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Abstract: Integrated reconstruction is crucial for 3D modeling urban scenes using multi-source
images. However, large viewpoint and illumination variations pose challenges to existing solutions.
A novel approach for accurate 3D reconstruction of complex urban scenes based on robust fusion of
multi-source images is proposed. Firstly, georeferenced sparse models are reconstructed from the
terrestrial and aerial images using GNSS-aided incremental SfM, respectively. Then, cross-platform
match pairs are selected based on point-on-image observability. The terrestrial and aerial images are
robustly matched based on the selected match pairs to generate cross-platform tie points. Thirdly, the
tie points are triangulated to derive cross-platform 3D correspondences. The 3D correspondences
are refined using a novel outlier detection method. Finally, the terrestrial and aerial sparse models
are merged based on the refined correspondences, and the integrated model is globally optimized
to obtain an accurate reconstruction of the scene. The proposed methodology is evaluated on five
benchmark datasets, and extensive experiments are performed. The proposed pipeline is compared
with a state-of-the-art methodology and three widely used software packages. Experimental results
demonstrate that the proposed methodology outperforms the other pipelines in terms of robustness
and accuracy.

Keywords: 3D reconstruction; terrestrial–aerial integration; structure from motion; cross-platform
image matching; outlier detection

1. Introduction

3D reconstruction of urban scenes provides a fundamental data source for many smart
city researches and applications [1–3]. In recent years, airborne oblique photogrammetry
has become one of the mainstream solutions for reconstructing photorealistic 3D models
in urban scenes due to its high cost-effectiveness, high fidelity, and high accessibility
of professional equipment [4–6]. Although airborne oblique photogrammetry is widely
adopted for 3D modeling at the city scale, the bottom parts of reconstructed models are
often unsatisfactory due to the occlusion of ground objects and large perspective distortion
of aerial imagery, especially in complex urban scenarios. With the development of data
acquisition techniques, the integration of aerial and terrestrial imagery is widely used for
generating better 3D models in terms of completeness, accuracy, and fidelity [7–9].

One major challenge of terrestrial–aerial integrated 3D reconstruction is cross-platform
image matching [10,11]. Establishing tie-points between images with large viewpoint
and illumination variations is difficult for SIFT-like image matching methods [12]. Recent
learning-based image matching methods can extract more distinctive features by using deep
neural networks [13,14]. These learned features exhibit better performance on benchmark
datasets. Although a few methodologies based on handcrafted and learning-based image
matching algorithms have been proposed to improve the robustness of cross-platform
image matching [15,16], the problem has not been fully resolved.

Another challenge is the accurate fusion of terrestrial and aerial models. Most studies
reconstructed terrestrial and aerial models and merged the models via a 3D similarity
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transformation. The similarity transformation is usually estimated using 3D correspon-
dences derived from cross-platform tie points. However, previous studies have shown that
the epipolar constraint cannot remove all mismatches. And the remaining cross-platform
mismatches will introduce inaccurate observations to the estimation of similarity transfor-
mation and the global optimization of the integrated model. Although outlier detection
methods have been proposed to filter remaining mismatches and incorrect 3D correspon-
dences, the accuracy of model fusion can be further improved. Terrestrial and aerial models
can also be merged based on point cloud registration [17,18]. However, these methods
require accurate extraction and robust matching of common geometric features in two
point clouds. The establishment of accurate correspondences in cross-platform point clouds
is still challenging.

This paper presents a novel approach for integrated 3D reconstruction of urban scenes
using aerial and terrestrial imagery. The main contributions of this paper are as follows.
First, a robust image matching method is proposed to tackle the cross-platform image
matching problem. Incremental Structure from Motion (SfM) with weighted Global Navi-
gation Satellite System (GNSS) observations is used to reconstruct georeferenced terrestrial
and aerial sparse models, respectively. Based on the sparse models, cross-platform match
pairs are selected by projecting terrestrial points to the aerial images. Instead of matching
rectified images or renderings, terrestrial and aerial images are directly matched based on
the selected match pairs to generate cross-platform tie points. Second, an outlier detection
algorithm is proposed to refine 3D correspondences between terrestrial and aerial models.
The proposed algorithm is derived from the positioning uncertainty of photogrammetric
reconstruction. The cross-platform tie points are robustly triangulated based on the ter-
restrial and aerial sparse models. Then, outliers are removed from the correspondences
based on the statistics of positional differences. The similarity transformation from the
terrestrial sparse model to the aerial sparse model is estimated based on the refined 3D
correspondences. After merging the transformed terrestrial model with the aerial model,
the integrated model is globally optimized.

The remainder of this paper is organized as follows. Section 2 reviews related research
works. Section 3 elaborates on the proposed methodology, including reconstruction of
terrestrial and aerial sparse models, robust matching of terrestrial and aerial images, and
accurate fusion of terrestrial and aerial sparse models. Section 4 presents experimental
results on five benchmark datasets, and the performance of the proposed methodology is
demonstrated by comparative experiments and ablation studies. Section 5 discusses the
experimental results and limitations of the proposed methodology. Finally, conclusions are
made in Section 6.

2. Related Works

The core components of an image-based 3D reconstruction pipeline include image
matching, image orientation, dense matching, and textured mesh construction. A tradi-
tional image matching procedure extracts feature points from images and finds initial
matches between image pairs [19,20]. After mismatches are filtered based on the epipo-
lar constraint with the random sample consensus (RANSAC) framework, tie points are
established [21,22]. Then, the image orientation procedure estimates the optimal extrinsic
parameters, intrinsic parameters, camera calibration parameters, and the sparse structure of
a scene based on the tie points. The Structure from Motion (SfM) framework is the de facto
standard for fully automatic image orientation [23–26]. The dense matching procedure es-
tablishes pixel-wise correspondences between matched images and generates dense depth
maps, which can be used to derive the dense point cloud of the scene [27–29]. Based on
the dense point cloud, the textured mesh construction procedure first builds the geometric
model of the scene using a 3D triangular mesh and textures the mesh with images [30].

