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Abstract: Urban landslides have brought challenges to developing countries undergoing urbanization.
Rapid approaches to assess ground deformation are required when facing the challenge of insufficient
geological survey methods. Additionally, it is indeed a challenge to map landslide-affected areas,
especially precipitation-induced landslides, through optical remote sensing methods. This study
applied SAR change detection methods to map the slope failure event of the San Jorge Kantutani
landfill site in La Paz, Bolivia, which occurred in April 2019, and Multi-Temporal Synthetic Aperture
Radar Interferometry (MTInSAR) methods to assess pre- and post-failure ground stability related
to this event. We found that the amplitude information of high-resolution COSMO-SkyMed SAR
imagery and its texture information can be very useful in landslide mapping, especially in situations
in which optical images are not available because of complex meteorological conditions and the
similar spectral characteristics between the original land cover and landslide deposits. The MTInSAR
analyses found that there was already significant deformation of more than 50 mm/year along the
slope direction over this site before the landslide, and such deformation could be clearly discriminated
from the surrounding environment. After the landslide event and the remobilization of the landslide
deposit, the slope still shows a deformation velocity of more than 30 mm/year. The SAR amplitude
change detection and MTInSAR fully exploited the SAR data in landslide studies and were useful
in back analyzing the occurred landslides; this could be a good method for monitoring the ground
stability of La Paz or even on a national scale over the long term for reducing the catastrophic effects
of geological hazards in this landslide-prone city.

Keywords: SAR; InSAR; SAR amplitude; P-SBAS; GEP; landslide monitoring; landslide mapping;
change detection

1. Introduction

The urbanization process, coupled with the lack of systematic urban land use ad-
ministration and monitoring and management of geological hazards, has exposed more
residents, infrastructures, and civil engineering activities to geological hazards, thereby
increasing the vulnerability of urban environments to geological risks [1,2]. Landslides
and slope failures occur when solid or liquefied solid materials including soils, rocks, or
debris move downwards of the slope, posing threats to the urban environment [3]. Multiple
natural processes, such as earthquakes, intense precipitation, reactivation of landslides, and
human activities including excavation, construction, and changes in land use, are the major
triggering factors of urban landslides [4–7]. Urban slope instability problems of varying
scales lead to severe consequences, including human casualties and injuries, property
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damage, economic losses, and substantial and continual interruptions to essential urban
services such as transportation and utilities. The features of the ground deformation or
slope creep phenomena of these large quantities of newly established properties belonging
to the public or private sectors in the urban environments of developing countries can
vary because of poor urban planning. In fact, land use can sometimes be modified without
taking the geological or geotechnical information into account during the fast progress of
urbanization. Consequently, these areas need to be monitored, and conventional pointwise
and onsite geodesy measurements for collecting information on ground deformation are
too labor intensive and expensive to achieve adequate temporal and spatial coverage and
resolution [8,9].

Landslide-prone areas can be identified and mapped and appropriate measures can
be implemented thanks to long-term, multiple-scale monitoring [10–12]. Slope stability
monitoring and mapping in urban areas pose significant challenges for the rapid response
and accurate identification of the spatial location, sometimes without the condition of
physical accessibility to the involved area. Remote sensing (RS) techniques, especially SAR
remote sensing, can help in the back analysis, identification, investigation, and monitoring
of ground deformation over previous decades [13–16]. Persistent Scatterers Synthetic
Aperture Radar Interferometry (PSInSAR, or PSI) [17] and Small Baseline Subset (SBAS) [18]
have long been utilized for retrieving information deformation processes over the Earth’s
surface [19]. Since the first introduction of the SqueeSAR algorithm in 2011 [20], numerous
PSI techniques based on Distributed Scatterers (DS) have been developed over the past
decade, founded on the concept of extracting scatterers not only from Persistent Scatterers
(PS) like rock outcrops, buildings, and bridges, but also over natural environments which
exhibit coherent radar backscattering characteristics over time [21–23]. In recent years, the
application of global coverage SAR data by constellation with increasing spatial resolution
and phase quality, as well as shorter and more periodic revisit times (e.g., TerraSAR-X;
COSMO-SkyMed; and Sentinel-1), has allowed for the application of Multi-Temporal SAR
interferometry (MTInSAR) techniques at various scopes [24–28]. These techniques have
enabled the utilization of long-term series of SAR datasets acquired over the last three
decades, thereby enabling the investigation of long-term phenomena by generating precise
time series of ground deformation [29].

The SAR phase is used in the InSAR approach to ground stability monitoring, but the
SAR amplitude change detection method has also often been used in landslide mapping as a
good alternative option when high spatial resolution optical aerial or satellite imagery is not
available, e.g., in cloudy or rainy seasons. The land cover, water content, slope, and aspect of
the landslide-affected area discriminated from the background can be detected by changes
in the SAR amplitudes by comparing the pre- and post-failure SAR images [30]. Spatial and
temporal analyses of the amplitude variations through SAR change detection can identify
the landslide-affected areas, revealing changes in the physical and geomorphological
factors [31,32], or indirectly by mapping landslide areas [33–35].

The application of SAR remote sensing in ground stability monitoring in South Amer-
ica is still insufficient [36]. Among these limited number of works, even fewer are in the
field of revealing urban ground stability and analyzing landslides in urban areas. Refer-
ences [9,37] applied InSAR analyses to Villa de la Independencia, a town of 6000 inhabitants
in Bolivia, to reveal the relationship between InSAR and seismic noise to understand the
landslide mechanism, even in the subsurface. Reference [38] analyzed the ground stability
of five cities around the world using the P-SBAS method with ESA’s G-POD platform
(Grid-Processing on Demand, a predecessor of GEP) service, and of these cities, Bogotá was
the only one selected in South America. In [39], ground subsidence was analyzed using
the InSAR method in 99 coastal cities around the world, 6 of which are located in South
America (Lima, Rio de Janeiro, Maracaibo, Buenos Aires, Caracas, and Antofagasta).

According to the historical landslide database, the Bolivian city of La Paz is situated in
a landslide-prone area [40,41]. In recent years, the city has experienced many landslides
and ground deformation phenomena. Pre- and post-failure analyses of the 2011 Pampahasi
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landslide were conducted using the HDS-InSAR (Homogenous Distributed Scatterer InSAR)
method on Radarsat-2 images (September 2008–December 2011) in order to determine
the creep in both the pre- and post-slide phases [42]. Another study [43] also used the
PSI and SBAS methods on Sentinel-1 data from 2015 to 2016 in La Paz, identifying active
deformation before the Auquisamaña landslide, which occurred on 15 February 2017.
Additionally, other unstable zones were identified in the Callapa area after the investigation
was conducted on the Pampahasi landslide.

