSTM) unit, whose structure diagram is
shown in Figure 1. Correspondingly, the formula expression of the STR module is shown
in Formula (5):

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + bi)

ft = σ
(

Wx f ∗ Xt + Wh f ∗ Ht−1 + b f

)
gt = tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

Ct = ft ◦ Ct−1 + it
◦gt

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + bo)

Zt = STD(Xt, Xt−1, Zt−1)

Ht = ot ◦ tanh(Ct + Zt)

(5)

Figure 1. The image of the spatiotemporal difference module in our model.

Xt in Figure 1 is the input frame of the current moment, Xt−1 is the input frame of
the previous moment, Ht,Ct,Zt is the hidden state passed from the unit of the previous
moment, and H(t+1), C(t+1), Z(t+1) is the hidden state passed from the difference unit
of the next moment. W is a learnable linear or nonlinear transformation. In this study,
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3 × 3 convolution kernels are used to achieve state transformation. tanh and σ are activation
functions. In addition, the detailed calculations of STD are shown as follows:

id
t = σ(Wx′i ∗ (Xt −Xt−1) + Wh′i ∗ Zt−1 + bi)

f d
t = σ

(
Wx′ f ∗ (Xt −Xt−1) + Wh′ f ∗ Zt−1 + bi

)
gd

t = tanh
(

Wx′g ∗ (Xt −Xt−1) + Wh′g ∗ Zt−1 + bi

)
Zt = f d

t ◦ Zt−1 + id
t ◦ gd

t

(6)

which takes the memory cells Zt and the differential features Xt − Xt−1 as the input. In ad-
dition, we use stacked four-layer STD-LSTM cells as our generator network. The specific
network structure is shown in Figure 2. It is worth noting that we use the difference
between the current input frame and the input frame at the previous moment to capture the
spatial difference information. The rich differential information of radar echoes is captured
by the layer loop unit to simulate the potential local motion trend. In addition, the hidden
state Zt−n:t propagated along the time axis implicitly contains the difference information of
radar echoes with long-term changes in the time dimension, which is more helpful for the
model to model the movement trend of radar echoes.

Figure 2. Overall image of our model. Our model consists of four layers of STD-LSTM stacked to-
gether.

3.3.2. Discriminator

The future radar echo maps generated by our generator network will have deeper
feature information and richer details for local weather conditions. Therefore, in general,
a network with a certain depth is needed to completely extract the feature information of
radar echo images and accurately divide the data distribution between the predicted image
and the real image. However, deeper networks will inevitably lead to overfitting problems
and increased complexity of the training process, which is difficult to apply. Therefore,
the inception module [37] is used in this study. In the inception module, convolutional
kernels of different sizes are used on the model width to extract radar echo map features
of different scale ranges. In addition to feature extraction through convolutional kernels
with different receptive fields, radar echo image information is also compressed through
downsampling operations and is ultimately converted into a category information output
by the discriminator network. Radar echo images contain complex weather conditions,
such as the moving track of the large-scale echo and the rotation and dissipation of the
small- and medium-scale echoes. Therefore, multi-scale feature lifting in the inception
module can effectively extract deep information from both global and local perspectives.
In addition, the discriminator can effectively distinguish the real data distribution from
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the generated data distribution, which can make the training of the generator easier and
the generated radar echo image finer. The detailed design of the discriminator is shown in
Figure 3. In experiments, too many module layers will cause training difficulties, and too
few module layers will result in an incomplete feature capture. Therefore, we finally adopt
a three-layer inception module structure. After the inception module, we use a four-layer
feedforward neural network. This can map the extracted spatiotemporal information of
radar echoes to a single value as category information for the output of the discriminator.

Figure 3. Image of the discriminator module. The discriminator consists of three-layer inception
modules, finally arranged in a single-channel fashion. Each inception module consists of convolution
kernel of 1 × 1, 3 × 3, 5 × 5, and 7 × 7.