Robust cross-platform image matching is generally required when applying the above
pipeline to terrestrial–aerial integrated reconstruction in complex urban scenarios. It is
well known that SIFT is sensitive to viewpoint changes larger than 50 degrees [12]. ASIFT
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improves the robustness of image matching by simulating all possible affine distortions
and matches the simulated images using SIFT [31]. An image matching approach based
on warping aerial images to ground was proposed for matching nadir and oblique aerial
images [32]. The method reduced the viewpoint difference between the aerial and oblique
images, and the warped images were robustly matched using SIFT. A similar approach
was proposed for matching terrestrial and aerial images toward the reconstruction of
ancient Chinese architecture [15]. This approach first conducted terrestrial and aerial sparse
reconstruction, respectively. Then, terrestrial–aerial image pairs were selected based on
co-visible mesh, and terrestrial images were warped to the perspectives of aerial images.
The warped images were matched against the aerial images using SIFT. And the tie points
were filtered and transferred to the original terrestrial images. Similarly, a rendering-based
approach was proposed for cross-platform image matching [9]. This method detected
building facades from the dense cloud derived from the aerial images and rectified each
pair of images based on the detected facades. The method effectively increased the number
of SIFT tie points between terrestrial and aerial images. A similar strategy was proposed
to match terrestrial and aerial images based on rectifying images using textured mesh [9].
This method rendered the textured mesh derived from the aerial images to the perspectives
of the terrestrial images and matched the renderings with the terrestrial images using
SIFT. The method exhibited high robustness for cross-platform image matching on five
benchmark datasets. An approach based on refined image patches was proposed to match
cross-platform images [33]. Sparse point clouds were derived from aerial and terrestrial
images, respectively. Image patches were built based on the point clouds and optimized
to be close to the tangent plane of the object surface by variational patch refinement. The
aerial and terrestrial image patches were matched using SIFT. Although these methods
improved the robustness of matching cross-platform images, the dependence on the SIFT-
like algorithms limits their capability in challenging urban scenarios.

In recent years, many learning-based methods have been proposed for robust im-
age matching under challenging conditions [13,14,34]. These methods can extract more
distinctive features using convolutional neural networks trained on benchmark datasets.
Based on the Transformer framework, tie points can be established without using a feature
detector [35]. These learning-based methods showed better adaptiveness to viewpoint
and illumination variations than handcrafted methods on benchmark datasets [36]. These
learning-based methods have been used for matching cross-platform images. A learning-
based framework was proposed for matching terrestrial and aerial images [37]. A dense
correspondence network was trained to learn consistent features among terrestrial and
aerial images and generate dense correspondences. Then, sparse keypoints were extracted
from each image, and tie points were established between each image pair based on the
dense correspondences. The locations of the keypoints were further refined using the
learned feature map to improve the quality of the tie points. A methodology based on
the SuperGlue algorithm [38] was proposed for matching aerial, mobile mapping, and
backpack images [8]. The method first generated a sparse point cloud from the aerial
images. Then, the sparse point cloud was segmented, and facade planes were extracted
from the segmented point cloud. Images acquired by different platforms were rectified onto
the extracted facade planes, and the rectified images were matched using the SuperGlue
algorithm. The method performed well on a challenging dataset. However, the point cloud
segmentation results require manual checking and interactive improvements. Moreover,
the SuperGlue algorithm extracts much fewer feature points from images with poor textures.
The unevenly distributed tie points require manual adjustments. Although learning-based
image matching methods have shown promising performance, recent studies have demon-
strated that these methods do not have obvious advantages over handcrafted ones in
conventional 3D reconstruction tasks [39–42]. Directly applying these learning-based meth-
ods to match cross-platform images and reconstruct 3D models of complex urban scenes
remains challenging.
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Accurate fusion of terrestrial and aerial models is also required for high-quality
terrestrial–aerial integrated reconstruction. The estimation of accurate similarity transfor-
mation between terrestrial and aerial models requires precise 3D correspondences. These
3D correspondences are usually obtained by triangulating the cross-platform tie points. It
is well known that outlier detection based on the epipolar constraint cannot eliminate all
mismatches. Methods have been proposed to further remove the remaining mismatches.
Mismatches were filtered by using thresholds on the variations of scale and principal orien-
tation of SIFT features [15]. The affine transformation model with RANSAC loops was also
used for filtering mismatches. Then, terrestrial–aerial tracks were triangulated to obtain
3D correspondences. A global bundle adjustment was performed to merge terrestrial and
aerial point clouds, in which the Huber loss was introduced to deal with false 3D corre-
spondences. An outlier detection method based on geometric constraints was proposed
to filter mismatches [9]. The length, intersection, and direction constraints defined based
on disparity vectors were used to remove outliers from initial matches. The remaining
mismatches were filtered using the epipolar constraint. The established tie points were
further refined by matching local patches in the original terrestrial and aerial images. A
normalized correlation coefficient search was used to find initial matches, and the ini-
tial matches with a correlation score smaller than a threshold were pruned. A two-stage
approach was proposed for outlier detection [33]. Outliers in initial matches were firstly
filtered by cross-checking and saliency detection using the nearest neighbor distance ratio
test. Then, a 3D similarity transformation between two sets of image patches was computed
with the RANSAC framework to further remove outliers. The 3D similarity transformation
was also used as an additional geometric constraint to limit the matching range of the image
patches, which also improved the robustness of the approach. Geometric constraints were
also proposed to filter mismatches in [8]. After mismatches were filtered using the epipolar
constraint, a 3D point was calculated from each match pair. A match was considered an
outlier if the corresponding 3D point was far from the facade plane or other 3D points
calculated from matches on other images. After outlier detection, tie points were linked to
build tracks. And tie points with short track lengths were further removed. The advantage
of these outlier detection methods is that the constraints have clear geometric meanings and
are easy to understand. However, setting threshold values for these constraints requires
practical experience, which can be challenging for complex datasets.

In summary, recent studies have shown promising performances of learning-based
image matching methods on benchmark datasets. However, the capabilities of these meth-
ods have not been effectively incorporated into the reconstruction pipeline. Furthermore,
most outlier detection methods filter mismatches from the perspective of image matching.
The positioning uncertainty of the terrestrial–aerial integrated reconstruction problem has
not been fully exploited. Innovative methods need to be developed to robustly match
cross-platform images and achieve accurate integrated reconstruction.

3. Methodology
3.1. Overview of Proposed Methodology

The workflow of the proposed methodology is illustrated in Figure 1. Firstly, image
matching is performed separately on the terrestrial and aerial images of a scene. Georefer-
enced sparse models are reconstructed from the terrestrial and aerial images, respectively.
Then, match pair selection is performed to determine match pairs between cross-platform
images. Based on the selected match pairs, robust image matching is conducted to generate
tie points that connect terrestrial and aerial images. Then, the cross-platform tie points are
triangulated to derive 3D points from the terrestrial and aerial sparse models, respectively.
Correspondences between the terrestrial and aerial 3D points are determined, and outliers
are filtered. The terrestrial and aerial sparse models are merged based on the refined corre-
spondences, and the integrated model is globally optimized to finally obtain an accurate
reconstruction of the scene.
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3.2. Reconstruction of Terrestrial and Aerial Sparse Models

The georeferenced sparse models are reconstructed from terrestrial and aerial images
as follows. Image matching is first performed on the images. In the image matching process,
RootSIFT [43] is used for feature point extraction and description. The feature points are
matched using the approximate nearest neighbors (ANN) algorithm to determine initial
matches. Then, the initial matches are verified based on the epipolar constraint with the
RANSAC framework to generate geometrically consistent tie points. To speed up the
matching process, match pairs are selected from K nearest neighbors (KNN) of each image.
And image matching was only performed on the selected match pairs.