The aims of this work were: (i) the exploitation of SAR amplitude information in
landslide mapping; (ii) the usage of various MTInSAR techniques to detect the precursor of
the precipitation-induced landslide in the Kantutani sanitary landfill before its occurrence
in April 2019; and (iii) to use the results of the MTInSAR analyses in (ii) for a detailed
investigation of urban ground stability in La Paz, Bolivia. In this work, amplitude change
detection approaches using multi-band satellite SAR imagery were applied to map the
affected area of the landslide. Then, a ground deformation analysis over the city of La Paz
was performed using improved two-tier network DSInSAR and P-SBAS techniques [44–47]
with the GEP (Geohazards Exploitation Platform), a powerful cloud computing platform.
The resulting back analysis allowed for the conclusion that a systematic long-term ground
deformation monitoring project in La Paz city could enhance geological risk management
and urban planning efficiency.

2. Study Area and San Jorge Kantutani Landslide

La Paz (16◦29′S, 68◦08′W) is the capital of the State of Bolivia in South America
(Figure 1). It has a population of 0.8 million and it is located in the Altiplano Plateau
in the west of Bolivia, which is a country highly vulnerable to geological hazards [9].
The geomorphology of La Paz is characterized by a diverse and intricate landscape that
includes steep slopes, deep valleys, and rugged terrain. With an average elevation of
3640 m above sea level (a.s.l.), the minimum elevation is around 3100 m a.s.l.; meanwhile,
the highest elevation is approximately 3900 m a.s.l. [40]. The high altitude of La Paz
city results in its highland, seasonal climate in the thermal and rainfall regimes featuring
cool-to-cold temperatures and relatively low humidity throughout the year, which is very
unique for a city located close to the equator. La Paz experiences a dry season (April to
August) and rainy season (November to March). Sometimes, the dry season may extend
until November in years with remarkable droughts. The overall average precipitation is
approximately 600 mm/year, ranging from 325 mm/year (1956–1958) to 812 mm/year
(1979) [48]. Associated with cold fronts from the south, the precipitation, which is over
4000 m a.s.l. in the high mountain peaks and slopes in northeastern La Paz, often occurs
in the form of hail or snow during January. The location of the housing for residents of
different levels of wealth also changes with the variation in the altitude of La Paz city.

Usually, richer people live in the well-planned and well-maintained residence build-
ings and houses located in the valleys at lower elevations where ground stability problems
occur less often as the slopes. In this case, they are more vulnerable to geological hazards.
While poorer classes build their houses along the unstable slopes or even landfills at higher
elevations along the outskirts of La Paz city. According to the quality of the construction,
the maintenance, and many other factors causing geotechnical problems that would in-
crease the susceptibility of landslides over their residential houses, poorer residents are no
doubt more exposed to geological hazards.
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Figure 1. Topography of La Paz and geolocation of the COSMO-SkyMed and Sentinel-1 data.

Between 1995 and 2014, landslides in La Paz resulted in the relocation of 11,470 people,
the destruction of 1575 houses, and the loss of 21 lives, as reported in [49]. The occurrence
of landslides in La Paz is mainly characterized as the rotational type, attributed to heavy
and continuous rainfall that lasts for weeks during the rainy season, usually from January
to March [40]. The primary cause of this hydrometeorological controlling mechanism can
be explained by precipitation that is controlled by the topography, which leads to greater
slope erosion of the steep terrain with high-relief, V-shaped valleys. Secondly, in La Paz,
landslides often occur as a result of soil saturation from the water from the Andean Alti-
plano flowing to the Amazon River. Such saturated soil is not able to help in maintaining
ground stability. With the urbanization processes of the growing population and expanding
settlement since the early twentieth century, La Paz has become an urbanization environ-
ment that is vulnerable to various geological hazards, resulting in destructive landslides
that cause significant human and economic damage [9,50]. The shortage of a long-term
effective urban planning framework has worsened the situation of an expanding popula-
tion, coupled with the construction of properties on hazardous slopes without adequate
information on safety standards and geotechnical and design guidance [51]. Over the past
years, landslides have resulted in the destruction of buildings, roads, and other critical
infrastructures in La Paz [9]. In July 2004, a mega-landslide occurred in Allpacoma Valley,
causing the ground to shake, a fracturing noise to be heard for about three hours, and
blocking the Allpacoma River into two parts [52]. A mega-landslide (~40 Mm3) hit the
Callapa area of La Paz in February 2011. The natural causes included intense rainfall events
during the rainy season and earth erosion by the surrounding river. The human cause was
attributed to the increasing need for housing that altered the land cover of the slope, finally
causing an overload of the landslide body [41,42]. In [43], it was found that there was clear
pre-failure ground deformation before the Feb 15, 2017 Auquisamaña landslide, which
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buried five houses nearby. In [50], various resources were utilized, including analyses of
public resources such as newspapers and reports, aerial and satellite images, fieldwork, and
scientific publications, and it was found that since the beginning of the twentieth century,
La Paz has experienced over 100 landslides with volumes ranging from 102 to 106 m3.
Table 1 lists some landslides that occurred in La Paz in recent years that caused fatalities
and economic losses.

Table 1. Information on landslides that occurred in La Paz, Bolivia.

Location Date of Triggering Affects Extent (km2)

Callapa, Pampahasi 26 February 2011

1000 houses were destroyed,
2237 properties were affected
and more than 6000 families

have been relocated [43]

1.5

Auquisamaña 15 February 2017 5 houses were buried but no
casualties were reported 0.02

Kantutani 30 April 2019

80 families were affected,
380 occupants were

evacuated, no deaths, serious
injuries, or disappearances

were recorded

0.09

The first slide occurred on 27 April 2019, at the top of the Bajo Llojeta sector in the
Kantutani area of the Cotahuma macro district, which was home to 179,000 residents.
Then, the secondary slide occurred at noon time on 30 April 2019, affecting approximately
80 families and leading to the evacuation of 380 occupants. It should be noted that two
days before the secondary landslide there were previous movements that mobilized the
residents to evacuate the area, thereby avoiding the loss of human life. Therefore, no
deaths, serious injuries, or disappearances were recorded. The landslide affected an area of
approximately 0.09 km2 (86,310 m2) with a runout distance of approximately 575 m from an
elevation of 3510 m to 3410 m a.s.l. and was defined as a rotational landslide evolving into
an earthflow. The velocity of this landslide was extremely rapid (>5 m/s), according to the
categorization in [53].

The Kantutani area was originally a landfill site in the 1980s and labeled as a high
geological hazard area according to the official geological risk map published by the
Autonomous Municipal Government of La Paz (Gobierno Autónomo Municipal de La
Paz, in the Spanish language, Abbrev. GAMLP) in 2011 [54]. Landslide-prone areas are
assessed using an expert scoring system in which the soil humidity saturation, slope,
geomorphology, and geotechnical factors take 40%, 30%, 20%, and 10% of the final score
for the geological hazards, respectively [55]. Various parameters, including the topography,
geology, active fault lines, and geomechanical soil conditions are taken into account in the
evaluation system to assess areas affected by a landslide or slope instability event socially,
politically, or economically. But the risk map has not been updated since 2011. During this
period, geotechnical factors may have undergone significant changes, especially after the
occurrence of landslides and slope instability events such as Callapa in 2011 and San Jorge
Kantutani in 2019 in La Paz city.