4. Experiment on Radar Dataset

In this chapter, we evaluate the model’s performance on a dataset of real radar echoes.
The real radar echo datasets include the Shijiazhuang radar echo dataset and the Nan-
jing radar echo dataset. Our model is mainly divided into a generator network and a
discriminator network. Among them, the generator network is formed by stacking cyclic
units. We experimented with the model prediction results when the convolution kernel
size of the cyclic unit was 1, 3, 5, and 7. An excessive convolution kernel size can affect
the computational efficiency of the model and be insensitive to changes in local features.
Therefore, we did not experiment with larger convolutional kernel sizes. Finally, based
on the experimental results, we set the convolution kernel size of the loop unit to 3. Sim-
ilarly, we tested the depth of hidden layers in cyclic units at depths of 32, 64, and 128.
After weighing the prediction results and memory usage, the model performed best at the
hidden layer depth of 64. For the choice of activation function in the recurrent unit, we
followed the configuration of the basic RNN model. The discriminator network consists
of a three-layer stacked inception module and a fully connected network. The number of
hidden channels in the three-layer inception module is 64, 32, and 16, respectively. Our
model is optimized using the MSE loss function and BCE loss function and using the
ADAM optimizer. In addition, if the learning rate is set too high, it will cause the model to
oscillate during the training process or even fail to converge. If the learning rate is set too
small, the network will converge very slowly and may even converge into a local extreme
point. After testing with the learning rate set in the range of 0.01 to 0.0001, we decided to
set the learning rate to 0.001. All experiments were implemented on Pytorch 1.8.

4.1. Evaluation Index

In this study, we evaluated the generated radar echoes using the quantitative evaluation
metrics MSE (mean square error), SSIM (structural similarity index measure), PSNR (peak
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signal-to-noise ratio), CC (correlation coefficient), and CSI (critical success index). The MSE
measures the difference between the real data and predicted data, and the smaller the MSE,
the better the quality of the data generated. The SSIM ranges from−1 to 1, with higher scores
indicating better similarity between the real data frame and the generated results. PSNR
scores are positive, and higher grades indicate better performance. The CC measures the
correlation between the real radar echoes and the predicted radar echoes. The higher the
value of the CC, the closer it is to the true value. We used the rainfall intensity threshold
of 0.5 mm/h to calculate the CSI [38]. We first converted the pixel value of prediction or
groundtruth images to 0 or 1 by threshold τ mm/h. In detail, we used the Z-R relationship [39]
to convert the pixel values to rainfall R. If R >= τ, the pixel value will be 1; otherwise, the pixel
value will be 0. Then, we can calculate the true positive (TP) (prediction = 1, truth = 1), false
negative (FN) (prediction = 0, truth = 1), false positive (FP) (prediction = 1, truth = 0), and true
negative (TN) (prediction = 0, truth = 0) separately. In the end, the CSI score is calculated as
(TP/(TP + FN + FP)).

4.2. Shijiazhuang Radar Echo Dataset

In this study, we used the radar echo dataset with raw radar data at polar coordinates
as the data source. Among them, the radar echo data collection is the dual-polarization
radar data with a time resolution of 6 min provided by the Shijiazhuang Meteorological
Bureau of Hebei Province during 2019–2022. Predicting the track and shape change of
radar echoes plays an important role in guiding flood control and disaster relief and in
reducing the negative impact on human social activities. The complex variations in the
shape, accumulation, and dissipation of radar echoes mean that this is a challenging task.
The following details are our data processing operations.

Radar data are usually stored in binary format in polar coordinates. However, the cal-
culation of the neural network does not accept data in the polar coordinate format, so
we needed to rasterize the radar data. We used K-nearest neighbor interpolation to ras-
terize the data into a 200 × 200 grid, which covered the entire area of Shijiazhuang City
(113.5°E–115.5°E and 37°N–39°N with a spatial resolution of 1 km). Considering that the
radar is susceptible to interference from terrain and other factors in the scanning process,
we took the following steps to control the quality of the radar echoes. First, we suppressed
the influence of ground clutter and isolated echoes as much as possible, and we used the
combined reflectivity factor (i.e., the maximum radar echo reflectance value at each azimuth
and distance interval) as the pixel value of our rasterized radar echo data.

4.2.1. Implementation

We mapped the radar signal strength to a range of zero to one and used bilinear
interpolation to shape it to a size of 200 × 200. Weather radar data are generated every
six minutes, so there are 240 frames per day. To obtain a disjoint dataset for training and
testing, we divided each daily sequence into six blocks and randomly assigned five blocks
for training and one block for testing. We then sliced successive frames in each block with
a 20-frame wide sliding window. Therefore, the total sequence was divided into a training
set of 4000 samples and a test set of 400 samples. We first referred to the general setup
for performing a spatiotemporal series prediction task on a radar dataset by generating
10 future frames given 10 previous frames while training the model. We then extended the
extrapolation length from 10 segments to 20 segments to explore the ability of the compared
models to cover long-term predictions for the next 2 h. After the prediction, we show the
dBZ intensity in Figure 4.