Based on the tie points, the GNSS-aided incremental SfM is used to reconstruct the
georeferenced terrestrial and aerial sparse models in favor of its robustness and accuracy.
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The incremental SfM procedure first selects an image pair and reconstructs an initial
stereo model. Then, it grows the model by adding new images and globally optimizing all
parameters in a loop. The object function for the global optimization is given by Equation (1).

E1 = ∑
i

∑
j

ρij
∥∥P
(
Cj, Xi

)
− xij

∥∥2
+ p∑ k‖Mk − Sk‖2 (1)

where P projects a 3D point Xi onto an image j, Cj represents camera parameters of image
j, xij is an image observation, ‖ · ‖ denotes L2-norm, and ρij is an indicator function. ρij
equals to 1 if Xi is visible to image j; otherwise, it equals 0. Mk is a position observation of
image k, Sk is the estimation of the position, p is a weight that is calculated according to
Equation (2).

p = σ2
0/σ2

GNSS (2)

where σ0 is the accuracy of image observations, σGNSS is the accuracy of the GNSS obser-
vations. After the GNSS-aided SfM, georeferenced terrestrial and aerial sparse models are
obtained. In this study, a sparse model of a scene indicates the model reconstructed by the
GNSS-aided SfM, which is composed of a sparse point cloud, exterior and interior orienta-
tions of images, and camera calibration parameters. The sparse point cloud is derived from
geometrically consistent tie points. The exterior orientations of an image define the position
and rotation of the image under the object coordinate system. The interior orientations
include the focal length f and the offset of the principal point (cx, cy). The Brown’s radial
distortion model with three parameters (k1, k2, and k3) was used for camera calibration.

3.3. Robust Matching of Terrestrial and Aerial Images

Based on the terrestrial and aerial sparse models, the terrestrial and aerial images are
robustly matched as follows. Firstly, the normal vector of each 3D point from the terrestrial
sparse model is estimated. Based on the estimated normal vectors, the observability of
each terrestrial point in the aerial images is determined. Terrestrial–aerial match pairs are
selected by projecting terrestrial points to the aerial images in which they are observable.
Based on the selected match pairs, the terrestrial and aerial images are robustly matched.

The normal vector of a point from the terrestrial point cloud is estimated by averaging
its normalized observation vectors. The normal vector estimation is illustrated in Figure 2.
In this top-view illustration, an estimated 3D point P on the facade of a building is ob-
servable in images I1, I2, I3, and I4. To calculate the normal vector of P, the observation
vectors PS1, PS2, PS3, and PS4 are firstly calculated based on the estimated positions of
P and respective perspective centers. Assume that the observation vectors are uniformly
distributed in space, and the normal vector N of P is approximated by normalizing and
averaging the observation vectors.
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To improve the robustness and efficiency of the integrated reconstruction pipeline,
cross-platform image matching is conducted on selected image pairs. Based on the normal
vector estimation, match pairs between cross-platform images are selected as follows.
Firstly, the procedure iterates through the terrestrial point cloud and calculates virtual
observation vectors for each point. A virtual observation vector is the vector from a point
to the perspective center of an aerial image. Then, for each point, the aerial images in which
the point is observable are obtained by projecting the point onto the potential aerial images
based on the Collinearity Equations. An aerial image is considered a potential aerial image
of a point if the angle between the normal vector of the point and the corresponding virtual
observation vector is smaller than a given threshold VT. If the projection of the point is
within the valid area of an aerial image, the point is considered observable in the image. If
a point is observable both in an aerial image and a terrestrial image, the point is considered
a common point between these two images. If the number of common points between a
terrestrial image and an aerial image is larger than a given threshold NT, these two images
are considered as a valid match pair. For each terrestrial image, all aerial images that form
a match pair with it can be determined.

Based on the selected match pairs, an image matching scheme is proposed to match
cross-platform images. The relationship between the terrestrial and aerial images is illus-
trated in Figure 3. In the figure, the point on the facade of a building is observable in three
terrestrial images and three aerial images. Tj is a terrestrial image. Al, Am, and An are
selected aerial images that form match pairs with Tj. Ti and Tk are neighboring terrestrial
images of Tj. In this study, the LoFTR algorithm [34] is used for matching the terrestrial
and aerial images for its high robustness. It should be noted that image matching using
LoFTR is directed, which means that the tie points generated by matching Ti against Tj are
different from those by matching Tj against Ti. In this study, pairwise image matching is
conducted as follows. For each terrestrial image Tj, it is matched against all the selected
aerial images and its K nearest terrestrial images. The initial matches are verified based on
the epipolar constraint with the RANSAC framework to obtain geometrically consistent tie
points. The algorithm for robust cross-platform image matching, including the proposed
match pair selection method and image matching scheme, is described by Algorithm 1.
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Algorithm 1 Robust cross-platform image matching

Input: terrestrial image set T, aerial image set A, terrestrial sparse point cloud
P = {pi|i ∈ {1, 2, 3, . . . , r}}, threshold VT to constrain the angle between a normal vector and a
virtual observation vector, minimum number of common points NT between a terrestrial image
and an aerial image, K for searching nearest neighbors of a terrestrial image
Output: a set of tie points G = {tk = {Ii → (u, v)}|k ∈ {1, 2, 3, . . . , q}, i ∈ {1, 2, 3, . . . , m + n}}
that record each group of tie points tk including their position (u, v) in observable images {Ii}

Initialization: G = Φ, C = {(Ti, A j)→ c|i ∈ {1, 2, 3, . . . , m}, j ∈ {1, 2, 3, . . . , n}} which records
the number of common points between a terrestrial image Ti and an aerial image Aj
1: for each point pi in P
2: find terrestrial images VT = {Ti} in which pi is observable
3: calculate observation vectors of pi
4: calculate normal vector Ni of pi by averaging observation vectors
5: for each aerial image Aj in A
6: calculate virtual observation vector Vij of pi
7: if angle(Ni, Vij) < VT and projection of pi is within the valid area of Aj
8: for each image Ti in VT
9: increment C(Ti, Aj)

10: end for
11: end if
12: end for
13: end for
14: for each terrestrial image Ti in T
15: for each aerial image Ai in A
16: if (CTi, Aj) > NT
17: build a match pair (Ti, Aj)

18: end if
19: end for
20: end for
21: organize match pairs to M =

{
Ti →

{
Aj

}∣∣∣i ∈ {1, 2, 3, . . . , m}, j ∈ {1, 2, 3, . . . , n}
}

which

stores aerial images
{

Aj

}
that form a match pair with a terrestrial image Ti

22: for each terrestrial image Ti in T
23: find terrestrial images MT =

{
Tj

}
that are K nearest neighbors of Ti

24: match Ti against aerial images in M(Ti)
25: match Ti against terrestrial images in MT
26: add the tie points as a group to G
27: end for
28: return G

3.4. Accurate Fusion of Terrestrial and Aerial Sparse Models

The terrestrial and aerial sparse models are merged to generate an integrated model of
the scene as follows. Firstly, the cross-platform tie points are separated into terrestrial and
aerial groups. Then, the two groups of tie points are triangulated based on the terrestrial
and aerial sparse models, respectively. Thirdly, correspondences between the two groups of
triangulated 3D points are found, and outliers are filtered from the correspondences. Finally,
the terrestrial and aerial sparse models are merged based on the refined correspondences,
and the integrated model is globally optimized to further improve the accuracy of the
reconstruction.