The causes of the twofold slope failures in April 2019 are complicated. The direct cause
of the first slide on 27 April 2019 was construction work that caused an overload of weight
on the San Jorge Kantutani landfill, resulting in the loss of stability of the landfill site. From
the video and pictures on the local news [56–59], the black liquified earth that exuded from
the landslide body represents the physiochemical processes that occurred when the landfill
material inside the slope had been subjected to long-term overpressure. Figure 2 shows the
high spatial resolution optical remote sensing images provided by Google Earth. It indicates
land cover changes due to the landslide, and Figure 2b highlighted the locations where the
reference [56–59] were taken. Another major long-term cause of this slope failure resulted
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from the drainage system of the buildings in this sector lacking adequate waterproofing
materials during construction, which led to the discharge of sewage into the landfill directly
and caused material saturation, which is indicated by the growth of vegetation on the slope.
Additionally, a few months before the first failure, which occurred on 27 April 2019, there
were cuts at the foot of the slope for new constructions. The reactivation that occurred at
noon on 30 April 2019, was due to the intense precipitation that occurred on the morning
of the same day. The rainfall infiltrated the cracks caused by the first slide, forming a shear
surface beneath the surface terrain, causing the overload of the landfill body and, finally,
triggering the secondary main failure.
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Figure 2. Maps taken from Google Earth, showing the Kantutani area before and after the landslide.
(a) was taken in April 2019, indicates the Kantutani area before the landslide occurred (b) shows the
locations where the pictures in local news [56–59] were taken onsite, and the red polygon indicates
the generated landslide-affected area using the presented method in the following context.

3. Materials and Methods
3.1. Available Data
3.1.1. SAR Images

To visually represent the landslide-affected area, we utilized the SAR change detection
method to analyze the European Space Agency (ESA)’s C-band Sentinel-1 and the Italian
Space Agency (ASI)’s X-band COSMO-SkyMed amplitude SAR data using the SentiNel
Application Platform (SNAP). The COSMO-SkyMed constellation consists of four low
Earth orbit satellites; its first satellite was launched in June 2007 and the last in November
2010 [60]. The Sentinel-1A began its operation in 2014 and, in 2016, the following Sentinel-
1B was launched, formulating Copernicus Sentinel-1 into a constellation and providing
improved global coverage and data continuity [61,62]. To minimize irrelated factors other
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than the landslide that may have contributed to the land cover change, we collected the
latest image before and the first available image after the landslide. Two X-band COSMO-
SkyMed SAR images of HH polarization were collected in the Stripmap HIMAGE mode
with a temporal interval of 16 days. Four C-band Sentinel-1 Ground Range Detected (GRD)
SAR images of VV polarization in both ascending and descending geometries (two for each
geometry) were collected from ESA Copernicus Open Access Hub [63]. Information on the
selected SAR amplitude data is shown in Table 2. The ascending Sentinel-1 GRD is Frame
1125, Path 76, and the descending is Frame 647, Path 54. The footprint of the Sentinel-1 and
COSMO-SkyMed data is shown in Figure 1, together with the topography of La Paz.

Table 2. Information on the collected SAR amplitude images.

Band Imaging
Mode Pre-Failure Post-Failure Temporal

Interval Orbit Resolution

COSMO-
SkyMed X Stripmap

HIMAGE 23 April 2019 9 May 2019 16 days Ascending 3 × 3 m

Sentinel-1 C GRD
23 April 2019 5 May 2019 12 days Ascending

10 × 10 m23 April 2019 16 May 2019 24 days Descending

It is worth noting that when selecting the Sentinel-1 data for descending geometry, we
found that the Sentinel-1 GRD image of 4 May 2019, which is the first available image after
the slope failure, was not able to be co-registered with the Sentinel-1 GRD images collected
on 22 April 2019 or 10 April 2019. To solve this issue, we kept the Sentinel-1 GRD image
taken on 22 April 2019 as the pre-failure image, but selected the second available image
after the landslide captured on 16 May 2019 as the post-failure image.

For the MTInSAR processing, the applied frame and path of the Sentinel-1 SLC data
were the same as the Sentinel-1 data used in the SAR amplitude change detection method.
Information for the applied Sentinel-1 SLC data can be seen in Table 3.

Table 3. Information on the collected Sentinel-1 SLC images used in the MTInSAR processing.

Pre-Failure Post-Failure Orbit Number of
Images Resolution

Two-Tier Network
DSInSAR

April 2018 to April 2019 June 2019 to June 2020 Ascending 69 (31 pre-failure,
38 post-failure) 40 × 50 m

April 2018 to April 2019 June 2019 to June 2020 Descending 69 (31 pre-failure,
38 post-failure)

P-SBAS
April 2017 to April 2019 June 2019 to May 2021 Ascending 127 (66 pre-failure,

61 post-failure) 90 × 90 m

April 2017 to April 2019 June 2019 to May 2021 Descending 137 (76 pre-failure,
61 post-failure)

3.1.2. Ancillary Data

In this study, multiple types of ancillary data were used to support the SAR amplitude
landslide-affected area and MTInSAR analyses. Optical remote sensing imagery was
broadly applied in the verification. Following the Copernicus Sentinel-1 mission, the
multispectral Sentinel-2 constellation (Sentinel-2A and Sentinel-2B) provides 10 m high-
resolution multispectral remote sensing images of 13 bands with a regular revisit period of
five days. Sentinel-2 has already been widely used for the monitoring of geohazards [64,65].
The visualization of the Sentinel-2 images was carried out using the Sentinel Hub. The
Sentinel Hub is a cloud-based tool for EO data analysis operated by Sinergise [66,67]. In
this work, we used the Sentinel Hub to generate quick-look images of the Sentinel-2 data.
Additionally, we used high-resolution optical remote sensing imagery provided by Google
Earth and ArcGIS to identify the geomorphological information of the study area. The
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pictures of the landslide were taken from the local news, social media, and Google Maps
Street View. These images helped in the understanding of the landslide.

For the SAR change detection and MTInSAR processing, the Shutter Radar Topography
Mission (SRTM) 1 arcsec DEM was used to geocode the processing results and to remove
the topographic phase in the interferometry processing.

3.2. Methods
3.2.1. Change Detection

The objective of the SAR change detection method was to locate and measure the
surface changes caused by the landslide in the Kantutani landfill site by measuring the
alternations of the backscattering signals to the SAR sensors. Prior to the first slide on
27 April 2019, the backscarp of the landslide consisted of man-made infrastructure, such as
buildings and local roads, while the landslide body was bare soil and sparse vegetation.
However, after the major slide occurred on 30 April 2019, the backscarp of the landslide
collapsed, leaving landslide deposits over the entire landslide-affected area. The SAR
backscattering characteristics of buildings, roads, bare soil, and landfill deposits of this
landslide differed significantly from each other. This modification in the land cover and
further ground texture can simultaneously alter the SAR backscattering signal in the spatial
and temporal domains. Hence, we anticipated that the SAR amplitude change detection
method would be effective in mapping the landslide-affected area.