4.2.2. Result

As can be seen from the prediction of the radar returns over the next two hours in a
period of severe convective weather provided in Figure 4, our model can provide a finer
and more accurate picture of qualitative results. The ConvLSTM was able to estimate the
overall position of the radar echoes only in the first 10 frames of the prediction, but the
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prediction results in the last 10 frames deviated from the trajectory of the real radar echoes.
MIM and PredRNN++ could provide relatively accurate echo intensity compared with
ConvLSTM, but the overall and local echo shape and motion trajectory were still not
accurately captured. This suggests that past models have struggled to predict complex
weather changes. In addition, although MotionRNN could accurately predict the overall
location of large-scale clouds, it could not describe the details of local weather conditions.
In contrast, our spatiotemporal differential module could capture differential signals in
the atmospheric environment to simulate the movement trend of cloud clusters at various
scales as reflected by radar echoes. Specifically, it could accurately capture the movement
of large-scale clouds and effectively predict the disappearance and appearance of small-
scale clouds.

Figure 4. Visualizationsamples on the Shijiazhuang radar echo dataset. All models used the first ten
frames as the input and predict the last twenty frames. The temporal resolution of the dataset is six
minutes, and this prediction task tests the performance of the models in a long-term and complex
prediction environment.

On the other hand, the accuracy of the other comparison models rapidly declined over
time, while ours could maintain a slow rate of decline. In addition, from the quantitative
results of all data in the test set provided in Table 1, it can be seen that our model could
maintain optimal results on the four evaluation indicators (MSE, PSNR, SSIM, and CSI).

Table 1. Quantitative results of our model and advanced models on the Shijiazhuang radar echo
datasets. We compared the MSE, PSNR, SSIM, and CSI of all models on the test set. The lower the
MSE and the higher the PSNR, SSIM, and CSI, the higher the prediction accuracy.

Method MSE PSNR SSIM CSI

ConvLSTM (NIPS 2015) [1] 209.45 24.78 0.725 0.577
PredRNN++ (PMLR 2018) [27] 169.10 25.23 0.760 0.589

MIM (CVPR 2019) [28] 159.94 24.83 0.767 0.605
MotionRNN (CVPR 2020) [29] 145.05 36.18 0.775 0.608

STDGAN 132.22 37.87 0.796 0.612

However, Table 1 only shows the overall performance of the model over a test time
scale. The performance of the model in the minimum time resolution of radar echoes is
also of great reference value. Therefore, we conducted statistics on the performance of
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each time node of the model in all test sets at the 6-minute scale. As can be seen from
Figure 5, under the four evaluation indexes of MSE, CC, SSIM, and PSNR, the prediction
performance of our model was still far better than that of other models for every 6 min
in the next 2 h. Moreover, the performance decline trend of our model was much slower
than that of the other models, indicating that our model has good stability. Specifically,
the slow-growing MSE indicates that the predicted results of our model differed the least
from the real future radar echoes. Due to the complexity of weather conditions, a complete
weather process includes many local meteorological changes. Therefore, the lower MSE
also indicates that the forecast results of our model are more effective at simulating small
local weather conditions. In addition, the slow decline rates of the SSIM, PSNR, and
CC indicate that our image quality is stable at a certain level, which has reference value
for the business work of forecasters. As a result, our model can assist business weather
forecasting tasks while providing good prediction results for complex cloud formation and
disappearance phenomena.

(a) MSE (b) CC

(c) SSIM (d) PSNR
Figure 5. Frame-wise comparisons of the next 20 extrapolation echoes on the Shijiazhuang Radar
Echo Dataset.

4.3. Nanjing Radar Echo Dataset

In addition to the radar echo data provided by the Shijiazhuang Meteorological Bureau,
we also used the publicly available dual-polarized radar echo dataset provided by Nanjing
University to verify the prediction capability of the model. The publicly available dataset
allows readers to easily replicate and validate the prediction effect of our model. The dataset
contains 268 precipitation events collected by Nanjing University between 2014 and 2019
at a spatial resolution of 1 km and a temporal resolution of 6–7 min, and it is available
at https://doi.org/10.5281/zenodo.5109403 (accessed on 13 October 2021). Unlike the
Shijiazhuang radar echo dataset, the study area of this expedition is a 256 × 256 km area
centered on the radar. In addition, the dataset has been processed for quality control [40].
Therefore, we did not perform redundant preprocessing in our experiments. Regarding this

https://doi.org/10.5281/zenodo.5109403
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radar echo dataset, we present the quantitative and qualitative comparisons of the models
in convective and stable precipitation scenarios.