The terrestrial and aerial groups of tie points are robustly triangulated with the
RANSAC framework. The triangulation of the tie points is illustrated in Figure 4. The
triangulated 3D points are labeled with black points in the figure. These 3D points are
triangulated from tie point observations of points A, B, and C. The tie point observations
of the same point are labeled with the same color. As illustrated by Figure 4, the points
triangulated from the aerial images do not coincide with those from the terrestrial images.



Remote Sens. 2023, 15, 5302 9 of 27

Remote Sens. 2023, 15, x FOR PEER REVIEW 9 of 29 
 

 

23:    find terrestrial images 𝑀𝑇 = {𝑇 } that are 𝐾 nearest neighbors of 𝑇  
24:    match 𝑇  against aerial images in 𝑀(𝑇 ) 
25:    match 𝑇  against terrestrial images in 𝑀𝑇 
26:    add the tie points as a group to 𝐺 
27: end for 
28: return 𝐺 

3.4. Accurate Fusion of Terrestrial and Aerial Sparse Models 
The terrestrial and aerial sparse models are merged to generate an integrated model 

of the scene as follows. Firstly, the cross-platform tie points are separated into terrestrial 
and aerial groups. Then, the two groups of tie points are triangulated based on the ter-
restrial and aerial sparse models, respectively. Thirdly, correspondences between the 
two groups of triangulated 3D points are found, and outliers are filtered from the corre-
spondences. Finally, the terrestrial and aerial sparse models are merged based on the 
refined correspondences, and the integrated model is globally optimized to further im-
prove the accuracy of the reconstruction. 

The terrestrial and aerial groups of tie points are robustly triangulated with the 
RANSAC framework. The triangulation of the tie points is illustrated in Figure 4. The 
triangulated 3D points are labeled with black points in the figure. These 3D points are 
triangulated from tie point observations of points A, B, and C. The tie point observations 
of the same point are labeled with the same color. As illustrated by Figure 4, the points 
triangulated from the aerial images do not coincide with those from the terrestrial imag-
es. 

 
Figure 4. Triangulation of cross-platform tie points. 

To precisely merge the terrestrial and aerial sparse models, a 3D similarity trans-
formation from the terrestrial model to the aerial model is estimated based on the 3D 
correspondences that are found in the triangulated terrestrial and aerial 3D points. To 
improve the accuracy and robustness of the model fusion process, outliers in the corre-
spondences are detected based on the following derivations. Assume that 𝑋  and 𝑋  

Figure 4. Triangulation of cross-platform tie points.

To precisely merge the terrestrial and aerial sparse models, a 3D similarity trans-
formation from the terrestrial model to the aerial model is estimated based on the 3D
correspondences that are found in the triangulated terrestrial and aerial 3D points. To
improve the accuracy and robustness of the model fusion process, outliers in the corre-
spondences are detected based on the following derivations. Assume that Xi

T and Xi
A are a

pair of 3D correspondences that are triangulated based on respective terrestrial and aerial
sparse models. Assume

Xi
T = Xi + ei

T (3)

Xi
A = Xi + ei

A (4)

where Xi is the true position of the object point corresponding to the correspondences,
ei

T and ei
A are residual error vectors corresponding to terrestrial and aerial sparse models, re-

spectively. Assume that ei
T and ei

A are subject to the three-dimensional normal distributions
defined as follows.

eT
i ∼ N(µT , ΣT) (5)

eA
i ∼ N(µA, ΣA) (6)

where N(µT , ΣT) and N(µA, ΣA) define the positioning bias and accuracy of the terrestrial
and aerial sparse models, respectively. Based on the above assumptions, the positional
difference between Xi

T and Xi
A is subject to the three-dimensional normal distribution given

by Equation (7).
XT

i − XA
i ∼ N(µT − µA, ΣT + ΣA) (7)

Based on the above derivations, statistics of positional differences are used to detect
and remove outliers from the correspondences. Specifically, mean and standard deviation
values along the X, Y, and Z axes are calculated from the positional differences of all pairs
of 3D correspondences. A pair of correspondences is considered an outlier as long as
the positional difference along any axis is outside the range of the respective mean value
plus and minus Np times the standard deviation. After outliers are removed from the
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correspondences, a 3D similarity transformation is estimated. For refined correspondences
{Pi} and {Qi}, the similarity transformation is estimated by minimizing the object function
given by Equation (8).

E2 =
1
n

n

∑
i

h(‖Qi − (λRPi + t)‖ 2) (8)

where R is the rotation matrix, t is the translation vector, λ is the scaling factor, and h is the
Huber loss function, ‖ · ‖ denotes L2-norm. Then, the estimated similarity transformation
is applied to the terrestrial sparse model. And the transformed terrestrial model is locally
optimized with correspondences fixed to their positions in the aerial model. After merging
the locally optimized terrestrial model with the aerial model, the integrated model is
globally optimized by minimizing the object function given by Equation (1). The algorithm
for robust sparse model fusion is described by Algorithm 2.

Algorithm 2 Robust sparse model fusion

Input: terrestrial sparse model MT , aerial sparse model MA, tie points G
Output: an integrated model MAT
1: separate G to terrestrial tie points GT and aerial tie points GA
2: initialize terrestrial point set PT and aerial point set PA
3: for each group of tie points gi in GT
4: robustly triangulate gi to obtain a 3D point pi based on MT
5: add pi to PT
6: end for
7: for each group of tie points gj in GA
8: robustly triangulate gj to obtain a 3D point pj based on MA
9: add pj to PA
10: end for
11: find 3D correspondences C =

{
ci → (pj, pk)

∣∣∣i ∈ {1, 2, 3, . . . , m}, pj ∈ PT , pk ∈ PA

}
between

PT and PA
12: calculate positional differences of 3D correspondences, derive mean and standard deviation
values along three axes
13: filter outliers in C based on the Three-Sigma Rule
14: estimate a 3D similarity transformation T based on refined correspondences
15: transform MT to M′T based on T, and locally optimize M′T
16: merge M′T and MA to integrated model MAT
17: globally optimize MAT
18: return MAT

4. Experimental Results

The proposed methodology was evaluated using five publicly available benchmark
datasets. Firstly, the specifications of the datasets are detailed. Secondly, experimental
results of sparse model reconstruction, terrestrial–aerial image matching, and terrestrial–
aerial sparse model fusion are presented. Finally, the proposed methodology was compared
with a state-of-the-art methodology and three software packages. The proposed methodol-
ogy is implemented based on the open-source software OpenMVG (version 1.6) [44]. The
LoFTR model from the Kornia library (version 0.7.0) [45] was used for matching the terres-
trial and aerial images. The LoFTR model was pre-trained on the MegaDepth dataset [46].
The proposed algorithms were mainly implemented in the C++ programming language.
And scripts for data preprocessing and LoFTR-based image matching were implemented
in the Python programming language. All of the experiments were performed on a Dell
Precision 7530 mobile workstation. The workstation is equipped with a Windows 10 Pro-
fessional operating system, an Intel i9-8950HK CPU (6 cores, 2.9 GHz), an NVIDIA Quadro
P3200 GPU, and 32 GB memory.
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4.1. Specifications of Datasets