Two SAR amplitude change detection approaches were tested on the raw SAR imagery:
(i) first with [68,69] and (ii) second with [70,71]. The SAR images needed to first be prepared,
radiometric calibrated, and then co-registered into a stack. To reduce the time required for
data processing in the SAR change detection analysis, we applied a spatial subset near the
landslide-affected area to the co-registered SAR amplitude sigma0 data stack.

The first approach simply composited the pre- and post-failure calibrated SAR sigma0
images in the red–green–blue (RGB) color bands to visualize the difference in the intensity
of the backscattering signals before and after the landslide, with the landslide-affected areas
expected to be represented by green and pink (red + blue) colors. The second approach
of the SAR amplitude change detection focused on the change in the texture features
of the SAR image resulting from the landslide, as built-up areas, bare soil, and landfill
deposits possess different ground textures. To detect the texture differences between the two
images before and after the landslide, we performed a Gray Level Co-occurrence Matrix
(GLCM) texture analysis on both the COSMO-SkyMed and Sentinel-1 GRD calibrated
sigma0 images collected before and after the occurrence of the landslide. The GLCM
analysis identifies patterns that may not be easily distinguished from the background
through visual spectral inspection and reveals the spatial relationship among the pixels
within a certain distance in a single raster image. Ten parameters that represent the texture
features were generated from the GLCM texture analysis [72]. A Principal Component
Analysis (PCA) was then applied to the twenty parameters (ten for the pre- and post-event
sigma0 images, respectively) to rank these parameters by their capability to reflect the
spatial diversity of the SAR amplitude data. The texture features with the highest PCA
score were chosen and then used to visualize the landslide-affected area. In this way, the
PCA reduced the dimensionality of the texture features of the GLCM analysis, as some
parameters of the texture features merely contribute to the variability of the SAR amplitude
images. The same as the first change detection method, the pre-failure PC was visualized
in the red and blue bands, and the post-failure PC was then visualized in the green band.

The RGB color visualization scheme of the SAR amplitude change detection in this
study is shown in Table 4. The workflow of the two SAR amplitude-based change detection
analyses is shown in Figure 3.
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Table 4. RGB color composition of the SAR amplitude change detection.

Red Green Blue

Pre-failure calibrated
amplitude sigma0

Post-failure calibrated
amplitude sigma0

Pre-failure calibrated
amplitude sigma0

Pre-event GLCM texture
features with high PCA scores

Post-event GLCM texture
features with high PCA scores

Pre-event GLCM texture
features with high PCA scores
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3.2.2. Two-Tier Network DSInSAR Processing

The MTInSAR methods were used to analyze the ground stability in La Paz city for
the pre- and post-failure analysis using Sentinel-1 SLC data. For the applied DSInSAR
method, refer to [47,73]. First, the multi-looking parameter was set to be 2 by 10 (azimuth by
range) in order to mitigate the decorrelation noise in the generation of the interferograms,
obtaining a pixel spacing of 40 by 50 m (azimuth by range) over flat terrain. The most
stable PS targets were identified, and then their temporal coherence was estimated and
filtered using a threshold of 0.72 from the first-tier Delaunay network. M-estimator and
beamforming were used to calculate the height and deformation velocity and to improve
the robustness by iteratively lowering the weight of low Signal-Noise-Ratio (SNR) images
to reduce the following unwrapping errors. The relative estimates were integrated through
a network adjustment using a ridge estimator to regulate ill-conditioned problems in the
network adjustment for robust parameter integration. The other selected PS/DS were sent
into the second-tier localized network processing. Coherence-Weighted Phase-Linking
(CWPL) was used to reconstruct the optimal phase to identify the DS based on the temporal
coherence threshold method (0.65) by assigning more weight to the phases with higher
temporal coherence, which indicates a higher quality of SAR image. SRTM 1-arcsec DEM
was used to remove the topography effect in the hilly study area and to geocode the
DSInSAR processing results. Finally, the Generic Atmospheric Correction Online Service
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(GACOS) model was applied to remove the Atmospheric Phase Screen (APS), and the
detrend analysis was applied to remove the trend in the deformation time series related to
the elevation [74–76].

For the pre-failure DSInSAR analyses, a total of 62 images (31 for ascending and
descending geometries each) were downloaded, preprocessed, and then sent into the
processing chain. We observed that the landslide deposit was removed at the end of
May 2019 by checking the cloud-free Sentinel-2 optical imagery. Onsite geologists also
reported that the landslide deposit removal work was completed by June. Therefore, to
avoid the loss of temporal coherence, the Sentinel-1 data stack used for the post-failure
analyses was formulated starting from June 2019 to June 2020. A total of 76 images (38 for
ascending and descending geometries each) were downloaded and then processed for the
post-failure analyses.

To identify and assess the pre- and post-failure deformation in other dimensions
rather than the SAR coordinates of the Line-of-Sight (LOS) direction only, especially in the
hilly study area, we projected the LOS velocity into the slope (Vslope), east–west (VEW),
and up–down (VV) directions using geometrical projections [5]. This was achieved by
introducing the incidence and azimuth angles of the Sentinel-1′s ascending and descending
geometries. As the Sentinel-1 SAR sensor operates on a near-polar sun-synchronous orbit,
it is not sensitive to measure the ground deformation along the north–south direction [77].
In the processing results of the projection, the positive values refer to the east and up, while
the negative values refer to the west and down directions. In contrast, for the projection of
the deformation along the slope direction, the negative values refer to the movement from
the top downwards along the slope direction. Positive values are usually considered errors,
as the movement of materials against the slope direction is unlikely to occur in this study.

3.2.3. P-SBAS Processing

The P-SBAS processing was conducted on a cloud computing platform called the
Geohazards Exploitation Platform [78,79]. The GEP is a cloud-based platform that allows
users to process remote sensing data through numerous processing services for the purpose
of supporting the EO in geohazards studies [80]. P-SBAS refers to Parallel SBAS processing.
Compared to conventional SBAS processing, P-SBAS processing can significantly increase
the processing efficiency by paralleling the tasks and processing these individual tasks
simultaneously [54]. For the pre-failure analysis, a total of 142 Sentinel-1 SLC images
collected over two years (from April 2017 to April 2019, with 66 and 76 for ascending and
descending orbits, respectively) were applied, and for the post-failure analysis, a total of
122 Sentinel-1 SLC images collected over two years (from June 2019 to May 2021, with
61 each for ascending and descending orbits) were applied to the online processing platform
over the study area. The default multi-looking parameter in the P-SBAS on GEP was 5 by
20 (azimuth by range), resulting in a multi-looked pixel spacing of 90 m. The selection of
the master and slave interferometric pairs followed an automatic way of considering the
temporal and spatial baselines of the SAR images in the dataset. The SRTM 1-arcsec DEM
was applied in the removal of the topographic phase. The temporal coherence threshold
was set to be 0.5. The extended minimum cost flow (EMCF) algorithm was used in the
phase unwrapping. Singular Value Decomposition (SVD) method was applied to estimate
the deformation velocity by subtracting the topography and residual phases. The flowchart
of the DSInSAR and P-SBAS processing on the GEP is shown in Figure 4.