4.3.1. Implementation

We have divided the dataset into a training set containing 6000 sequences and a test set
containing 500 sequences. Each sequence in the training set is 20 frames in length, and the
sequences in the test set are 30 frames in length. The first ten frames are observation frames
and the last ten and twenty frames are real frames for comparing the model predictions.

4.3.2. Result

Take the case of convective rainfall. Figure 6 provides the plots of the convective rain-
fall results of our model and the comparison models for predicting the next two hours on
the test set. Convective precipitation is usually localized, intense, and unevenly distributed.
This makes it highly challenging for the prediction model to handle local and high-intensity
rainfall fields. Specifically, as shown in Figure 6, our model was able to provide richer and
closer echo patterns to the original radar echoes compared with the other models. In addi-
tion to the overall echo shape, the prediction efficiency of STDGAN for small echoes was
also better than the other compared models. Over time, the compared models gradually
lost the correct predicted trajectories, while STDGAN retained the echo information better.
This suggests that the way STDGAN fuses the cyclic unit and the difference mechanism can
better capture local weather patterns. In addition, this mechanism also has better fitting
ability for small echoes that can be easily ignored.

Figure 6. Sample visualization of model prediction results in the convective precipitation scenario.
In the Nanjing radar echo data prediction mission, all models use the first ten frames as the input and
predict the next twenty frames. The temporal resolution of the dataset is six minutes.

Compared with convective precipitation, stable precipitation is usually continuous,
with relatively small precipitation intensity but wide coverage. Figure 7 shows a qualitative
comparison between STDGAN and the comparison models under stable precipitation
scenarios. ConvLSTM and PredRNN can only predict the rough coverage range of radar
echoes over a large range. MIM, MotionRNN, and Two-Stage UA-GAN are less sensitive at
predicting local radar echo intensity. STDGAN predicts the overall and local echo states
more accurately and comprehensively in stable precipitation fields.
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Figure 7. Sample visualization of model prediction results on the Nanjing radar echo dataset. As in
the Shijiazhuang radar echo data prediction task, all models use the first ten frames as the input and
predict the next twenty frames. The temporal resolution of the dataset is six minutes.

Table 2 numerically compares the prediction results of our model and the comparison
models using five evaluation metrics: MSE, SSIM, PSNR, CC, and CSI. We selected the time
nodes of the next 20 frames for comparison. At all time nodes, STDGAN outperformed
the previous models in terms of accuracy in radar echo prediction. In addition, STDGAN
could provide better image evaluation indicators at the radar echo image level. Through
the CSI indicators, STDGAN could hit more rainfall grid points in scenarios with a rainfall
threshold of 0.5 mm/h compared with the other comparative models.

Table 2. Quantitative evaluation of different methods in the open radar echo dataset of Nanjing
University under convective precipitation scenarios. These metrics are averaged over 20 predicted
frames. Lower MSE values are better, and higher PSNR, SSIM, CC, and CSI values are better. Bold
font represents the optimal result for each indicator.

Method MSE PSNR SSIM CC CSI

ConvLSTM [1] 62.412 0.504 28.414 0.653 0.493
PredRNN++ [27] 52.421 0.70 29.951 0.753 0.502

MIM [28] 52.224 0.698 29.853 0.718 0.510
MotionRNN [29] 51.626 0.698 29.861 0.744 0.512

Two-Stage UA-GAN [41] 50.796 0.701 29.965 0.755 0.518
STDGAN 49.570 0.714 30.633 0.855 0.523

Similarly, we used the prediction results of the model at each frame to compare its
extrapolation and information extraction capabilities at each time node. Figure 8 shows the
MSE, PSNR, SSIM, and CC for each of the predicted 20 frames for all tests. Based on these
indicators, we can come to the conclusion that our model has higher image clarity, lower
variance loss, and higher image quality in most cases. Over time, the other models showed
a significant decrease in predictive performance, while our model showed less decline than
the other models.
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(a) MSE (b) CC

(c) SSIM (d) PSNR
Figure 8. Frame-wise comparisons of the next 20 extrapolation echoes on the Nanjing radar
echo dataset.