The datasets used for the experiments were downloaded from the website provided by
the research team from Southwest Jiaotong University (SWTJU), China [9]. The Center and
Zeche datasets were initially provided by the International Society for Photogrammetry and
Remote Sensing (ISPRS) and the European SDR (EuroSDR) and acquired with the ISPRS
scientific initiative in 2014 and 2015. The datasets were collected around two buildings
in Dortmund, Germany. The SWJTU-LIB, SWJTU-BLD, and SWJTU-RES datasets were
acquired and provided by the SWTJU research team. The SWJTU-LIB, SWJTU-BLD, and
SWJTU-RES datasets were acquired around a library building, a research building, and a
residential building, respectively. Specifications of the datasets are listed in Table 1.

Table 1. Dataset specifications.

Dataset Terrestrial
Images

Aerial
Images Aerial Camera Terrestrial Camera Spatial

Reference

Center 203 146 SONY Nex-7, 16 mm, 4000 × 6000 WGS 1984

Zeche 172 147 SONY Nex-7, 16 mm, 4000 × 6000 WGS 1984

SWJTU-LIB 78 123 SONY ILCE-5100,
40 mm, 4000 × 6000

Canon EOS M6,
19 mm, 4000 × 6000

WGS
1984/UTM

SWJTU-BLD 88 207
SONY ILCE-5100,

28/40 mm,
4000 × 6000

Canon EOS M6,
18 mm, 4000 × 6000

WGS
1984/UTM

SWJTU-RES 192 92 SONY ILCE-5100,
40 mm, 4000 × 6000

DJI spark, 6 mm,
3040 × 4056

WGS
1984/UTM

Each of the datasets is composed of several hundreds of aerial and terrestrial images.
The aerial and terrestrial images of the ISPRS datasets were acquired using the same
camera. The aerial and terrestrial images of the SWTJU datasets were acquired using two
cameras. The image resolution of most cameras is 4000 by 6000 pixels. Image positioning
observations, including latitude, longitude, and altitude defined under the World Geodetic
System 1984 (WGS 1984), are provided in the ISPRS datasets as EXIF tags. Positioning
observations under the WGS 1984, as well as the UTM (Universal Transverse Mercator)
coordinate system, are provided in the SWTJU datasets. In this study, the East–North–
Up (ENU) coordinate system is used as the object coordinate system for processing the
ISPRS datasets. The UTM coordinate system is used as the object coordinate system for
processing the SWTJU datasets. Sample images of the datasets are shown in Figure 5. The
left column shows aerial images of five scenes, and the right column shows terrestrial
images of the scenes.

4.2. Terrestrial and Aerial Sparse Reconstructions

For each dataset, a terrestrial sparse model and an aerial sparse model were recon-
structed from the terrestrial and aerial images, respectively. To match images efficiently,
each image was matched against its ten nearest neighbors. For the GNSS-aided incremental
SfM, the accuracy of the aerial GNSS observations was set to 0.1 m for all datasets. The
accuracy of the positioning observations of the terrestrial images of the Center, Zeche,
SWJTU-LIB, SWJTU-BLD, and SWJTU-RES datasets were set to 10 m, 10 m, 0.1 m, 0.1 m
and 0.1 m, respectively. And the accuracy of image observations was set to 1 pixel. The
statistics of the sparse reconstructions are listed in Table 2. All terrestrial and aerial images
were registered during the sparse reconstructions for each dataset. Hundreds of thousands
of 3D points were reconstructed from each dataset. The column of root-mean-squared
error (RMSE) shows that all of the sparse reconstructions achieved subpixel accuracy. The
experimental result shows high robustness and accuracy of the sparse reconstructions.
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Table 2. Statistics of sparse reconstructions of five datasets.

Dataset
Reconstructed Points RMSE (Pixel)

Aerial Terrestrial Aerial Terrestrial

Center 612,504 349,588 0.56 0.59
Zeche 729,947 103,1828 0.45 0.41

SWJTU-LIB 153,397 40,200 0.67 0.78
SWJTU-BLD 143,623 99,669 0.56 0.72
SWJTU-RES 191,494 222,849 0.61 0.68

4.3. Cross-Platform Image Matching

The parameters for match pair selection between the terrestrial and aerial images
were set as follows. The angle threshold VT between the normal vector of a point and a
virtual observation vector was set to 40 degrees. The threshold NT for the validation of a
terrestrial–aerial match pair was set to 300. The statistics of the selected terrestrial–aerial
match pairs are listed in Table 3. The table shows that hundreds to thousands of match
pairs were selected for the datasets. The maximum number of match pairs of a dataset
shows the highest number of aerial images that overlap with a terrestrial image. Most
of the minimum numbers are zero. It indicates that there exists at least one terrestrial
image which does not overlap with any aerial images. The average number of match pairs
correlates with the overlap ratio between the terrestrial and aerial images of a dataset. The
standard deviation (STD) shows the variation of selected match pairs within a dataset.

Table 3. Statistics of selected terrestrial–aerial match pairs.

Dataset Total Maximum Minimum Mean STD

Center 2906 35 0 14.32 10.54
Zeche 3069 33 0 17.84 4.46

SWJTU-LIB 527 8 5 6.76 1.11
SWJTU-BLD 1349 28 0 15.40 7.06
SWJTU-RES 954 16 0 4.97 7.13

Each terrestrial image was matched against the aerial images that formed a match pair
with it. And the terrestrial image was also matched against two neighboring terrestrial
images. It should be noted that all images were subsampled to 600 by 900 pixels to make
the cross-platform image matching process efficient. Then, the positions of the established
tie points in the subsampled images were transferred back to the original images. Figure 6
shows matching results of the terrestrial and aerial images shown in Figure 5. For each
dataset, the figure in the left column shows the geometrically verified tie points in two
images that are connected using green lines. The figures in the right column are enlarge-
ments of the red rectangles in the left figure. The green circles in the figures on the right
show the tie points, and the blue points in the figures on the left are outliers detected
in initial matches. It can be seen from Figure 6 that most of the matches are visually
correct, which demonstrates the robustness of the LoFTR model. It can also be seen that
much fewer tie points were established between the cross-platform images of the SWJTU
datasets than the ISPRS datasets, which indicates larger viewpoint and scale variations of
the SWJTU datasets.
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Figure 6. Terrestrial–aerial image matching: (a) Center; (b) Zeche; (c) SWJTU-LIB; (d) SWJTU-BLD;
(e) SWJTU-RES.