The primary final output of the GEP P-SBAS processing included a spreadsheet of
the velocity and time series of the deformation for each extracted coherent target with the
latitude and longitude in the WGS84 system which could be visualized by geolocating the
targets in the (GIS). The metadata and quick-look results in the raster (.png) and Google
Earth (.kmz) formats were also provided.



Remote Sens. 2023, 15, 5311 11 of 28
Remote Sens. 2023, 15, x FOR PEER REVIEW 11 of 29 
 

 

 
Figure 4. Workflow of the MTInSAR methods. 

4. Results 
4.1. Landslide Mapping Using the SAR Amplitude 

The calibrated sigma0 band and the GLCM variance RGB color composition of the 
COSMO-SkyMed and Sentinel-1 data are the first results obtained with the change detec-
tion analysis (Figure 5). The pink color indicates the decrement in the SAR reflectance of 
the backscarp of the landslide, as the original land cover of this area included mainly roads 
and houses. The new land cover over the backscarp after the landslide was originally finer 
materials inside the landfill. Meanwhile, the green color represents the landslide deposits, 
indicating an increment in the SAR reflectance. Through optical remote sensing imagery 
taken before and after the failure and the videos taken onsite, the major components of 
the landslide deposits were materials such as bricks, tarmac, concrete waste, rooftops, and 
other materials that had a higher reflectance than the original land cover of bare soil or 
sparse vegetation. 

The GLCM variance was used to visualize the landslide-affected area highlighted by 
the highest PCA score in both the COSMO-SkyMed and Sentinel-1 GLCM analyses. A 
higher score indicates a stronger capability to distinguish the texture features in the SAR 
image, therefore providing clearer landslide-affected area mapping results. The GLCM 
variance, contrast, and GLCM mean were the three GLCM texture features with the 

Figure 4. Workflow of the MTInSAR methods.

4. Results
4.1. Landslide Mapping Using the SAR Amplitude

The calibrated sigma0 band and the GLCM variance RGB color composition of the
COSMO-SkyMed and Sentinel-1 data are the first results obtained with the change detection
analysis (Figure 5). The pink color indicates the decrement in the SAR reflectance of the
backscarp of the landslide, as the original land cover of this area included mainly roads
and houses. The new land cover over the backscarp after the landslide was originally finer
materials inside the landfill. Meanwhile, the green color represents the landslide deposits,
indicating an increment in the SAR reflectance. Through optical remote sensing imagery
taken before and after the failure and the videos taken onsite, the major components of
the landslide deposits were materials such as bricks, tarmac, concrete waste, rooftops, and
other materials that had a higher reflectance than the original land cover of bare soil or
sparse vegetation.
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Figure 5. The results of the landslide-affected area mapping using amplitude change detection
approaches: (a) color composition of the pre- and post-failure COSMO-SkyMed sigma0 bands;
(b) color composition of the COSMO-SkyMed GLCM variance feature; (c–f) results of the Sentinel-
1 GRD amplitude change detection approaches; (c,d) color composition of the pre- and post-failure
sigma0 bands of the ascending and descending geometry, respectively; (e,f) color composition of
the GLCM variance of the ascending and descending geometry, respectively. The red polygons refer
to the landslide-affected area’s delineation results generated from the COSMO-SkyMed amplitude
change detection results (a,b).

The GLCM variance was used to visualize the landslide-affected area highlighted by
the highest PCA score in both the COSMO-SkyMed and Sentinel-1 GLCM analyses. A
higher score indicates a stronger capability to distinguish the texture features in the SAR
image, therefore providing clearer landslide-affected area mapping results. The GLCM
variance, contrast, and GLCM mean were the three GLCM texture features with the highest
PCA scores among all GLCM texture features after performing the PCA for both the
COSMO-SkyMed and Sentinel-1 data. Table 5 lists the scores of these three parameters.
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Table 5. The PCA scores of the GLCM texture features of the COSMO-SkyMed and the Sentinel-
1 GRD ascending and descending amplitude data. Only the three GLCM texture features with the
highest PCA scores are listed.

COSMO-SkyMed Sentinel-1 Ascending Sentinel-1 Descending

Pre-Failure Post-Failure Pre-Failure Post-Failure Pre-Failure Post-Failure

GLCM variance 653.83 603.19 166.51 132.85 60.12 64.06
Contrast 214.19 214.94 122.75 96.46 53.07 57.72

GLCM mean 31.11 29.43 12.16 10.47 7.18 7.39

The football field located to the west of the San Jorge Kantutani landslide showed a
clear green feature referring to the land use change due to the emergency requisition of the
local civil protection department as an evacuation site for the residents who were affected
by the landslide. From Figure 2f, the facilities that were set up on the football field can be
observed. The backscattering signals of such facilities were higher than the original land
cover of grass. Therefore, the green feature in the SAR change detection results referring to
the land use change were similar to the landslide-affected area.

4.2. Two-Tier Network DSInSAR Analysis

The pre- and post-failure VLOS of the ascending and descending geometries and the
VEW and VV of the DSInSAR processing results are shown in Figure 6. The study area
included La Paz city and the southern suburban area, which yielded ~300,000 PS/DS points
in each two-tier network for the DSInSAR processing. The point density reached a level
of approximately 500/km2, with a dense distribution of the points in the urban area of
La Paz, facilitating the subsequent analysis of the geohazards. Notably, the density of the
PS/DS in the suburban sites around the La Paz urban area was relatively high compared
to previous studies, with the DSInSAR algorithm successfully extracting sufficient point
targets over the rock outcrops and bare soil with low vegetation density in the study area.
The projection results indicate multiple areas of creep phenomena along the east–west
directions in the red–blue colors, and areas of creep along the up–down directions in the
blue–yellow–red colors. According to the pre-failure two-tier network DSInSAR results,
more than 10% of the points suffered from deformation greater than 10 mm/year along
the LOS direction and, considering the even spatial distribution of the points in the urban
area of La Paz, the deformation hotspots took up more than 10% of the urban area of La
Paz. The reason for not counting the post-failure two-tier network DSInSAR results is
the loss of temporally and spatially coherent PS/DS targets during that period. On the
other hand, by comparing the situation of some deformation hotspots in La Paz city, the
increasing velocity from the pre-failure period to the post-failure period confirmed the
loss of temporally and spatially coherent PS and DS. Such results indicate that the ground
deformation of La Paz city behaves more as creep-like rotational earthflow rather than
subsidence caused by organic or sandy materials along the vertical direction.