4.4. Ablation Experiment

Given the modular composition of our model, ablation experiments were conducted
to analyze the contribution of each module to the final predicted results. Table 3 shows the
quantitative results of our model in full modules, without the spatiotemporal difference
module (STD), and without the discriminator module, respectively. As can be seen from
Table 3, STDGAN under the complete module has a strong ability to fit the movement
changes of radar echoes, and its MSE score exceeds that of most previous models based
on an RNN structure. This indicates that the difference between the image predicted by
STDGAN and the ground truth value of the corresponding pixel is small. In addition,
the approach based on SSIM and PSNR makes it closer to the original image in brightness,
contrast, and structure. When the STD module is removed from the model, the indexes of
all aspects of the model decrease significantly. We believe that this is because the model
cannot explicitly learn the time difference of adjacent frames, which leads to the incomplete
extraction of the spatiotemporal information of radar echoes. After removing the discrimi-
nator, the evaluation indexes decreased compared with the complete model. Because the
discriminator restricts the distance between the real data distribution and the generated
data distribution, it can provide a more realistic and detailed radar echo image. Therefore,
when the discriminator is removed, the model often encounters the multi-peak Gaussian
data distribution, and the prediction result is fuzzy due to the uncertainty distribution.

Table 3. Model ablation experiments on the Shijiazhuang radar echo dataset. STD represents the
spatiotemporal difference module.

Method MSE PSNR SSIM

STDGAN 132.2 37.87 0.796
STDGAN (W/O STD) 139.47 37.04 0.786

STDGAN (W/O Discriminator) 137.49 36.93 0.742



Remote Sens. 2023, 15, 5329 15 of 17

5. Discussion

This study used real radar echo data provided by the Shijiazhuang Meteorological
Bureau and Nanjing University. Among these data, the raw radar echo base data provided
by the Shijiazhuang Meteorological Bureau contain dirty data and missing values, which
will affect the training effectiveness of the model. The dirty data are mainly due to clutter
interference during radar observation, which interferes with the data acquisition process.
Therefore, K-nearest neighbor interpolation and quality control were used to solve the
problems on the Shijiazhuang radar echo dataset. The Nanjing radar echo dataset has
undergone quality control. Therefore, we did not perform any additional preprocessing.
Finally, we obtained radar echo datasets from the Shijiazhuang and Nanjing datasets at time
resolutions of 6 min and spatial resolutions of 1 km, respectively. In the experiment, we
evaluated the predictive performance of STDGAN and previous models on the dataset us-
ing both qualitative and quantitative indicators. In terms of quantitative results, STDGAN
had a lower MSE and higher SSIM, PSNR, CC, and CSI compared with the previous models
studied. In terms of qualitative results, ConvLSTM could only predict fuzzy and incomplete
radar echo images. PredRNN++ and MIM had weak predictive ability for strong echoes
and could only predict the overall contour of the echoes. MotionRNN’s prediction of radar
echo intensity was superior to the previous models. However, the detailed prediction of
local echoes was still not accurate enough. The Two-Stage UA-GAN also adopts a GAN
structure and focuses on local weather patterns. However, STDGAN achieved a higher effi-
ciency and could obtain more comprehensive local information by performing differencing
between adjacent frames. Therefore, STDGAN’s prediction images of local meteorological
patterns and overall radar echoes are closer to real radar echo images in terms of prediction
clarity and accuracy. In addition, STDGAN accumulates fewer prediction errors, indicating
its advantage in long-term predictions.

6. Conclusions

We propose a model for radar echo extrapolation, STDGAN. Most of the existing
models only extract the temporal and spatial features roughly but ignore the great value
of local detail features for rainfall prediction. The innovation of our model is that each
cycle unit adds a spatiotemporal difference module. This allows the model to better
capture and model the movement of local, small-scale weather patterns, thus providing
more accurate predictions of the overall radar echo change pattern. In addition, our
model performs spatiotemporal series prediction in the framework of GAN networks.
The multi-scale feature extraction of the discriminator can effectively model the feature
information of weather models of various scales. Finally, the adversarial mode inherent in
GAN networks can make the distribution of generated data closer to the distribution of
real data, thus providing a clearer radar echo image. The effectiveness of the model was
verified using experiments on radar echo datasets. The experiments on radar echo datasets
in Shijiazhuang and Nanjing have shown that STDGAN has advantages over previous
models in predicting local meteorological patterns and overall echo movement trends.
And, in long-term predictions, STDGAN can maintain a better prediction performance.
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