The statistics of terrestrial–aerial tie points are listed in Table 4. As can be seen from
the table, tens to hundreds of tie points, on average, were established between a terrestrial–
aerial image pair for the datasets. The average number of tie points of the SWJTU datasets
is much lower than the ISPRS datasets, which indicates the difficulty of the SWJTU datasets.
The standard deviation shows the variation of established tie points among the selected
match pairs within a dataset.

Table 4. Statistics of cross-platform tie points.

Dataset Minimum Maximum Mean STD

Center 9 1415 99 161.65
Zeche 10 512 144 154.22

SWJTU-LIB 12 142 35 26.48
SWJTU-BLD 10 214 31 32.44
SWJTU-RES 9 98 12 15.59
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4.4. Triangulation of Tie Points and Sparse Model Fusion

The cross-platform tie points were triangulated based on the terrestrial and aerial
sparse models, respectively. The number of triangulated points and 3D correspondences
for each dataset is listed in Table 5. It can be seen that hundreds to tens of thousands of
3D points were triangulated for the datasets. The number of triangulated points in the
ISPRS datasets is much higher than in the SWJTU datasets, as many more tie points are
established in the ISPRS datasets. It is also found that the number of triangulated points
from the aerial sparse model is higher than that from the terrestrial sparse model for each
dataset. This is mainly because a terrestrial image was matched against 4.97 to 15.40 aerial
images on average (cf. Table 3). And the same terrestrial image was matched against only
two neighboring terrestrial images. It can be seen from the last column that hundreds of
3D correspondences were established in the SWJTU datasets. More 3D correspondences
were obtained in the ISPRS datasets as more tie points were established.

Table 5. Statistics of triangulated points.

Dataset Aerial Terrestrial 3D Correspondences

Center 26,701 13,008 10,225
Zeche 54,866 4986 1047

SWJTU-LIB 617 416 339
SWJTU-BLD 1941 700 459
SWJTU-RES 1754 307 166

Figure 7 shows the triangulated points overlaid on respective sparse models. The
triangulated points are marked with green points. The left column shows the 3D points
triangulated from the terrestrial sparse model of each dataset, and the aerial triangulated
points are shown on the right. It can be seen that the triangulated points are mainly located
on the facade of the buildings. The terrestrial triangulated points correspond well to the
aerial triangulated points for each dataset. The figures also demonstrate the correctness of
the terrestrial–aerial image matching results.
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Before merging the reconstructed terrestrial and aerial sparse models, false corre-
spondences were detected based on the proposed outlier detection method. Statistics of
positional differences between the correspondences are listed in Table 6. The maximum
and minimum values show the range of the positional difference along three axes. The
Mean values of a dataset reflect the positional biases between the terrestrial and aerial
sparse models of the dataset. The STD values of a dataset reflect the spatial proximity of the
terrestrial and aerial sparse models in general. It can be seen from the table that the Mean
values of the ISPRS datasets are larger than those of the SWJTU datasets, which indicates
that there are larger positional biases between the terrestrial and aerial sparse models of
the ISPRS datasets.

To detect outliers in the 3D correspondences, the threshold Np was set to 3. The
number of outliers detected in the 3D correspondences of the Center, Zeche, SWJTU-LIB,
SWJTU-BLD, and SWJTU-RES datasets is 38, 16, 4, 21, and 5, respectively. Figure 8 shows tie
point observations of an outlier detected in 3D correspondences of the SWJTU-RES dataset.
Figure 8a,b show the tie point observations in two terrestrial images. Figure 8c,d show the
tie point observations in two aerial images. The tie point observations are labeled with red
circles in the terrestrial images and red plus signs in the aerial images. The figures show that
the outlier escaped the outlier detection during both pairwise image matching and robust
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triangulation. This type of outlier will reduce the accuracy of integrated reconstruction and
even corrupt the terrestrial–aerial model fusion process.

Table 6. Statistics of positional difference between correspondences (Unit: Meters).

Dataset Axis Maximum Minimum Mean STD

Center
X 543.00 −36.65 2.31 8.61
Y 34.21 −248.90 −4.54 5.80
Z 124.29 2.85 8.79 3.02

Zeche
X 21.88 −54.01 1.19 2.88
Y 9.13 −109.34 −2.14 4.65
Z 54.86 −9.30 −1.14 2.47

SWJTU-LIB
X 60.03 −18.61 0.03 6.32
Y 33.21 −10.63 0.12 3.46
Z 43.45 −14.47 0.61 4.71

SWJTU-BLD
X 20.09 −9.19 0.26 2.74
Y 35.41 −43.42 0.80 4.69
Z 10.48 −6.04 0.36 1.21

SWJTU-RES
X 10.12 −3.51 0.43 1.55
Y 26.44 −58.44 −0.73 7.67
Z 37.66 −2.26 0.83 3.07
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Figure 9 illustrates distributions of positional differences of the SWJTU-RES dataset
after the removal of the outliers. The red curves show the normal distributions fitted using
the inlier samples. It can be seen that the data fit the model well along each axis, which
justifies the assumptions of the proposed outlier detection method.
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Figure 9. Histograms and fitted normal distributions of positional differences of SWJTU-RES dataset:
(a) X; (b) Y; (c) Z.

After the removal of the outliers from the correspondences, the terrestrial and aerial
sparse models were merged and optimized for each dataset. The optimized sparse models
were exported to Metashape for further dense reconstruction and texture mapping to
generate textured models. Figure 10 shows the reconstructed sparse models and textured
models. The reconstructed sparse models are shown in the left column. The textured
models reconstructed based on the integrated sparse models are shown in the middle
column. The right column shows textured models reconstructed using only aerial images.
It can be seen that the terrestrial and aerial sparse models were merged well for all the
datasets. The sparse models are visually correct, and no observable distortion is found in
the reconstructed scenes.
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The textured models reconstructed using both terrestrial and aerial images show
more details of buildings compared to the textured models reconstructed using only aerial
images. The structures of the building facade are more complete and accurate, as terrestrial
images provide observations of the structures that are heavily occluded in aerial images.
The experimental results demonstrate the effectiveness of the proposed methodology.

4.5. Comparison of Pipelines

The proposed pipeline was compared with a state-of-the-art methodology [9] and
software packages, including Metashape, COLMAP [47] and OpenMVG [44]. The configu-
rations of the software packages are listed in Table 7.

• Metashape is a commercial software package widely used by the research community
and the industry for the photogrammetric processing of aerial images. In this study,
match pairs are selected based on both position and visual similarity of images. The
accuracy of the positioning observations of the images of the Center, Zeche, SWJTU-
LIB, SWJTU-BLD, and SWJTU-RES datasets was set to 10 m, 10 m, 0.1 m, 0.1 m, and
0.1 m. Metashape leverages a hierarchical SfM for sparse reconstruction. The highest
accuracy and the adaptive camera model fitting were set for the SfM reconstruction.
The other parameters were set to default values.
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• COLMAP is an open-source software package widely used by the research community
for image-based 3D reconstruction. In this study, match pairs were selected using a
vocabulary tree, and the vocabulary tree file with 32K visual words was downloaded
from the official website of COLMAP. SIFT is used for feature point extraction, and all
SIFT feature points extracted from raw images were used for pairwise image matching.
An incremental SfM strategy was used for sparse reconstruction. The other parameters
were set to default values.