4.3. P-SBAS Analysis

The P-SBAS pre- and post-failure processing results are illustrated in Figure 7. As the
default multi-looking factor in the P-SBAS processing on the GEP resulted in a 90 m spatial
resolution, the distribution of the point targets of the P-SBAS analysis was not as dense as
the DSInSAR processing. Areas of severe deformation were still present from the P-SBAS
results. Tables 6 and 7 list the maximum velocity observed through both the MTInSAR
processing along the LOS and the projected directions in the different deformation hotspot
areas in La Paz city. The deformation spots were obtained from [43]. The analyzed results
suggest that the creep phenomena in La Paz predominantly occurred along the east–west
rather than the up–down direction. Figure 8 illustrates the deformation time series along
the east–west direction over some selected hotspots. Subsequent to the analyses of the
MTInSAR processing, we observed that the detected areas with creep phenomena in La
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Paz were very similar. However, the velocity results of the point targets from the P-SBAS
processing were sometimes different from the results (~30%) obtained from the DSInSAR
processing of the same area. It may be that the P-SBAS processing used a larger window
for the multi-looking factor than the two-tier network DSInSAR processing. In addition,
the threshold of the temporal coherence and amplitude stability threshold used in the
DSInSAR processing were both relatively high, causing decorrelation phenomena to occur.
Both reasons resulted in selected point targets from the P-SBAS to be fewer in number than
DSInSAR but more spatially continuous.
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Table 6. Maximum velocity along different directions recorded among deformation hotspots in La
Paz through MTInSAR pre-failure processing (mm/year).

Creep Hotspots Official Risk Map
(2011)

DSInSAR LOS
(mm/Year)

DSInSAR Projected
(mm/Year)

P-SBAS LOS
(mm/Year)

S-1 Asc S-1 Desc E-W U-D S-1 Asc S-1 Desc

1 Santa Barbara Very High 23.05 −35.17 −34.25 −27.85 20.23 −22.47

2 Urbanizacion 23 de
Marzo Very High 33.3 −57.93 −43.65 −29.4 29.78 −50.69

3 Adela Zamuldio,
Cotahuma Mixed −49.72 13.37 12.77 −29.06 −11.57 0.97

4 Alpacoma and north
of Achacalla Basin Very High −162.59/

55.62
−142.22/
77.12

−106.95/
150.61 −112.34 −234.14/

52.7
−164.58/
158.25

5 Mallasa Very High −53.01 −59.02 −44.77 −42.13 −38.36 −78.3
6 Huantaqui Very High 63.76 −77.85 −101.24 −53.68 73.9 −93.38
7 Alto Seguencoma Mixed 20.29 −52.52 −33.51 −42.66 15.59 −41.57
8 Villa Armonia Very High 78.69 −109.56 −124.75 −50.9 70.23 −126.03
9 Callapa Very High −132.43 71.12 150.98 −81.87 −124.32 54.15
10 Cota Cota Very High 128.53 −154.19 −216.27 −88.39 171.10 −177.46
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Table 7. Maximum velocity along different directions recorded among deformation hotspots in La
Paz through MTInSAR post-failure processing (mm/year).

Creep Hotspots Official Risk Map
(2011)

DSInSAR LOS
(mm/Year)

DSInSAR Projected
(mm/Year)

P-SBAS LOS
(mm/Year)

S-1 Asc S-1 Desc E-W U-D S-1 Asc S-1 Desc

1 Santa Barbara Very High 27.18 −29.49 −24 −24 10.88 −21.27

2 Urbanizacion 23 de
Marzo Very High 33.18 −42.28 −39.69 −31.44 25.61 −41.87

3 Adela Zamuldio,
Cotahuma Mixed −14.21 9.37 14.04 −19.66 −10.27 6.64

4 Alpacoma and north
of Achacalla Basin Very High −176.65/

45.38
−90.22/
87.34

−77.31/
186.61 −110.25 −215.15/

44.5
−103.56/
74.48

5 Mallasa Very High −72.18 −91 −63.84 −55.02 −31.9 −49.48
6 Huantaqui Very High 72.82 −82.05 −108.44 −37.63 77.7 −93.27
7 Alto Seguencoma Mixed 25.5 −39.97 −27.1 −41.12 10.26 −37.41
8 Villa Armonia Very High 69.22 −116.69 −126.46 −41.09 55.88 −86.88
9 Callapa Very High −79.41 101.07 107.46 −44.43 −196.84 125.94
10 Cota Cota Very High 138.18 −127.75 −200.58 −88.73 157.38 −174.02
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Figure 8. Deformation map and time series along east–west direction deformation hotspots and
two-tier network DSInSAR displacement time series along east–west direction in La Paz. An increasing
time series refers to an eastward movement and a decreasing time series refers to a westward movement.

4.4. San Jorge Kantutani Landslide

The San Jorge Kantutani landslide was located on an east-facing slope. Figure 9 shows
the velocity along the LOS, east–west, and vertical directions over the extracted PS/DS
through the two-tier network DSInSAR processing over the landslide’s backscarp. Through
DSInSAR and P-SBAS pre-failure processing, two relatively active deformation hotspots
located on the northern and western sides of the future landslide-affected area that are
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clearly discriminated from the surrounding point targets can be observed mainly in the
deformation map of the ascending geometry. The results of the DSInSAR processing show
that before the final landslide, the maximum VLOS detected was −39.14 mm/year in the
ascending geometry. However, with a reduced spatial resolution of only 90 m, the P-SBAS
cannot represent the actual spatial distribution of the targets over the portion of the slope
and the future landslide. We found that the maximum P-SBAS VLOS in a nearby area was
−31.41 mm/year in the ascending geometry. It should be noted that such a velocity was
recorded in the direction away from the satellite, which is consistent with the movement of
the materials along the slope direction under the actual circumstances.
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Figure 10 shows the deformation time series of selected points representing the pre-
failure deformation of both MTInSAR methods of ascending geometry. At the end of
February, as the rainy season was about to end, the creep velocity slowed down until it
stabilized. This may indicate that as the precipitation reduced, the load over the Kantutani
slope reached a relatively stable state. The earth became saturated and then no longer
underwent creep. Later, the cut slope construction project that began in April caused the
loss of support to the slope body, causing the first slide to occur on 27 April 2019. Finally,
because of the intense rainfall on the morning of 30 April 2019, the water infiltrated into
the sliding surface caused by the first slide that happened three days prior, leading to the
eventual failure a few hours later. The trends of the results of both MTInSAR analyses
are quite similar. Then, the 27 April 2019 landslide happened because of a collapse of the
materials at the northern part of the landslide-affected area, followed by the collapse of the
western part of the slope on 30 April 2019, causing the occurrence of the major landslide.
Therefore, we were able to detect signals of deformation on the San Jorge Kantutani
landslide before it collapsed on the 27 and 30 April 2019 using MTInSAR methods. For the
descending geometry, the extracted point targets did not exhibit clear deformation features
spatially. This could be because of the higher sensitivity of Sentinel-1 ascending data to the
east-facing slope than the descending data; as for the descending geometry, the materials
tended to move perpendicularly to the LOS direction [81,82].
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Figure 10. Selected pre-failure P-SBAS VAsc and two-tier network DSInSAR VAsc and VV time series
on the backscarp of the landslide. The color circles refer to the color of the lines in the corresponding
histogram to the right of the map.

The VV map revealed that the pre-failure VV of the three points detected on the future
landslide’s backscarp were −21.32, −21.1, and −21.15 mm/year through the two-tier
network DSInSAR processing. The VEW of the pre-failure analysis was not significant and
could not be distinguished from the surrounding point targets. Further, the Vslope and
VV revealed subsidence hotspots near the future backscarp of the landslide. However,
the projected VV had a reduced spatial resolution that obscured the pre-failure signal
of the northern backscarp because we applied a nearest-neighbor-based algorithm to
merge the PS/DS targets of the ascending and descending geometries, and the size of the
searching window was set to 40 m. The maximum Vslope over the northern backscarp was
−54.54 mm/year and −46.48 mm/year on the western backscarp. The spatial distribution
of the subsidence hotspots of both the Vslope and VV were similar, which can explain that
the pre-failure signal was mainly on the vertical direction of the Kantutani landfill, rather
than like the earthflows of natural processes along the horizontal directions in La Paz.

Using Google Maps Street View images collected in March 2015 (Figure 11a,c,e) and
pictures of the landslide from social media (Figure 11b,d,f), construction work on houses
near the backscarp of the landslide continued over the years. Such activities increased the
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mass of the slope and played a long-term role in triggering the landslide. Figure 12a–g
are screenshots taken from Google Maps Street View and Figure 12h–k are images taken
of houses nearby the Kantutani area after the landslide by onsite geologists from GAMLP.
Figures 12a–g and 12h–k show cracks in the walls and roads and of the landslide-affected
area, and Figure 12g shows the lack of a well-planned underground drainage system for
the site. (l) is indicates the locations where Figure 12a–g were taken. Because of privacy
reasons, the locations of Figure 12h–k are not presented in this work.
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Figure 11. Screenshots taken from Google Maps Street View on the Puente Libertad Road and social
media that represent the overload of the landfill caused by the construction work from March 2015 to
April 2019. (a) refers to a 3-level building in 2015, and (b) refers to the collapsing building during the
landslide. The building had 4 levels in 2019 compared to 3 levels in 2015. (c) refers to a brick wall and
according to (d), the former brick wall had been replaced with a building and it collapsed with the
two-level building on the left of the picture during the landslide. (e) refers to an unfinished building
in 2015 and in (f) the construction had been finished in 2019.

From the post-failure analysis of the DSInSAR processing, the results still show clear
subsidence signals near the north and west backscarps of the San Jorge Kantutani landslide.
This indicates that the slope of the Kantutani landfill was still not stabilized after the major
landslide that occurred on 30 April 2019. The post-failure Vslope of the northern scarp was
−35.54 mm/year and the western scarp was −21.72 mm/year. We then performed natural
neighbor spatial interpolation to the pre- and post-failure Vslope results, combining both
the ascending and descending geometries (Figure 13). Multiple clear deformation hotspots
and their changes over time can be discriminated in this area through the interpolation
results. The DSInSAR processing also identified that the southwest direction of the San
Jorge Kantutani landslide, as a potential geohazard-prone area, showed an increasing VV
of −28.62 mm/year compared to the pre-failure velocity of −24.85 mm/year. Therefore,
we considered that the deformation of the southwestern part of the Kantutani area may
have accelerated under some circumstances similar to the triggering factors of the San
Jorge Kantutani landslide. Based on these presented results, we believe that the occurrence
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of the slope failure relieved some of the pressure within the landfill, but there is still a
considerable risk of landslides in the same area. Onsite investigations, sampling, and
geotechnical lab experiments are needed to determine whether this risk comes from the
ongoing instability of the landfill or the paleo-landslide in the Cotahuma area.
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5. Discussion

Here in this paper, the objective of using SAR change detection approaches to map
the landslide-affected area of the San Jorge Kantutani landslide that occurred in April
2019 in La Paz, Bolivia, was achieved. The capability of utilizing the texture change of
the SAR amplitude data was proven in assisting in the mapping of landslides that cause
land cover change when optical remote sensing data are not available. The COSMO-
SkyMed data showed a stronger capability to map landslides thanks to their higher spatial
resolution of 3 by 3 m compared to Sentinel-1. No significant graphic features that could
be interpreted as landslide-affected areas in the results using the Sentinel-1 data were
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observed. Although X-band COSMO-SkyMed or TerraSAR-X has higher spatial resolution
than C-band Sentinel-1 data, the larger frame width, more regular revisit period, and
better accessibility of Sentinel-1 have made Sentinel-1 amplitude data have better mapping
capabilities in landslides that induce land cover and their texture change at greater scales,
such as larger landslides caused by volcano eruptions, debris flow, snow avalanches, and
earthquakes using change detection approaches [25,83–85].

Based on the MTInSAR analyses, ground deformation maps of La Paz city were
generated over time. With a regular revisit interval of every 12 or even 6 days by the
Sentinel-1 constellation, spaceborne MTInSAR is sufficient to identify early signals of
ground deformation events, especially landslides, over a large area, which has been val-
idated in many studies, as well as in this study [86–88]. Among the factors applied in
the urban geological hazards map were geotechnical factors including soil moisture and
groundwater level which, altered by the extreme precipitation events and, on the other
hand, human activities, including unplanned construction works and habits of the residents,
can vary significantly over time, and then influence the ground deformation essentially.
Compared with the pointwise GNSS, MTInSAR can provide spatially continuous obser-
vations. Furthermore, based on the MTInSAR measurements in La Paz, the large area of
ground deformation and the large quantity of deformation hotspots would increase the cost
of GNSS monitoring. Hence, using MTInSAR methods, an urban geological hazards map
of La Paz could be updated regularly. The time series of the PS/DS targets in some areas
were then examined, as they were labeled as geohazard-prone areas in the 2011 official
geological risk map, but we did not find obvious subsidence signals from the time series.

In addition, the two-tier network DSInSAR method was mainly utilized to evaluate the
pre- and post-failure creep of the landslide-affected area following the occurrence of the San
Jorge Kantutani landslide in April 2019. The deformation results clearly revealed that the
initial subsidence detected along the slope direction of the northern and western backscarps
of the Kantutani landfill site was the primary geotechnical cause of the landslide. Spatially,
their deformation features were clearly discriminated from the surrounding areas and
verified by the onsite observation of the failure mechanism by the geologists. Furthermore,
the pre-failure creep signals were present from July 2018, nine months prior to the landslide.