• OpenMVG is an open-source software package widely used by the research commu-
nity for image-based sparse reconstruction. In this study, an exhaustive strategy was
used for match pair selection. RootSIFT is used for feature point extraction, and all
extracted feature points were used for pairwise image matching. An incremental SfM
reconstruction was used for sparse reconstruction. The other parameters were set to
default values.

Table 7. Specifications and parameter settings of software packages.

Software
Package

Match Pair
Selection Image Matching SfM Version Source

Metashape
Position

and visual
similarity

Highest accuracy,
maximum features:

40,000, maximum tie
points: 4000

Hierarchical 2.0.0 https://www.agisoft.com/,
accessed on 20 June 2023

COLMAP Voctree Full resolution, all
feature points Incremental 3.8 https://github.com/colmap/colmap,

accessed on 20 June 2023

OpenMVG Exhaustive Full resolution, all
feature points Incremental 2.0 https://github.com/openMVG/openMVG,

accessed on 20 June 2023

The terrestrial–aerial integrated reconstruction results are listed in Table 8. It can
be seen that the proposed pipeline registered all images for all datasets. Zhu et al.’s
method failed to register some aerial images of the Zeche and SWJTU-RES datasets [9].
COLMAP achieved a complete reconstruction of the SWJTU-LIB dataset. However, the
estimated positions of all terrestrial images are below the ground points reconstructed from
the aerial images. Therefore, the terrestrial images were considered unregistered for this
dataset. COLMAP also failed to register the terrestrial images of the SWJTU-BLD dataset.
OpenMVG was unable to reconstruct a visually correct model for the SWJTU-BLD and
SWJTU-RES datasets. Metashape failed to register aerial images of the SWJTU-RES dataset.
The experimental results demonstrate the robustness of the proposed pipeline.

The reported accuracy values show that the proposed pipeline consistently achieved
the highest accuracy on all the datasets. OpenMVG also obtained high accuracy on the
Center, Zeche, and SWJTU-LIB datasets. The accuracy achieved by COLMAP is a little lower
than OpenMVG. Although Metashape exhibited high robustness, it achieved relatively low
SfM accuracy on the datasets. No reprojection errors of SfM reconstructions were reported
in [9].

The proposed pipeline reconstructed more 3D points than COLMAP and Metashape.
It reconstructed more than one million 3D points for the ISPRS datasets and hundreds of
thousands of 3D points for the SWJTU datasets. OpenMVG reconstructed more 3D points
than the proposed pipeline, as the exhaustive strategy was used by OpenMVG for match
pair selection.

https://www.agisoft.com/
https://github.com/colmap/colmap
https://github.com/openMVG/openMVG
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Table 8. Comparison of pipelines for terrestrial–aerial integrated reconstruction.

Dataset Pipeline
Registered

Aerial
Images

Registered
Terrestrial

Images
3D Points RMSE

(Pix)

Center

OpenMVG 146/146 203/203 1,493,207 0.56
Metashape 146/146 203/203 237,464 0.93
COLMAP 146/146 203/203 235,895 0.70

Zhu et al.’s method [9] 146/146 203/203 - -
Proposed 146/146 203/203 1,566,842 0.39

Zeche

OpenMVG 147/147 172/172 2,172,225 0.46
Metashape 147/147 172/172 114,884 0.54
COLMAP 147/147 172/172 296,377 0.71

Zhu et al.’s method [9] 116/147 172/172 - -
Proposed 147/147 172/172 1,758,777 0.30

SWJTU-LIB

OpenMVG 123/123 78/78 1,033,323 0.65
Metashape 123/123 78/78 132,543 1.09
COLMAP 123/123 0/78 - -

Zhu et al.’s method [9] 123/123 78/78 - -
Proposed 123/123 78/78 355,783 0.45

SWJTU-BLD

OpenMVG - - - -
Metashape 207/207 88/88 243,673 1.03
COLMAP 207/207 0/88 - -

Zhu et al.’s method [9] 207/207 88/88 - -
Proposed 207/207 88/88 467,644 0.41

SWJTU-RES

OpenMVG - - - -
Metashape 0/92 192/192 - -
COLMAP 92/92 192/192 224,844 0.75

Zhu et al.’s method [9] 88/92 192/192 - -
Proposed 92/92 192/192 348,055 0.43

4.6. Ablation Studies

To demonstrate the effectiveness of the proposed image matching and outlier detec-
tion methods, the following two experiments were conducted. In the first experiment, the
proposed match pair selection was used to generate the match pairs. The RootSIFT algo-
rithm was used for matching all the match pairs. Then, outliers in the initial matches were
removed using the epipolar constraint with the RANSAC framework. And a GNSS-aided
incremental SfM reconstruction was conducted based on the tie points to build a sparse
model for each dataset. In the second experiment, match pair selection and pairwise image
matching were conducted using the proposed methods. A sparse model was reconstructed
for each dataset using a GNSS-aided incremental SfM. The proposed outlier detection
method for filtering 3D correspondences was not used in either of the experiments. The
experiments were implemented based on the OpenMVG framework. The experimental
results are listed in Table 9.

The results of the first experiment on the Center, Zeche, and SWJTU-LIB datasets are
almost the same as those by OpenMVG from Table 8. It means that the proposed match pair
selection method has little influence on the integrated reconstruction of relatively simple
datasets. However, the first experiment achieved better reconstruction on the SWJTU-BLD
dataset than OpenMVG, which indicates that precisely selected match pairs can improve the
robustness of integrated reconstruction on complex datasets. However, the first experiment
still failed to register any terrestrial images of the SWJTU-BLD dataset and could not
reconstruct the SWJTU-RES dataset. In comparison, the second experiment achieved
complete and accurate reconstruction on the SWJTU-RES dataset, which demonstrates
that the proposed image matching method can improve the robustness of integrated
reconstruction on complex datasets. The second experiment also achieved comparable
results on the ISPRS datasets. However, the reconstruction failed on the SWJTU-LIB dataset
in the same way as COLMAP. The estimated positions of all terrestrial images are below
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the ground points reconstructed from the aerial images. And the reconstruction also
failed on the SWJTU-RES dataset. It demonstrates that outliers in the LoFTR tie points
corrupt the incremental SfM reconstruction process. It can be seen from Table 8 that a
complete reconstruction of the SWJTU-RES dataset was achieved based on the proposed
outlier detection method, which demonstrates that the proposed outlier detection method
can further improve the robustness of integrated reconstruction on complex datasets. By
comparing the accuracy achieved by the proposed pipeline from Table 8 and the accuracy
achieved by the second experiment from Table 9, it can be seen that the proposed pipeline
achieved higher reconstruction accuracy on all the datasets. It demonstrates that the
proposed outlier detection method can improve the accuracy of integrated reconstruction.