The post-failure analysis of a landslide is crucial for gaining an in-depth understanding
of the underlying causes and contributing factors in order to prevent similar occurrences in
the future. It is often observed that slopes where landslides have occurred previously often
show intensified post-failure activities. The post-failure analysis using SAR interferometry
shall be initiated after checking the landslide deposit removal work of the San Jorge
Kantutani landslide to maintain the density of the PS/DS targets over the landslide-affected
area, as the backscattering characteristics of the point targets of the landslide-affected area
had been altered significantly because of the landslide and the landslide deposit removal
work. From the results of the post-failure analyses, the landslide-affected area still shows
a clear deformation trend referring to the potential slope instability from its old scarps
to the north and west. Further analyses using this two-tier network DSInSAR method
have revealed a slight acceleration trend in the southwestern area of the Kantutani landfill,
which was not affected by the landslide before. This phenomenon could be attributed to
the removal of landfill materials caused by the landslide, leaving no material to prevent the
backscarp earth in the southwest direction from sliding rotationally. In the future, more
historical Sentinel-1 data are hoped to be utilized for MTInSAR analyses to reconstruct the
deformation trend of the slope over a longer period of time to better study the deformation
characteristics of this landfill area and also to examine the effectiveness of the DSInSAR
method in La Paz city. Also, when applying the MTInSAR processing to landslides and
regional ground deformation monitoring, it is crucial to project the displacement along
the LOS direction into up–down, east–west, or slope directions to better reconstruct the
landslide motion in time series. This allows for a more detailed analysis of the actual
displacement in different directions while the SAR data of both ascending and descending
geometries are available.
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The velocity of the P-SBAS processing results was re-estimated using the displacement
time series as the P-SBAS results cover a longer time span (June 2017 to May 2021) than the
processing results of the two-tier network DSInSAR (June 2018 to June 2020) and then it
reduced the spatial resolution of the two-tier network DSInSAR processing into P-SBAS
using natural neighbor interpolation. Correlation analyses were performed for the velocity
results generated using the two MTInSAR methods in this work (Figure 14), and it was
found that the monitoring results of the two methods were consistent and the correlation
coefficient of the velocity results of the ascending geometry was higher than the descending
results. However, because of the different processing methods and procedures, the range
of the deformation rate of the two-tier network DSInSAR processing was smaller than for
the P-SBAS processing. It can be found from the result that the P-SBAS processing used
a larger spatial filter (~90 m), which was significantly larger than that for the DSInSAR
processing (~50 m), and the temporal filter for the DSInSAR processing was larger than that
for the P-SBAS processing. The differences between these filters are that more point targets
are maintained in the P-SBAS processing, which may cause a loss in the spatial–temporal
correlation in the DSInSAR processing. This is also the reason why there are more “holes”
that represent the spatial discontinuity in the DSInSAR processing results.
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The heavy rainfall on the morning of 30 April 2019 quickly caused the secondary slide
on the same day because of infiltration into the cracks caused by the first slide that occurred
only three days prior. During the development phase of a potential landslide, slope failure,
or the reactivation phase of an old landslide, the temporal interval at an hourly scale is too
short for existing satellite sensors. Ground-Based SAR Interferometry (GBInSAR) methods
can be applied to monitor landslide activity during the phase that requires fast sensing and
response. GBInSAR provides continuous slope stability monitoring on site and minimizes
the influence of the deformation results brought on by the APS, as GBInSAR systems are
usually installed very close to the monitored targets (usually at ~4 km level). Although
GBInSAR equipment is expensive compared to spaceborne MTInSAR monitoring, it can
provide slope-wise deformation data when landslides are likely to occur. By combining
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GBInSAR with spaceborne MTInSAR systematically, we can take advantage of the low cost
of MTInSAR in regional geohazard inventory and the high frequency and high precision of
GBInSAR in real time [89].

In recent years, many works have applied the InSAR method in North American,
European, and Asian countries, but only very few have focused on South American and
African countries. The urgent need to study urban landslides in South America using the
InSAR method is imminent. Online processing tools, such as GEP, LiCSAR [90], HyP3 [91],
and others, will greatly assist in the research and application of InSAR in developing countries.

For the continuous monitoring of the San Jorge Kantutani landfill, SAR remote sensing
monitoring needs to be continuously carried out. The InSAR or SAR amplitude-based
pixel offset tracking methods can only measure surface movements. Many studies tend
to assume that the geotechnical and physicochemical properties of the materials in the
landslide-affected area are spatially uniformed [9]. The design and operation of landfills
requires the monitoring of stability due to the heterogenous components including liquid
and even gas emissions due to long-term processes occurring for years underground.
However, in this study, the changes in geotechnical factors induced by the physiochemical
changes of the waste inside the landfill over time are unknown. The videos taken during the
landslide showed that the soil inside the landfill was black and liquefied, which indicates
that the earth originated from chemical changes in the buried waste under conditions of
overpressure since the completion of the landfill in the 1980s, as it appears to have features
clearly different from the surrounding geology. The geotechnical properties of this type
of soil are not known, and it is uncertain whether it can ensure the slope stability of the
original landslide and the southwestern part of the Kantutani area. Therefore, conducting
field investigations and geotechnical experiments on the southwestern side of the slope
to confirm these questions and further support the assessment of future landslide risk in
the San Jorge Kantutani area is of crucial importance. It is also recommended to collect
other geotechnical data, such as moisture content, fissures, shear strength, and effects
caused by the landslide which may trigger the reactivation of the landslide after its first
occurrence in April 2019. Together with the SAR analyses results, these data will help in the
formulation of suitable models for slope stability reconstruction and then to plan geohazard
mitigation works.

6. Conclusions

In this work, spaceborne SAR imagery was utilized to analyze the San Jorge Kantutani
landfill landslide that was directly triggered by persistent precipitation at the end of April
2019 in La Paz, Bolivia. First, the affected area was delineated using SAR change detection
approaches with multisource SAR data. The results show that the high-resolution X-band
COSMO-SkyMed SAR data were instrumental in the mapping of the landslide-affected
area. The limited spatial resolution of 10 m is likely the reason why the C-band Sentinel-
1 amplitude data failed in the landslide-affected area mapping in this study. Then, a
longtime series of the C-band Sentinel-1 data was analyzed with MTInSAR algorithms. The
time series of deformation and its spatial distribution of both pre- and post-failure phases
have shown significant deformation signals that can be regarded as precursors of slope
failure. Combined with high-resolution optical remote sensing imagery and pictures taken
onsite, the precursors of the landslide were better interpreted. It is recommended to collect
geotechnical and geophysical data, as many factors may have been altered by the slope
failure in April 2019.

For the regional scale monitoring, multiple subsidence hotspots in the study area
were identified and then analyzed. Deformation records along the LOS direction of the
ascending and descending geometries were projected along the up–down and east–west
directions and it was found that, in La Paz city, compared to the ground subsidence or
uplifting phenomena along the up–down direction, the slopes tend to creep more along the
east–west directions. The P-SBAS generated a similar deformation spatial distribution and
similar velocity to the DSInSAR method in this study.
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MTInSAR has proven to be a very powerful instrument in urban planning and geo-
hazard management on behalf of public administrations. As a future perspective, ground
deformation analyses over extended periods are expected to be conducted periodically
using various MTInSAR analyses in La Paz. These analyses will provide ground deforma-
tion information to help regularly update the official risk map, thanks to the regular revisit
of Sentinel-1 data with a 12- or even 6-day frequency. Furthermore, the methodologies
applied in this study can be extended to other emergency applications of civil protection
activities or to places where high-resolution optical images are temporarily unavailable
during the assessment.
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