Table 9. Statistics of integrated reconstruction for ablation studies.

Dataset Experiment Registered
Aerial Images

Registered
Terrestrial

Images

3D
Points

RMSE
(Pix)

Center
First 146/146 203/203 1,499,462 0.56

Second 146/146 203/203 1,005,493 0.61

Zeche
First 147/147 172/172 2,179,790 0.46

Second 147/147 172/172 1,255,304 0.48

SWJTU-LIB
First 123/123 78/78 1,032,079 0.65

Second 123/123 0/78 - -

SWJTU-BLD
First 207/207 0/88 - -

Second 207/207 88/88 246,842 0.64

SWJTU-RES
First - - - -

Second - - - -

The experimental results are visualized in Figure 11. The left column shows the sparse
models reconstructed in the first experiment, and the sparse models reconstructed in the
second experiment are shown on the right. It can be seen from the figures that both experi-
ments achieved geometrically consistent reconstructions on the ISPRS datasets. Figure 11e
shows that the sparse models reconstructed from the SWJTU-RES dataset are distorted,
and the terrestrial images are misaligned with the aerial images. Figures 10 and 11 to-
gether demonstrate the robustness and accuracy of the proposed pipeline for integrated
reconstruction.
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5. Discussion 
(1) Robustness 

There are three factors that affect the robustness of the proposed pipeline. First, the 
reconstruction of terrestrial and aerial sparse models forms the basis of an integrated 
reconstruction. The experimental results demonstrate that high-quality terrestrial and 
aerial sparse models can be obtained using RootSIFT-based image matching and incre-
mental SfM. 

Second, the robustness of integrated reconstruction is affected by the precision of 
match pairs. LoFTR is known to generate tie points even between non-overlapping im-
ages. In this case, outliers in the tie points will probably affect the robustness of sparse 
model fusion and integrated reconstruction. Match pair selection of the proposed meth-
odology is affected by normal vector approximation. The approximation of a normal 
vector N is based on the assumption that the observation vectors are uniformly distrib-
uted in space. Ideally, normal vectors should be estimated using a dense cloud. Howev-
er, the proposed method avoids using a dense cloud, as dense matching makes the pipe-
line more time-consuming. Although the approximation may be biased, it still can be 
used for cross-platform match pair selection by relaxing the angle constraint VT. In addi-
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5. Discussion

(1) Robustness

There are three factors that affect the robustness of the proposed pipeline. First,
the reconstruction of terrestrial and aerial sparse models forms the basis of an integrated
reconstruction. The experimental results demonstrate that high-quality terrestrial and aerial
sparse models can be obtained using RootSIFT-based image matching and incremental SfM.

Second, the robustness of integrated reconstruction is affected by the precision of
match pairs. LoFTR is known to generate tie points even between non-overlapping images.
In this case, outliers in the tie points will probably affect the robustness of sparse model
fusion and integrated reconstruction. Match pair selection of the proposed methodology is
affected by normal vector approximation. The approximation of a normal vector N is based
on the assumption that the observation vectors are uniformly distributed in space. Ideally,
normal vectors should be estimated using a dense cloud. However, the proposed method
avoids using a dense cloud, as dense matching makes the pipeline more time-consuming.
Although the approximation may be biased, it still can be used for cross-platform match
pair selection by relaxing the angle constraint VT. In addition, the threshold NT for the
validation of a match pair also influences the match pair selection. When the point density
of a terrestrial point cloud is low, this threshold should be lowered to increase the number
of match pairs. The values of VT and NT are set empirically in this study. The quantitative
analysis of the influence of the threshold values on the final results is beyond the scope of
the manuscript, and it will be investigated in future work.
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Third, the quality of 3D correspondences affects the robustness of integrated recon-
struction. As shown by the experimental results, the epipolar constraint cannot remove
all mismatches. The remaining outliers will affect the robustness of model fusion. The
proposed methodology removes outliers in 3D correspondences, which improves the
robustness of integrated reconstruction.

(2) Accuracy

The accuracy of integrated reconstruction is affected by the accuracy of GNSS obser-
vations and the quality of tie points and 3D correspondences. First, it is found during
the experiments that the elevation accuracy of the terrestrial GNSS observations of the
Zeche dataset is low, and therefore, low weights are given to these observations during
sparse reconstruction and global optimization. In comparison, the positioning accuracy of
the aerial images is generally higher as airborne GNSS observations are not disturbed by
ground object occlusion and the multipath effect. Therefore, higher weights are given to
aerial GNSS observations during sparse reconstruction and global optimization. Similarly,
the proposed methodology merges the terrestrial sparse model with the aerial sparse model
rather than the other way around in consideration of the higher accuracy of the aerial
GNSS-aided SfM reconstruction. The experimental results demonstrate that the proposed
pipeline works as expected with the accuracy of GNSS observations set properly.

Second, the quality of tie points and 3D correspondences also influence the accuracy
of the integrated reconstruction. Tie point observations of the proposed methodology are
generated by image matching using SIFT and LoFTR. As mentioned above, high-quality tie
points can be obtained using SIFT-based image matching during terrestrial and aerial sparse
reconstruction. Although mismatches remain in cross-platform tie points, the proposed
outlier detection method removes outliers in 3D correspondences to mitigate the influence
of the remaining mismatches, which improves the accuracy of the integrated reconstruction.

(3) Efficiency

The proposed pipeline is fully automatic. No human interventions or intermediate
processing like cross-view rendering are required, which makes it more streamlined for
integrated 3D reconstruction using multi-source images. The current bottleneck of the
proposed pipeline is cross-platform image matching due to the low efficiency of the LoFTR
implementation, which is much lower than the CPU-parallel RootSIFT implementation
from OpenMVG.

6. Conclusions

A novel approach based on robust cross-platform image matching and model fusion
is proposed for integrated 3D reconstruction of complex urban scenes using multi-source
images. The proposed pipeline works in a hierarchical manner. Firstly, terrestrial and aerial
sparse models are reconstructed, respectively. Then, match pairs are selected between
terrestrial and aerial images. And cross-platform image matching is performed on the
selected match pairs. Thirdly, terrestrial–aerial tie points are triangulated, and outliers in 3D
correspondences are filtered. Finally, the terrestrial and aerial sparse models are merged and
globally optimized to obtain an integrated model of the scene. The proposed methodology
was evaluated on five benchmark datasets. The experimental results demonstrate that
terrestrial and aerial images are robustly matched using the proposed cross-platform image
matching method. Based on the proposed outlier detection method, terrestrial and aerial
models are accurately merged. The proposed pipeline was compared with a state-of-the-
art methodology and three software packages. The experimental results demonstrate
that the proposed pipeline outperforms the other pipelines in terms of robustness and
accuracy. Future work will focus on integrated reconstruction of complex urban scenes
using multi-platform and multi-modal remote sensing data.
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